Stabilized Palladium Nanoparticles from Bis-(N-benzoylthiourea) Derived-PdII Complexes as Efficient Catalysts for Sustainable Cross-Coupling Reactions in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Suzuki–Miyaura Cross-Coupling
2.2. Mizoroki–Heck Reaction
2.3. Hiyama Cross-Coupling
2.4. Buchwald-Hartwig Cross-Coupling
2.5. Hirao Cross-Coupling
2.6. Sonogashira–Hagihara Cross-Coupling
2.7. Characterization of the Catalyst and Study of Their Separation and Recycling
3. Materials and Methods
3.1. General
3.2. General Procedure for the Preparation of the Pd(II) Complexes
- Palladium(II) complex 1 [18]: Brownish yellow solid, 99 mg, 78% yield; mp 187–189 °C (MeOH, decom.). 1H NMR (400 MHz) δ: 8.18–8.15 (m, 6H, minor and major), 8.01–7.94 (m, 4H, minor and major), 7.54–7.14 (m, 16H, minor and major), 5.56 (d, J = 9.9 Hz, 1H-5, major), 5.48 (d, J = 10.1 Hz, 1H-5, minor), 4.28 (d, J = 14.0 Hz,1H-6, major), 4.23 (d, J = 14.1 Hz, 1H-6, minor), 3.80 (s, 3H, minor), 3.75 (s, 3H, major), 3.36–3.43 (m, 2H, major and minor), 3.22 (s, 3H, minor), 3.21 (s, 3H, major), 2.99–2.91 (m, 2H, major and minor), 2.35–2.28 (m, 2H, major and minor), 2.26–2.16 (m, 2H, major and minor). 13C NMR (100 MHz) δ: 173.1 (C=S minor), 173.0 (CS major), 172.2 (CO minor), 172.1 (CO major), 172.0 (CO minor), 172.05 (CO major), 169.7 (CO minor), 169.6 (CO major), 136.5 minor, 136.4 major, 136.3 minor and major, 135.3 major, 135.2 minor, 134.1 major, 134.0 minor, 133.9 minor and major, 132.2 (C major), 130.2 (3C minor), 130.1 minor and major, 130.0 (4C minor), 129.6 minor, 129.5 major, 129.2 (3C major), 129.0 minor, 128.8 major, 128.2 (4C major), 127.9 minor, 127.8 major, 127.6 (2C minor), 73.5 minor, 73.4 major, 64.1 minor, 63.9 major, 53.1 minor, 53.0 major, 51.6 major and minor, 45.9 major, 45.5 minor, 40.1 minor, 40.0 major, 36.8 minor, 36.6 major IR (cm−1) νmax: 3027, 2948, 1737, 1497, 1396, 1361, 1246, 1101, 701 cm−1. MS (ESI) m/z (%): 1283 (29), 1282 (46), 1281 (60), 1280 (96), 1279 (M+, 62%), 1278 (100), 1277 (81), 1276 (78), 1275 (66). Elemental Analysis required for C58H54Cl4N4O10PdS2: C, 54.5; H, 4.3; N, 4.4; S, 5.0%; found: C, 54.9; H, 4.0; N, 4.6; S, 4.7%.
- Palladium complex 2: Brownish-yellow solid, 123 mg, 90% yield; mp 253–255 °C (MeOH, decomp.); IR (cm−1) νmax: 3417, 3060, 2952, 1790, 1716, 1495, 1391, 1258, 1201, 1168, 1093, 743. δH (400 MHz, CDCl3): 8.39 (s, 2H, N-H), 8.20 (d, 4H, J = 7.3 Hz, ArH), 7.73 (d, 2H, J = 7.8 Hz, ArH), 7.55 (d, 2H, J = 7.3 Hz, ArH), 7.51–7.36 (m, 9H, ArH), 7.32–7.26 (m, 9H, ArH), 7.19 (d, 4H, J = 7.7 Hz, ArH), 7.10 (d, 2H, J = 1.9 Hz, ArH), 6.52–6.45 (m, 4H, ArH), 5.40 (d, 2H, J = 11.0 Hz, 5-H), 4.52 (d, 2H, J = 15.10 Hz, 6-H), 3.95 (s, 6H, OCH3), 3.89 (d, 2H, J = 15.00 Hz, 6′-H), 3.84 (d, 2H, J = 9.5 Hz, 3-H), 2.60 (dd, 2H, J = 10.8 Hz, 9.1 Hz, 4-H). δC (100 MHz, CDCl3): 172.6 (2xC=S), 172.6 (2xC=O), 172.2 (2xC=O), 172.0 (2xC=O), 169.6 (2xC=O), 136.0 (2C), 135.9 (2C), 135.8 (2C), 133.8 (2C), 132.5 (2C), 130.7 (2C), 130.1 (6C), 129.0 (6C), 128.7 (2C), 128.3 (6C), 127.7 (2C), 125.7 (6C), 124.3 (2C), 122.9 (2C), 120.8 (2C), 117.8 (2C), 111.9 (2C), 108.7 (2C), 68.9 (2C), 54.1 (2C), 53.1 (2C), 48.5 (2C), 31.7 (2C), 30.9 (2C). HRMS: calculated for C74H60Cl2N8O10PdS2: 1462.7717, found: 1462.7711. EA calculated for C74H60Cl2N8O10PdS2: C 60.8, H 4.1, N 7.7, S 4.4%; found: C 60.5, H 4.4, N 7.7, S 4.5%.
3.3. General Procedure for Suzuki–Miyaura Cross Coupling Reaction
- 4-Methoxy-1,1′-biphenyl (5a) [32]: Isolated 82 mg (89%, Table 1, entry 1op), 80 mg (87%, Table 1, entry 12), 73 mg (79%, Table 1, entry 14), 50 mg (54%, Table 1, entry 17) as colorless solid. M.p. 88–89 °C (n-hexane/AcOEt), Lit. 86–87 °C (hexanes) [32]. Rf = 0.2 (n-hexane). 1H NMR (400 MHz) δ (ppm): 7.60 (t, J = 8.4 Hz, 4H), 7.47 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 7.04 (d, J = 8.7 Hz, 2H), 3.90 (s, 3H). 13C NMR (100 MHz) δ (ppm): 159.2, 140.8, 133.8, 128.8, 128.2, 126.8, 126.7, 114.3, 55.4.
- 4-Methyl-1,1′-biphenyl (5b) [33]: Isolated 75 mg (89%, Table 1, entry 8), 73 mg (87%, Table 1, entry 13), 68 mg (81%, Table 1, entry 15), 57 mg (68%, Table 1, entry 18) as colorless solid. M.p. 49–50 °C (n-hexane/AcOEt), Lit. 50–51 °C (hexanes) [34]. Rf = 0.6 (n-hexane). 1H NMR (400 MHz) δ (ppm): 7.65 (dd, J = 33.6, 7.6 Hz, 4H), 7.55–7.41 (m, 3H), 7.35 (d, J = 7.8 Hz, 2H), 2.50 (s, 3H). 13C NMR (100 MHz) δ (ppm): 141.38, 138.5, 137.1, 129.6, 128.8, 127.1, 127.1, 21.2.
- [1,1′-Biphenyl]-3-carbonitrile (5c) [35]: Isolated 79 mg (88%, Table 1, entry 9) as colorless solid. M.p. 39–40 °C (n-hexane/AcOEt), Lit. 38–39 °C (hexanes/EtOAc) [36]. Rf = 0.2 (n-hexane). 1H NMR (400 MHz) δ (ppm): 7.92 (s, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.63–7.59 (m, 3H), 7.56–7.46 (m, 3H). 13C NMR (101 MHz) δ (ppm): 142.4, 138.9, 131.5, 130.7, 129.7, 129.1, 128.6, 127.1, 118.9, 112.9.
- [1,1′-Biphenyl]-3-carbaldehyde (5d) [37]: Isolated 82 mg (90%, Table 1, entry 10) as colorless solid. M.p. 54–55 °C (n-hexane/AcOEt), Lit. 53–54 °C (hexanes/EtOAc) [38]. Rf = 0.4 (n-hexane).V1H NMR (400 MHz) δ (ppm): 10.15 (s, 1H), 8.17 (s, 1H), 7.95–7.41 (m, 8H). 13C NMR (101 MHz) δ (ppm): 192.4, 142.2, 139.7, 136.9, 133.1, 129.5, 129.0, 128.7, 128.2, 128.0, 127.2.
- 4-Chloro-1,1′-biphenyl (5e) [39]: Isolated 85 mg (90%, Table 1, entry 11) as colorless solid. M.p. 78–79 °C (n-hexane/AcOEt), Lit. 77–78 °C (n-hexane/EtOAc) [40]. Rf = 0.4 (n-hexane). 1H NMR (400 MHz) δ (ppm): 7.62 (dd, J = 15.3, 7.9 Hz, 4H), 7.49 (ddt, J = 20.3, 14.6, 7.3 Hz, 5H). 13C NMR (101 MHz) δ (ppm): 140.0, 139.7, 133.4, 128.9, 128.9, 128.4, 127.6, 127.0.
- Biphenyl-4-carbaldehyde (5f) [41]: Isolated 78 mg (80%, Table 1, entry 16) as colorless solid. M.p. 59–60 °C (n-hexane/AcOEt), Lit. 59–60 °C (n-hexane/EtOAc) [36]. Rf = 0.3 (n-hexane). 1H NMR (400 MHz) δ (ppm): 1H NMR (400 MHz, Chloroform-d) δ (ppm): 10.15 (s, 1H), 8.17 (s, 1H), 7.92 (m, 2H), 7.68 (m, 3H), 7.50 (dt, J = 31.1, 7.3 Hz, 3H). 13C NMR (101 MHz) δ (ppm): 192.0, 147.2, 139.7, 135.2, 130.3, 129.0, 128.5, 127.7, 127.4.
- [1,1′-Biphenyl]-4-carbonitrile (5g) [42]: Isolated 63 mg (70%, Table 1, entry 19) as colorless solid. M.p. 85–86 °C (n-hexane/AcOEt), Lit. 85–86 °C (n-hexane/EtOAc) [43]. Rf = 0.4 (n-hexane). 1H NMR (400 MHz) δ (ppm): 7.77 (q, J = 8.2 Hz, 4H), 7.69–7.44 (m, 5H). 13C NMR (101 MHz) δ (ppm): 145.7, 139.2, 132.6, 129.1, 128.7, 127.7, 127.2, 119.0, 110.9.
3.4. General Experimental Procedure for Mizoroki-Heck Reaction
- (E)-n-Butyl 3-(4-methoxyphenyl)acrylate (7a) [23]: Isolated 97 mg (83%, Table 2, entry 1op), 92 mg (79%, Table 2, entry 17) as colorless powder. M.p. 84–85 °C (n-hexane/EtOAc), Lit. 84–85 °C (pentanes/EtOAc) [44]. Rf = 0.3 (n-hexane). 1H NMR (400 MHz) δ (ppm): 7.58 (d, J = 16.0 Hz, 1H,), 7.39 (d, J = 4.2 Hz, 3H), 6.24 (d, J = 16.0 Hz, 1H), 4.13 (m, J = 7.0 Hz, 2H), 3.72 (s, 3H), 1.60–1.62 (m, 2H), 1.35–1.40 (m, 2H), 0.91 (t, J =7.0 Hz 3H). 13C NMR (100 MHz) δ (ppm) = 167.1, 161.2, 144.0, 129.5, 127.0, 115.5, 114.1, 64.0, 55.0, 30.7, 19.1, 13.6.
- (E)-4-Methoxystylbene (7b) [23]: Isolated 84 mg (80%, Table 2, entry 10), 84 mg (80%, Table 2, entry 18) as colorless powder. M.p. 138–139 °C (n-hexane/EtOAc), Lit. 138 °C (water) [45]. Rf = 0.2 (n-hexane/EtOAc, 3:1). 1H NMR (400 MHz) δ (ppm): 7.46–7.52 (m, 3H), 7.36 (t, J = 7.6 Hz, 2H), 7.09 (d, J = 16.0 Hz, 2H), 6.99 (d, J = 16.4 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 3.89 (s, 3H). 13C NMR (100 MHz) δ (ppm): 159.3, 137.7, 130.1, 128.7, 128.2, 127.8, 127.2, 126.6, 126.3, 114.1, 55.3.
- (E)-n-Butyl cinnamate (7c) [23]: Isolated 83 mg (81%, Table 2, entry 11), 78 mg (76%, Table 2, entry 15), 51 mg (50%, Table 2, entry 19), as colorless oil. Rf = 0.4 (n-hexane). 1H NMR (400 MHz) δ (ppm): 7.60 (d, J = 16.4 Hz, 1H), 7.43–7.45 (m, 2H), 7.29–7.30 (m, 3H), 6.36 (d, J = 16.0 Hz, 1H), 4.13 (t, J = 6.8 Hz, 2H), 1.59–1.62 (m, 2H), 1.34–1.36 (m, 2H), 0.88 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz) δ (ppm): 166.8, 144.4, 134.4, 130.1, 128.8, 128.0, 118.2, 64.3, 30.8, 19.2, 13.7.
- (E)-Stylbene (7d) [23]: Isolated 72 mg (80%, Table 2, entry 12), 68 mg (75%, Table 2, entry 16), 49 mg (54%, Table 2, entry 20, as colorless solid. M.p. 124–125 °C (n-hexane/EtOAc), Lit. 123–125 °C (Merck, commercially available). Rf = 0.9 (n-hexane). 1H NMR (400 MHz) δ (ppm): 7.58 (d, J = 7.2 Hz, 4H), 7.42 (t, J = 7.0 Hz, 4H), 7.33 (t, J = 6.8 Hz, 2H), 7.18 (s, 2H). 13C NMR (100 MHz) δ (ppm): 137.4, 128.8, 127.8, 126.7.
- (E)-n-Butyl 3-(4-chlorophenyl) acrylate (7e) [23]: Isolated 96 mg (81%, Table 2, entry 13) as colorless solid. M.p. 35–36 °C (n-hexane/EtOAc), Lit. 35–36 °C [46]. Rf = 0.4 (n-hexane). 1H NMR (300 MHz) δ (ppm): 7.65 (d, J = 16.0 Hz, 1H), 7.47 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 6.43 (d, J = 16.0 Hz, 1H), 4.24 (t, J = 6.6 Hz, 2H), 1.40-1.52 (m, 2H), 1.67–1.76 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H). 13C NMR (100 MHz) δ (ppm): 166.7, 143.0, 136.0, 132.9, 129.4, 129.1, 118.8, 64.4, 30.7, 19.2, 13.7.
- (E)-1-Chloro-4-styrylbenzene (7f) [23]: Isolated 82 mg (77%, Table 2, entry 14) as colorless solid. M.p. 127–128 °C (n-hexane/EtOAc), Lit. 126–128 °C [47]. Rf = 0.8 (n-hexane). 1H NMR (400 MHz) δ (ppm): 7.50–7.52 (m, 2H), 7.43–7.46 (m, 2H), 7.28–7.39 (m, 5H), 7.07 (s, 2H). 13C NMR (75 MHz) δ (ppm): 137.0, 135.8, 133.2, 129.3, 128.8, 128.7, 127.9, 127.7, 127.4, 126.6 ppm.
3.5. General Experimental Procedure for Hiyama Cross-Coupling
3.6. General Experimental Procedure for Buchwald-Hartwig Cross-Coupling
- 4-Methoxy-N-phenylaniline (10a) [48]: Isolated 41 mg (41%, Table 4, entry 1op), 35 mg (35%, Table 4, entry 9) as colorless solid. M.p. 105–106 °C (n-hexane/EtOAc), Lit. 105 °C (n-hexane/EtOAc) [48]. Rf = 0.3 (n-hexane:EtOAc, 3:1). 1H NMR (400 MHz) δ (ppm): 7.40 (d, J = 8.4 Hz, 2H), 7.25-7.10 (m, 5H) 6.90 (d, J = 8.4 Hz, 2H), 5.50 (s,1H), 3.81 (s, 3H). 13C NMR (100 MHz) δ (ppm): 153.4, 145.7, 135.5, 129.1, 123.4, 120.1, 115.1, 55.3.
- 4-Methyl-N-phenylaniline (10b) [49]: Isolated 41 mg (45%, Table 4, entry 7) as colorless solid. M.p. 90–91 °C (n-hexane/EtOAc), Lit. 90 °C (n-hexane/EtOAc) [49] Rf = 0.5 (n-hexane:EtOAc, 3:1). 1H NMR (300 MHz) δ (ppm): 7.26 (t, J = 7.2 Hz, 2H), 7.20–6.90 (m, 6H), 6.85 (m, 1H), 5.61 (s, 1H), 2.32 (s, 3H). 13 C-NMR (75 MHz) δ (ppm): 143.9, 140.2, 130.9, 129.8, 129.1, 120.3, 118.8, 116.9, 20.6.
- 4-Chloro-N-phenylaniline (10c) [49]: Isolated 59 mg (58%, Table 4, entry 8) as colorless solid. M.p. 68–69 °C (n-hexane/EtOAc), Lit. 69 °C (n-hexane/EtOAc) [49]. Rf = 0.3 (n-hexane:EtOAc, 3:1). 1H NMR (300 MHz) δ (ppm): 7.35–7.20 (m, 2H), 7.20 (dt, J = 9.0, 3.3 Hz, 2H), 7.70–6.90 (m, 5H), 5.60 (s, 1H). 13C-NMR (75 MHz) δ (ppm): 142.5, 141.9, 129.3, 129.2, 125.5, 121.0, 118.5, 118.2.
3.7. General Experimental Procedure for Hirao Cross-Coupling
- Diethyl 4-methoxyphenylphosphonate (12a) [23]: Isolated 107 mg (88%, Table 5, entry 1op), 88 mg (72%, Table 5, entry 14), 72 mg (59%, Table 5, entry 17) as colorless oil. Rf = 0.4 (n-hexane:EtOAc, 3:1). 1H NMR (300 MHz) δ (ppm): 8.30 (dd, J = 8.7 and 3.3 Hz, 1H), 8.00 (dd, J = 12.7 and 8.7 Hz, 1H), 4.27–4.06 (m, 4H), 1.34 (t, J = 6.9 Hz, 6H). 13C NMR (75 MHz) δ (ppm): 150.2 (d, J = 3.7 Hz), 135.8 (d, J = 185.2 Hz), 133.0 (d, J = 10.5 Hz), 123.3 (d, J = 15.0 Hz), 62.7 (d, J = 5.2 Hz), 16.3 (d, J = 6.0 Hz), 16.1 (d, J = 6.7 Hz).
- Diethyl phenylphosphonate (12b) [23]: Isolated 97 mg (91%, Table 5, entry 10), 80 mg (75%, Table 5, entry 12), 73 mg (68%, Table 5, entry 15) as colorless oil. Rf = 0.5 (n-hexane:EtOAc, 3:1). 1H NMR (300 MHz) δ (ppm): 7.80 (dd, J = 13.2 and 8.4 Hz, 2H), 7.50–7.48 (m, 1H), 7.48–7.40 (m, 2H), 4.15–4.05 (m, 4H), 1.30 (t, J = 6.8 Hz, 6H). 13C NMR (75 MHz) δ (ppm): 132.3 (d, J = 3.0 Hz), 131.7 (d, J = 10.0 Hz), 128.4 (d, J = 15.0 Hz), 128.3 (d, J = 186.0 Hz), 62.0 (d, J = 5.0 Hz), 16.3 (d, J = 7.0 Hz).
- Diethyl 4-chlorophenylphosphonate (12c) [23]: Isolated 105 mg (85%, Table 5, entry 11) as colorless oil. Rf = 0.3 (n-hexane:EtOAc, 3:1). 1H NMR (400 MHz) δ (ppm): 7.76 (dd, J = 12.8 and 8.4 Hz, 2H), 7.46 (dd, J = 8.2 and 3.6 Hz, 2H), 4.20-4.05 (m, 4H), 1.34 (t, J = 7.2 Hz, 6H). 13C NMR (100 MHz) δ (ppm): 139.9 (d, J = 4.0 Hz), 133.2 (d, J = 10.0 Hz), 128.8 (d, J = 16.0 Hz), 126.9 (d, J = 190.0 Hz), 62.2 (d, J = 5.0 Hz), 16.3 (d, J = 7.0 Hz).
- Diethyl 4-methylphenylphosphonate (12d) [23]: Isolated 82 mg (72%, Table 5, entry 13), 75 mg (66%, Table 5, entry 16) as colorless oil. Rf = 0.6 (n-hexane:EtOAc, 3:1). 1H NMR (400 MHz) δ (ppm): 7.72 (dd, J = 13.2 and 8.1 Hz, 2H), 7.29 (dd, J = 8.1 and 3.3 Hz, 2H), 4.21–4.01 (m, 4H), 2.42 (s, 3H), 1.33 (t, J = 6.9 Hz, 6H). 13C NMR (75 MHz) δ (ppm): 142.9 (d, J = 3.0 Hz), 131.8 (d, J = 9.7 Hz), 129.2 (d, J = 15.0 Hz), 124.9 (d, J = 188.2 Hz), 61.9 (d, J = 5.2 Hz), 21.6 (d, J = 6.7 Hz), 16.1 (d, J = 6.7 Hz).
3.8. General Experimental Procedure for Sonogashira-Hagihara Cross-Coupling
- 1-Methoxy-4-(phenylethynyl)-benzene (14a) [50]: Isolated 95 mg (91%, Table 6, entry 1op), 75 mg (72%, Table 6, entry 16), 63 mg (61%, Table 6, entry 20) as colorless crystals. M.p. 68–69 °C (n-hexane/EtOAc), Lit. 65 °C (n-hexane/EtOAc) [50]. Rf = 0.8 (n-hexane:EtOAc, 3:1). 1H NMR (300 MHz) δ (ppm): 7.56–7.48 (m, 4H), 7.36–7.33 (m, 3H), 6.80 (dd, J = 4.2 and 2.0 Hz, 1H,), 3.83 (s, 3H). 13C NMR (75 MHz) δ (ppm) 159.2, 133.0, 131.4, 128.3, 127.9, 123.5, 115.2, 113.9, 89.3, 88.0, 55.2.
- 1,2-Diphenylethyne (14b) [50]: Isolated 77 mg (87%, Table 6, entry 10), 67 mg (75%, Table 6, entry 15), 61 mg (68%, Table 6, entry 19) as colorless crystals. M.p. 59–60 °C (n-hexane/EtOAc), Lit. 59–60 °C (n-hexane) [50]. Rf = 0.5 (n-hexane). 1H NMR (300 MHz) δ (ppm): 7.54–7.51 (m, 4H), 7.36–7.31 (m, 6H). 13C NMR (75 MHz) δ (ppm) 131.6, 128.3, 128.2, 123.2, 89.3.
- 1-Chloro-4-(phenylethynyl)benzene (14c) [50]: Isolated 90 mg (85%, Table 6, entry 11) as colorless crystals. M.p. 85–87 °C (n-hexane/EtOAc), Lit. 84 °C (n-hexane) [50]. Rf = 0.9 (n-hexane/EtOAc, 3:1). 1H NMR (300 MHz) δ (ppm): 7.55–7.48 (m, 2H), 7.41–7.47 (m, 2H), 7.37–7.27 (m, 5H). 13C NMR (75 MHz) δ (ppm) 134.2, 132.8, 131.6, 128.7, 128.45, 128.36, 122.9, 121.8, 90.3, 88.2.
- 4-(Phenylethynyl)benzonitrile (14d) [28,50]: Isolated 84 mg (83%, Table 6, entry 12) as colorless crystals. M.p. 105–107 °C (n-hexane/EtOAc), Lit. 106–108 °C (n-hexane/EtOAc) [51]. Rf = 0.8 (n-hexane/EtOAc, 3:1). 1H NMR (400 MHz) δ (ppm): 7.68–7.61 (m, 4H), 7.58–7.54 (m, 2H), 7.42–7.39 (m, 3H). 13C NMR (100 MHz) δ (ppm): 132.0, 132.0, 131.8, 129.1, 128.5, 128.2, 122.2, 118.5, 111.4, 93.7, 87.7).
- 3-Phenyl-2-propyn-1-ol (14e) [52]: Isolated 53 mg (80%, Table 6, entry 13), 46 mg (70%, Table 6, entry 17), 46 mg (69%, Table 6, entry 21) as colorless solid. M.p 120–121 °C (n-hexane/EtOAc), Lit. 119–121 °C [52]. Rf = 0.2 (n-hexane/EtOAc, 3:1). 1H NMR (300MHz) δ (ppm): 7.40–7.45 (m, 2H), 7.30–7.35 (m, 3H), 4.5 (s, 2H). 13C NMR (75 MHz) δ (ppm): 131.7, 128.5, 128.3, 122.3, 87.1, 85.6, 51.6.
- 3-(4-Methoxyphenyl)-2-propyn-1-ol (14f) [53]: Isolated 65 mg (80%, Table 6, entry 14), 56 mg (69%, Table 6, entry 18), 57 mg (70%, Table 6, entry 22) as colorless solid. M.p. 65–66 °C (n-hexane/EtOAc), Lit. 65–68 °C [53]. Rf = 0.3 (n-hexane/EtOAc, 3:1). 1H NMR (300MHz) δ (ppm): 7.35 (d, J = 8.9 Hz, 2H), 6.83 (d, J = 8.9 Hz, 2H), 4.46 (s, 2H), 3.80 (s, 3H). 13C NMR (75 MHz) δ (ppm): 159.6, 133.4, 114.4, 114.0, 85.9, 85.4, 55.6, 51.8.
3.9. General Experimental Procedure for the Recycling Tests in (a) Suzuki-Miyaura and (b) Hirao Cross-Couplings
- (a)
- Measures of 4-Iodoanisole (117 mg, 0.5 mmol), phenylboronic acid (92 mg, 0.75 mmol), K2CO3 (103 mg, 0.75 mmol), complex 1 (1.3 mg, 0.001 mmol, 0.2 mol%) and water (1.5 mL) were introduced in a pressure tube and warmed in an oil bath at the corresponding temperature for 24 h. Afterwards, crude product was extracted using ethyl acetate (3 × 5 mL). The organic layer was separated, and the aqueous suspension of nanoparticles was mixed with 4-iodoanisole (117 mg, 0.5 mmol), phenylboronic acid (92 mg, 0.75 mmol), and K2CO3 (103 mg, 0.75 mmol), and the process was repeated as described before.
- (b)
- Measures of 4-Iodoanisole (117 mg, 0.5 mmol), triethylphosphite (0.166 mL, 1.0 mmol), Et3N (0.342 mL, 2.5 mmol), 1 (3.3 mg, 0.0025 mmol, 0.5 mol%), water (1.5 mL) were introduced in a pressure tube and warmed in an oil bath at the corresponding temperature for 8 h. Afterwards, crude product was extracted using ethyl acetate (3 × 5 mL). The organic layer was separated, and the aqueous suspension of nanoparticles was mixed with 4-iodoanisole (117 mg, 0.5 mmol), triethylphosphite (0.166 mL, 1.0 mmol), and Et3N (0.342 mL, 2.5 mmol), and the process repeated as described before.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joudeh, N.; Saragliadis, A.; Koster, G.; Mikheenko, P.; Linke, D. Synthesis methods and applications of palladium nanoparticles: A review. Front. Nanotechnol. 2022, 4, 1062608. [Google Scholar] [CrossRef]
- Horbaczewskyj, C.S.; Fairlamb, I.J.S. Pd-Catalyzed Cross-Couplings: On the Importance of the Catalyst Quantity Descriptors, mol % and ppm. Org. Process Res. Dev. 2022, 26, 2240–2269. [Google Scholar] [CrossRef]
- Vasu, G.R.P.; Venkata, K.R.M.; Kakarla, R.R.; Ranganath, K.V.S.; Aminabhavi, T.J. Recent advances in sustainable N-heterocyclic carbene-Pd(II)-pyridine (PEPPSI) catalysts: A review. Environm. Res. 2023, 225, 115515. [Google Scholar] [CrossRef]
- Chaturvedia, S.; Pragnesh, N.D. Chapter 13 Nanocatalyst: As Green Catalyst. In Handbook of Greener Synthesis of Nanomaterials and Compounds; Elsevier: Amsterdam, The Netherlands, 2021; pp. 445–458. [Google Scholar] [CrossRef]
- Zielinska, A.A.; Trzaska, P.; Budny, M.; Bosiak, M.J. Kumada–Tamao–Corriu Type Reaction of Aromatic Bromo- and Iodoamines with Grignard Reagents. J. Org. Chem. 2023, 88, 16167–16175. [Google Scholar] [CrossRef] [PubMed]
- Baran, N.Y.; Baran, T.; Nasrollahzadeh, M. Synthesis of palladium nanoparticles stabilized on Schiff base-modified ZnO particles as a nanoscale catalyst for the phosphine-free Heck coupling reaction and 4-nitrophenol reduction. Sci. Rep. 2023, 13, 12008. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Jin, G.; Lipshutz, B.H. Simplified Preparation of ppm Pd-Containing Nanoparticles as Catalysts for Chemistry in Water. ACS Catal. 2023, 13, 3179–3186. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Mathai, S. Recent advances in heterogeneous magnetic Pd-NHC catalysts in organic transformations. J. Organomet. Chem. 2023, 996, 122768. [Google Scholar] [CrossRef]
- Mohammadi, P.; Heravi, M.M.; Mohammadi, L.; Saljooqi, A. Preparation of magnetic biochar functionalized by polyvinyl imidazole and palladium nanoparticles for the catalysis of nitroarenes hydrogenation and Sonogashira reaction. Sci. Rep. 2023, 13, 17375. [Google Scholar] [CrossRef]
- Daneshafruz, H.; Mohammadi, P.; Barani, H.; Sheibani, H. Magnetic bentonite decorated with Pd nanoparticles and cross-linked polyvinyl pyridine as an efficient nanocatalyst for Suzuki coupling and 4-Nitrophenol reduction reactions. Sci. Rep. 2023, 13, 2001. [Google Scholar] [CrossRef]
- Saadh, M.J.; Khasawneh, H.E.N.; Ortiz, G.G.R.; Ahsan, M.; Sain, D.K.; Yusuf, K.; Sillanaa, M.; Iqbal, A.; Akhavan-Sigari, R. Synthesis and characterization of ZrFe2O4@SiO2@Ade-Pd as a novel, recyclable, green, and versatile catalyst for Buchwald–Hartwig and Suzuki–Miyaura cross-coupling reactions. Sci. Rep. 2023, 13, 14728. [Google Scholar] [CrossRef]
- Brick, K.J.; Lim, M.Q.; Keske, E.C. [(NHC)Pd(allyl)Cl] Precatalysts in The Hiyama Reaction of Aryl Chlorides with Aryl Trimethoxysilanes: A Study in Side Reactions. Organometallics 2023, 42, 3192–3198. [Google Scholar] [CrossRef]
- Hong, L.-H.; Feng, W.-J.; Chen, W.-C.; Chang, Y.-C. Highly efficient and well-defined phosphinous acid-ligated Pd(II) precatalysts for Hirao cross-coupling reaction. Dalton Trans. 2023, 52, 5101–5109. [Google Scholar] [CrossRef] [PubMed]
- Hikawa, H.; Nakayama, T.; Takahashi, M.; Kikkawa, S.; Azumaya, I. Direct Use of Benzylic Alcohols for Multicomponent Synthesis of 2-Aryl Quinazolinones Utilizing the π-Benzylpalladium(II) System in Water. Adv. Synth. Catal. 2021, 363, 4075–4084. [Google Scholar] [CrossRef]
- Belveren, S.; Poyraz, S.; Pask, C.M.; Ulger, M.; Sansano, J.M.; Dondas, H.A. Synthesis and biological evaluation of platinum complexes of highly functionalized aroylaminocarbo-N-thioyl prolinate containing tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione moieties. Inorg. Chim. Acta 2019, 498, 119154. [Google Scholar] [CrossRef]
- Dondas, H.A.; Altinbas, O. Novel Highly Functionalized Benzoylaminocarbothioyl Pyrrolidine from Benzoylisothiocyanate and Substituted Pyrrolidine Derived From α-Amino acid Ester via Imine-Azomethine Ylide-1,3-Dipolar Cycloaddition Cascade. Heterocycl. Commun. 2004, 10, 167–173. [Google Scholar] [CrossRef]
- Belveren, S.; Larrañaga, O.; Poyraz, S.; Dondas, H.A.; Ülger, M.; Şahin, E.; Ferrándiz-Saperas, M.; Sansano, J.M.; Retamosa, M.G.; de Cózar, A. From Bioactive Pyrrolidino[3,4-c]pyrrolidines to more Bioactive Pyrrolidino[3,4-b]pyrrolidines via Ring-Opening/Ring-Closing Promoted by Sodium Methoxide. Synthesis 2019, 51, 1565–1577. [Google Scholar] [CrossRef]
- Poyraz, S.; Belveren, S.; Aydınoğlu, S.; Ulger, M.; de Cózar, A.; Retamosa, M.G.; Sansano, J.M.; Döndaş, H.A. Biological properties and conformational studies of amphiphilic Pd(II) and Ni(II) complexes bearing functionalized aroylaminocarbo-N-thioylpyrrolinate units. Beilstein J. Org. Chem. 2021, 17, 2812–2821. [Google Scholar] [CrossRef]
- Nural, Y.; Kilincarslan, R.; Dondas, H.A.; Cetinkaya, B.; Serin, M.S.; Grigg, R.; Ince, T.; Kilner, C. Synthesis of Ni(II), Pd(II) and Cu(II) metal complexes of novel highly functionalized aroylaminocarbo-N-thioyl pyrrolidines and their activity against fungi and yeast. Polyhedron 2009, 28, 2847–2854. [Google Scholar] [CrossRef]
- Garoufis, A.; Hadjikakou, S.K.; Hadjiliadis, N. Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents. Coord. Chem. Rev. 2009, 253, 1384–1397. [Google Scholar] [CrossRef]
- Salishcheva, O.V.; Prosekov, A.Y. Antimicrobial activity of mono- and polynuclear platinum and palladium complexes. Foods Raw Mater. 2020, 8, 298–311. [Google Scholar] [CrossRef]
- Khosravi, F.; Gholinejad, M.G.; Lledó, D.; Grindlay, G.; Nájera, C.; Sansano, J.M. 1-Butyl-3-methyl-2-(diphenylphosphino)imidazalolium hexafluorophosphate as an efficient ligand for recoverable palladium-catalyzed Suzuki-Miyaura reaction in neat water. J. Organomet. Chem. 2019, 901, 120941. [Google Scholar] [CrossRef]
- Sobhani, S.; Moghadam, H.H.; Skibsted, J.; Sansano, J.M. A hydrophilic heterogeneous cobalt catalyst for fluoride-free Hiyama, Suzuki, Heck and Hirao cross-coupling reactions in water. Green Chem. 2020, 22, 1353–1365. [Google Scholar] [CrossRef]
- Fors, B.P.; Buchwald, S.L. A Multiligand Based Pd Catalyst for C–N Cross-Coupling Reactions. J. Am. Chem. Soc. 2010, 132, 15914–15917. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Hartwig, J.F. [(CyPF-tBu)PdCl2]: An Air-Stable, One-Component, Highly Efficient Catalyst for Amination of Heteroaryl and Aryl Halides. Org. Lett. 2008, 10, 4109–4112. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, S.; Zarei, H.; Sansano, J.M. A new nanomagnetic Pd-Co bimetallic alloy as catalyst in the Mizoroki–Heck and Buchwald–Hartwig amination reactions in aqueous media. Sci. Rep. 2021, 11, 17025. [Google Scholar] [CrossRef] [PubMed]
- Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. A Novel Synthesis of Dialkyl Arenephosphonates. Synthesis 1981, 1981, 56–57. [Google Scholar] [CrossRef]
- Gholinejad, M.; Esmailoghli, H.; Khosravi, F.; Sansano, J.M. Ionic liquid modified carbon nanotube supported palladium nanoparticles for efficient Sonogashira-Hagihara reaction. J. Organomet. Chem. 2022, 963, 122295. [Google Scholar] [CrossRef]
- Sigeev, A.S.; Peregudov, A.S.; Cheprakov, A.V.; Beletskaya, I.P. The Palladium Slow-Release Pre-Catalysts and Nanoparticles in the “Phosphine-Free” Mizoroki–Heck and Suzuki–Miyaura Reactions. Adv. Synth. Catal. 2015, 357, 417–429. [Google Scholar] [CrossRef]
- Gholinejad, M.; Afrasi, M.; Nikfarjam, N.; Nájera, C. Magnetic crosslinked copoly(ionic liquid) nanohydrogel supported palladium nanoparticles as efficient catalysts for the selective aerobic oxidation of alcohols. Appl. Catal. A-Gen. 2018, 563, 185–195. [Google Scholar] [CrossRef]
- Chernyshev, V.M.; Astakhov, A.V.; Chikunov, I.E.; Tyurin, R.V.; Eremin, D.B.; Ranny, G.S.; Khrustalev, V.N.; Ananikov, V.P. Pd and Pt Catalyst Poisoning in the Study of Reaction Mechanisms: What Does the Mercury Test Mean for Catalysis? ACS Catal. 2019, 9, 2984–2995. [Google Scholar] [CrossRef]
- Justik, M.W.; Protasiewicz, J.D.; Updegraff, J.B. Preparation and X-ray structures of 2-[(aryl)iodonio]benzenesulfonates: Novel diaryliodonium betaines. Tetrahedron Lett. 2009, 50, 6072–6075. [Google Scholar] [CrossRef]
- Liu, H.; Yin, B.; Gao, Z.; Li, Y.; Jiang, H. Transition-metal-free highly chemo- and regioselective arylation of unactivated arenes with aryl halides over recyclable heterogeneous catalysts. Chem. Commun. 2012, 48, 2033–2035. [Google Scholar] [CrossRef]
- Xie, L.-G.; Wang, Z.-X. Nickel-Catalyzed Cross-Coupling of Non-Activated or Functionalized Aryl Halides with Aryl Grignard Reagents. Chem. Eur. J. 2010, 16, 10332–10336. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Hu, J.; Sun, P.; Jiang, X. Synthesis of Biaryl Derivatives via a Magnetic Pd-NPs-Catalyzed One-Pot Diazotization-Cross-Coupling Reaction. Synlett 2012, 23, 2393–2396. [Google Scholar] [CrossRef]
- Tao, B.; Boykin, D.W. Simple Amine/Pd(OAc)2-Catalyzed Suzuki Coupling Reactions of Aryl Bromides under Mild Aerobic Conditions. J. Org. Chem. 2004, 69, 4330–4335. [Google Scholar] [CrossRef]
- Mao, J.; Hua, Q.; Xie, G.; Guo, J.; Yao, Z.; Shi, D.; Ji, S. Iodine-Catalyzed Suzuki–Miyaura Coupling Performed in Air. Adv. Synth. Catal. 2009, 351, 635–641. [Google Scholar] [CrossRef]
- Demir, A.S.; Findik, H.; Saygili, N.; Tuna-Subasi, N. Manganese (III) acetate-mediated synthesis of biaryls under microwave irradiation. Tetrahedron 2010, 66, 1308–1312. [Google Scholar] [CrossRef]
- Monguchi, Y.; Hattori, T.; Miyamoto, Y.; Yanase, T.; Sawama, Y.; Sajiki, H. Palladium on Carbon-Catalyzed Cross-Coupling using Triarylbismuths. Adv. Synth. Catal. 2012, 354, 2561. [Google Scholar] [CrossRef]
- Ghorbani-Choghamarani, A. Palladium supported on modified magnetic nanoparticles: A phosphine-free and heterogeneous catalyst for Suzuki and Stille reactions. App. Organomet. Chem. 2016, 30, 140–147. [Google Scholar] [CrossRef]
- Li, P.; Wang, L.; Zhang, L.; Wang, G.W. Magnetic Nanoparticles-Supported Palladium: A Highly Efficient and Reusable Catalyst for the Suzuki, Sonogashira, and Heck Reactions. Adv. Synth. Catal. 2012, 354, 1307. [Google Scholar] [CrossRef]
- Liu, N.; Liu, C.; Jin, Z. Poly(ethylene glycol)-functionalized imidazolium salts–palladium-catalyzed Suzuki reaction in water. Green Chem. 2012, 14, 592–597. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Liu, J. Cross-Coupling of Aryl Grignard Reagents with Aryl Halides Catalyzed by an Immobilized Nickel Catalyst. Synthesis 2009, 2408–2412. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Mao, P.; Xiao, Y.; Bian, H.; Yuan, J.; Maia, W.; Qua, L. NCN pincer palladium complexes based on 1,3-dipicolyl-3,4,5,6-tetrahydropyrimidin-2-ylidenes: Synthesis, characterization and catalytic activities. RSC Adv. 2015, 5, 25723–25729. [Google Scholar] [CrossRef]
- Strappaveccia, G.; Ismalaj, E.; Petrucci, C.; Lanari, D.; Marrocchi, M.; Drees, M.; Facchetti, A.; Vaccaro, L. A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green Chem. 2015, 17, 365–372. [Google Scholar] [CrossRef]
- Mi, X.; Huang, M.; Guo, H.; Wu, Y. An efficient palladium(II) catalyst for oxidative Heck-type reaction under base-free conditions. Tetrahedron 2013, 69, 5123–5128. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, F.; Ding, L.T.; Yang, L. Rhodium-catalyzed oxidative decarbonylative Heck-type coupling of aromatic aldehydes with terminal alkenes. RSC Adv. 2015, 5, 100452–100456. [Google Scholar] [CrossRef]
- Rout, L.; Jammi, S.; Punniyamurthy, T. Novel CuO Nanoparticle Catalyzed C−N Cross Coupling of Amines with Iodobenzene. Org. Lett. 2007, 9, 3397–3399. [Google Scholar] [CrossRef]
- Ackermann, L.; Sandmann, R.; Song, W. Palladium- and Nickel-Catalyzed Aminations of Aryl Imidazolylsulfonates and Sulfamates. Org. Lett. 2011, 13, 1784–1786. [Google Scholar] [CrossRef]
- Cívicos, J.F.; Alonso, D.A.; Nájera, C. Microwave-Promoted Copper-Free Sonogashira–Hagihara Couplings of Aryl Imidazolylsulfonates in Water. Adv. Synth. Catal. 2013, 355, 203–208. [Google Scholar] [CrossRef]
- Susanto, W.; Chu, C.-Y.; Ang, W.J.; Chou, T.-C.; Lo, L.-C.; Lam, Y. Fluorous Oxime Palladacycle: A Precatalyst for Carbon–Carbon Coupling Reactions in Aqueous and Organic Medium. J. Org. Chem. 2012, 77, 2729–2742. [Google Scholar] [CrossRef]
- Yu, S.; Wu, J.; He, X.; Shang, Y. Ferrocenyl bisoxazoline as an efficient non-phosphorus ligand for palladium-catalyzed copper-free Sonogashira reaction in aqueous solution. Appl. Organomet. Chem. 2018, 32, e4156. [Google Scholar] [CrossRef]
- Lima, H.M.; Sivappa, R.; Yousufuddin, M.; Lovely, C.J. Total Synthesis of 7′-Desmethylkealiiquinone. Org. Lett. 2012, 14, 2274–2277. [Google Scholar] [CrossRef] [PubMed]
Entry | Pd Source | Ar 1-Hal 3 | Ar 2 4 | Solvent | T (°C) | 5 | Yield (%) 2 |
---|---|---|---|---|---|---|---|
1op | 1 | 4-MeO-C6H4I | Ph | H2O | 90 | 5a | 89 |
2op | 2 | 4-MeO-C6H4I | Ph | H2O | 90 | 5a | 65 |
3op | 1 | 4-MeO-C6H4I | Ph | PhMe | 90 | 5a | 37 |
4op | 1 | 4-MeO-C6H4I | Ph | 1,4-dioxane | 90 | 5a | 88 |
5op | 1 | 4-MeO-C6H4I | Ph | DMF | 90 | 5a | 43 |
6op 3 | 1 | 4-MeO-C6H4I | Ph | H2O | 90 | 5a | 66 |
7op | 1 | 4-MeO-C6H4I | Ph | H2O | 70 | 5a | 78 |
8 | 1 | 4-MeC6H4I | Ph | H2O | 90 | 5b | 89 |
9 | 1 | 3-(CN)C6H4I | Ph | H2O | 90 | 5c | 88 |
10 | 1 | 3-(CHO)C6H4I | Ph | H2O | 90 | 5d | 90 |
11 | 1 | 4-ClC6H4I | Ph | H2O | 90 | 5e | 90 |
12 | 1 | PhI | 4-MeO-C6H4 | H2O | 90 | 5a | 87 |
13 | 1 | PhI | 4-Me-C6H4 | H2O | 90 | 5b | 87 |
14 | 1 | 4-MeO-C6H4Br | Ph | H2O | 110 | 5a | 79 |
15 | 1 | 3-(CHO)C6H4Br | Ph | H2O | 110 | 5d | 81 |
16 | 1 | 4-(Ac)C6H4Br | Ph | H2O | 110 | 5f | 80 |
17 | 1 | 4-MeO-C6H4Cl | Ph | H2O | 150 | 5a | 54 |
18 | 1 | 4-Me-C6H4Cl | Ph | H2O | 150 | 5b | 68 |
19 | 1 | 4-(CN)-C6H4Cl | Ph | H2O | 150 | 5g | 70 |
Entry | Pd Source | Ar 1-Hal 3 | R 6 | Solvent | T (°C) | 7 | Yield (%) 2 |
---|---|---|---|---|---|---|---|
1op | 1 | 4-MeO-C6H4I | CO2Bun | H2O | 100 | 7a | 83 |
2op | 2 | 4-MeO-C6H4I | CO2Bun | H2O | 100 | 7a | 64 |
3op | 1 | 4-MeO-C6H4I | CO2Bun | PhMe | 100 | 7a | 80 |
4op | 1 | 4-MeO-C6H4I | CO2Bun | 1,4-dioxane | 100 | 7a | 77 |
5op | 1 | 4-MeO-C6H4I | CO2Bun | DMF | 100 | 7a | 80 |
6op 3 | 1 | 4-MeO-C6H4I | CO2Bun | H2O | 100 | 7a | 81 |
7op 4 | 1 | 4-MeO-C6H4I | CO2Bun | H2O | 100 | 7a | 58 |
8op 5 | 1 | 4-MeO-C6H4I | CO2Bun | H2O | 100 | 7a | 43 |
9op 6 | 1 | 4-MeO-C6H4I | CO2Bun | H2O | 90 | 7a | 66 |
10 | 1 | 4-MeO-C6H4I | Ph | H2O | 100 | 7b | 80 |
11 | 1 | PhI | CO2Bun | H2O | 100 | 7c | 81 |
12 | 1 | PhI | Ph | H2O | 100 | 7d | 80 |
13 | 1 | 4-Cl-C6H4I | CO2Bun | H2O | 100 | 7e | 81 |
14 | 1 | 4-Cl-C6H4I | Ph | H2O | 100 | 7f | 77 |
15 | 1 | PhBr | CO2Bun | H2O | 120 | 7c | 76 |
16 | 1 | PhBr | Ph | H2O | 120 | 7d | 75 |
17 | 1 | 4-MeO-C6H4Br | CO2Bun | H2O | 120 | 7a | 79 |
18 | 1 | 4-MeO-C6H4Br | Ph | H2O | 120 | 7b | 80 |
19 | 1 | PhCl | CO2Bun | H2O | 130 6 | 7c | 50 |
20 | 1 | PhCl | Ph | H2O | 130 6 | 7d | 54 |
Entry | Pd Source | Ar 1-Hal 3 | Solvent | T (°C) | 5 | Yield (%) 2 |
---|---|---|---|---|---|---|
1op | 1 | 4-MeO-C6H4I | H2O | 100 | 5a | 81 |
2op | 2 | 4-MeO-C6H4I | H2O | 100 | 5a | 55 |
3op | 1 | 4-MeO-C6H4I | PhMe | 100 | 5a | 80 |
4op | 1 | 4-MeO-C6H4I | 1,4-dioxane | 100 | 5a | 80 |
5op | 1 | 4-MeO-C6H4I | DMF | 100 | 5a | 81 |
6op 3 | 1 | 4-MeO-C6H4I | H2O | 100 | 5a | 81 |
7op 4 | 1 | 4-MeO-C6H4I | H2O | 100 | 5a | 58 |
8op | 1 | 4-MeO-C6H4I | H2O | 90 | 5a | 53 |
9op 5 | 1 | 4-MeO-C6H4I | H2O | 100 | 5a | 66 |
10 | 1 | 4-Me-C6H4I | H2O | 100 | 5b | 80 |
11 | 1 | 3-(CN)-C6H4I | H2O | 100 | 5c | 78 |
12 | 1 | 4-Cl-C6H4I | H2O | 100 | 5e | 80 |
13 | 1 | 4-MeO-C6H4Br | H2O | 110 | 5a | 75 |
14 | 1 | 3-(CHO)-C6H4Br | H2O | 110 | 5d | 76 |
15 | 1 | 4-(Ac)-C6H4Br | H2O | 110 | 5f | 75 |
16 | 1 | 4-MeO-C6H4Cl | H2O | 120 6 | 5a | 49 |
17 | 1 | 4-Me-C6H4Cl | H2O | 120 6 | 5b | 50 |
18 | 1 | 4-(CN)-C6H4Cl | H2O | 120 6 | 5g | 56 |
Entry | Pd Source | Ar 1-Hal 3 | T (°C) | 10 | Yield (%) 2 |
---|---|---|---|---|---|
1op | 1 | 4-MeO-C6H4I | 100 | 10a | 41 |
2op | 2 | 4-MeO-C6H4I | 100 | 10a | <10 |
3op | 1 | 4-MeO-C6H4I | 120 | 10a | 40 |
4op 3 | 1 | 4-MeO-C6H4I | 100 | 10a | 38 |
5op | 1 | 4-MeO-C6H4I | 90 | 10a | nr |
6op 4 | 1 | 4-MeO-C6H4I | 100 | 10a | 38 |
7 | 1 | 4-Me-C6H4I | 100 | 10b | 45 |
8 | 1 | 4-Cl-C6H4I | 100 | 10c | 58 |
9 | 1 | 4-MeO-C6H4Br | 120 | 10a | 35 |
Entry | Pd Source | Ar 1-Hal 3 | Solvent | T (°C) | 12 | Yield (%) 2 |
---|---|---|---|---|---|---|
1op | 1 | 4-MeO-C6H4I | H2O | 100 | 12a | 88 |
2op | 2 | 4-MeO-C6H4I | H2O | 100 | 12a | 51 |
3op | 1 | 4-MeO-C6H4I | PhMe | 100 | 12a | 75 |
4op | 1 | 4-MeO-C6H4I | 1,4-dioxane | 100 | 12a | 76 |
5op | 1 | 4-MeO-C6H4I | DMF | 100 | 12a | 74 |
6op 3 | 1 | 4-MeO-C6H4I | H2O | 100 | 12a | 42 |
7op 4 | 1 | 4-MeO-C6H4I | H2O | 100 | 12a | 58 |
8op | 1 | 4-MeO-C6H4I | H2O | 90 | 12a | 76 |
9op 5 | 1 | 4-MeO-C6H4I | H2O | 100 | 12a | 38 |
10 | 1 | PhI | H2O | 100 | 12b | 91 |
11 | 1 | 4-Cl-C6H4I | H2O | 100 | 12c | 85 |
12 | 1 | PhBr | H2O | 100 | 12b | 75 |
13 | 1 | 4-Me-C6H4Br | H2O | 100 | 12d | 72 |
14 | 1 | 4-MeO-C6H4Br | H2O | 100 | 12a | 72 |
15 | 1 | PhCl | H2O | 120 6 | 12b | 68 |
16 | 1 | 4-Me-C6H4Cl | H2O | 120 6 | 12d | 66 |
17 | 1 | 4-MeO-C6H4Cl | H2O | 120 6 | 12a | 59 |
Entry | Pd Source | Ar 1-Hal 3 | R 13 | Solvent | T (°C) | 14 | Yield (%) 2 |
---|---|---|---|---|---|---|---|
1op | 1 | 4-MeO-C6H4I | Ph | H2O | 90 | 14a | 91 |
2op | 2 | 4-MeO-C6H4I | Ph | H2O | 90 | 14a | 81 |
3op | 1 | 4-MeO-C6H4I | Ph | PhMe | 90 | 14a | 85 |
4op | 1 | 4-MeO-C6H4I | Ph | 1,4-dioxane | 90 | 14a | 90 |
5op | 1 | 4-MeO-C6H4I | Ph | DMF | 90 | 14a | 90 |
6op 3 | 1 | 4-MeO-C6H4I | Ph | H2O | 90 | 14a | 72 |
7op 4 | 1 | 4-MeO-C6H4I | Ph | H2O | 90 | 14a | 50 |
8op | 1 | 4-MeO-C6H4I | Ph | H2O | 70 | 14a | 46 |
9op 5 | 1 | 4-MeO-C6H4I | Ph | H2O | 90 | 14a | 29 |
10 | 1 | PhI | Ph | H2O | 90 | 14b | 87 |
11 | 1 | 4-Cl-C6H4I | Ph | H2O | 90 | 14c | 85 |
12 | 1 | 4-(CN)-C6H4I | Ph | H2O | 90 | 14d | 83 |
13 | 1 | PhI | CH2OH | H2O | 90 | 14e | 80 |
14 | 1 | 4-MeO-C6H4I | CH2OH | H2O | 90 | 14f | 80 |
15 | 1 | PhBr | Ph | H2O | 90 | 14b | 75 |
16 | 1 | 4-MeO-C6H4Br | Ph | H2O | 90 | 14a | 72 |
17 | 1 | PhBr | CH2OH | H2O | 90 | 14e | 70 |
18 | 1 | 4-MeO-C6H4Br | CH2OH | H2O | 90 | 14f | 69 |
19 | 1 | PhCl | Ph | H2O | 120 6 | 14b | 68 |
20 | 1 | 4-MeO-C6H4Cl | Ph | H2O | 120 6 | 14a | 61 |
21 | 1 | PhCl | CH2OH | H2O | 120 6 | 14e | 69 |
22 | 1 | 4-MeO-C6H4Cl | CH2OH | H2O | 120 6 | 14f | 70 |
Analysis | C (%) | H (%) | N (%) | O (%) | S (%) | Pd (%) |
---|---|---|---|---|---|---|
XPS | 0.6–0.8 | nd | 0.2–0.3 | 0.0–0.1 | 0.2–0.3 | 98.9–98.3 |
ICP | 0.7–0.8 | nd | nd | nd | 0.2–0.3 | 98.9–98.5 |
EA | 0.7–0.8 | 0.2–0.2 | 0.2–0.3 | nd | 0.2–0.2 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poyraz, S.; Döndaş, H.A.; Belveren, S.; Taş, S.; Hidalgo-León, R.; Trujillo-Sierra, J.; Rodríguez-Flórez, L.V.; Retamosa, M.d.G.; Sirvent, A.; Gholinejad, M.; et al. Stabilized Palladium Nanoparticles from Bis-(N-benzoylthiourea) Derived-PdII Complexes as Efficient Catalysts for Sustainable Cross-Coupling Reactions in Water. Molecules 2024, 29, 1138. https://doi.org/10.3390/molecules29051138
Poyraz S, Döndaş HA, Belveren S, Taş S, Hidalgo-León R, Trujillo-Sierra J, Rodríguez-Flórez LV, Retamosa MdG, Sirvent A, Gholinejad M, et al. Stabilized Palladium Nanoparticles from Bis-(N-benzoylthiourea) Derived-PdII Complexes as Efficient Catalysts for Sustainable Cross-Coupling Reactions in Water. Molecules. 2024; 29(5):1138. https://doi.org/10.3390/molecules29051138
Chicago/Turabian StylePoyraz, Samet, H. Ali Döndaş, Samet Belveren, Senanur Taş, Raquel Hidalgo-León, José Trujillo-Sierra, Lesly V. Rodríguez-Flórez, Mª de Gracia Retamosa, Ana Sirvent, Mohammad Gholinejad, and et al. 2024. "Stabilized Palladium Nanoparticles from Bis-(N-benzoylthiourea) Derived-PdII Complexes as Efficient Catalysts for Sustainable Cross-Coupling Reactions in Water" Molecules 29, no. 5: 1138. https://doi.org/10.3390/molecules29051138
APA StylePoyraz, S., Döndaş, H. A., Belveren, S., Taş, S., Hidalgo-León, R., Trujillo-Sierra, J., Rodríguez-Flórez, L. V., Retamosa, M. d. G., Sirvent, A., Gholinejad, M., Sobhani, S., & Sansano, J. M. (2024). Stabilized Palladium Nanoparticles from Bis-(N-benzoylthiourea) Derived-PdII Complexes as Efficient Catalysts for Sustainable Cross-Coupling Reactions in Water. Molecules, 29(5), 1138. https://doi.org/10.3390/molecules29051138