Comparison of Flavonoid Content, Antioxidant Potential, Acetylcholinesterase Inhibition Activity and Volatile Components Based on HS-SPME-GC-MS of Different Parts from Matteuccia struthiopteris (L.) Todaro
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Flavonoid Content of Different Parts from M. struthiopteris
2.2. Antioxidant Potential of M. struthiopteris
2.3. Acetylcholinesterase Inhibition Activity
2.4. Volatile Components of M. struthiopteris by HS-SPME-GC-MS
2.4.1. Volatile Components of M. struthiopteris
2.4.2. Comparative Analysis of Volatile Components from Different Parts of M. struthiopteris
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Preparation of Plant Extracts
3.4. Determination of Total Flavonoid Contents
3.5. Antioxidant Potential (DPPH and ABTS Free Radicals Scavenging Assay)
3.6. Acetylcholinesterase Inhibition Activity
3.7. Volatile Component Analysis by HS-SPME-GC-MS
3.8. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chettri, S. Nutrient and Elemental Composition of Wild Edible Ferns of the Himalaya. Am. Fern J. 2018, 108, 95–106. [Google Scholar] [CrossRef]
- Giri, P.; Uniyal, P.L. Edible ferns in India and their medicinal uses: A review. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 17–25. [Google Scholar] [CrossRef]
- Aderkas, P.V. Economic history of ostrich fern, Matteuccia struthiopteris, the edible fiddlehead. Econ. Bot. 1984, 38, 14–23. [Google Scholar] [CrossRef]
- Bushway, A.A.; Serreze, D.V.; McGann, D.F.; True, R.H.; Work, T.M.; Bushway, R.J. Effect of Processing Method and Storage Time on the Nutrient Composition of Fiddlehead Greens. J. Food Sci. 1985, 50, 1491–1492. [Google Scholar] [CrossRef]
- Delong, J.; Hodges, D.M.; Prange, R.; Forney, C.; Toivenon, P.; Bishop, M.C.; Elliot, M.; Jordan, M. The unique fatty acid and antioxidant composition of ostrich fern (Matteuccia struthiopteris) fiddleheads. Can. J. Plant Sci. 2011, 91, 919–930. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wujisguleng, W.; Long, C.L. Food uses of ferns in China: A review. Acta. Soc. Bot. Pol. 2012, 81, 263–270. [Google Scholar] [CrossRef]
- Miyazawa, M.; Horiuchi, E.; Kawata, J. Components of the Essential Oil from Matteuccia struthiopteris. J. Oleo Sci. 2007, 56, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Nekrasov, E.V.; Shelikhan, L.A.; Svetashev, V.I. Fatty acid composition of gametophytes of Matteuccia struthiopteris (L.) Tod. (Onocleaceae, Polypodiophyta). Botanica Pacifica 2019, 8, 63–66. [Google Scholar] [CrossRef]
- Singla, S.; Rana, R.; Kumar, S.; Thakur, R.; Goyal, S. Matteuccia struthiopteris (L.) Todaro (fiddlehead fern): An updated review. Bull. Nat. Res. Centre 2022, 46, 133. [Google Scholar] [CrossRef]
- Li, B.; Ni, Y.; Zhu, L.J.; Wu, F.B.; Yan, F.; Zhang, X.; Yao, X.S. Flavonoids from Matteuccia struthiopteris and their Anti-influenza virus (H1N1) activity. J. Nat. Prod. 2015, 78, 987–995. [Google Scholar] [CrossRef]
- Zhang, D.; Li, S.B.; Yang, L.; Li, Y.J.; Zhu, X.X.; Kmoníčková, E.; Zídek, Z.; Fu, M.H.; Fang, J. Two new C-methyl flavanones from the rhizomes and frond bases of Matteuccia struthiopteris. J. Asian Nat. Prod. Res. 2013, 15, 1163–1167. [Google Scholar] [CrossRef]
- Karrar, E.; Ahmed, I.A.M.; Wei, W.; Sarpong, F.; Proestos, C.; Amarowicz, R.; Oz, E.; Sheikha, A.F.E.; Allam, A.Y.; Oz, F.; et al. Characterization of volatile flavor compounds in supercritical fluid separated and identified in gurum (Citrulluslanatus var. colocynthoide) seed oil using HSME and GC–MS. Molecules 2022, 27, 3905. [Google Scholar] [CrossRef]
- Qi, S.; Zha, L.Y.; Peng, Y.Z.; Luo, W.; Chen, K.L.; Li, X.; Huang, D.F.; Yin, D.M. Quality and metabolomics analysis of Houttuynia cordata based on HS-SPME/GC-MS. Molecules 2022, 27, 3921. [Google Scholar] [CrossRef]
- Galluzzo, P.; Marino, M. Nutritional flavonoids impact on nuclear and extranuclear estrogen receptor activities. Genes Nutr. 2006, 1, 161–176. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, X.; Zhao, J.; Yang, R.; Bai, L.; Li, Y.; Prusk, D.; Bi, Y. Metabolomics reveals antioxidant and antifungal functions of flavonoids in the early stage wounded potato tubers. Postharvest Biol. Technol. 2023, 206, 112569. [Google Scholar] [CrossRef]
- Cao, H.; Ou, J.Y.; Chen, L.; Zhang, Y.B.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J.B. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Crit. Rev. Food Sci. 2019, 59, 3371–3379. [Google Scholar] [CrossRef]
- Xiao, J.B.; Chen, X.Q.; Zhang, L.; Talbot, S.G.; Li, G.C.; Xu, M. Investigation of the mechanism of enhanced effect of EGCG on huperzine Aʼs inhibition of acetylcholinesterase activity in rats by a multispectroscopic method. J. Agric. Food Chem. 2008, 56, 910–915. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.L.; Cao, J.G.; Wu, Y.H.; Xiao, J.B.; Wang, Q.X. Analysis of flavonoids and antioxidants in extracts of ferns from Tianmu Mountain in Zhejiang Province (China). Ind. Crop. Prod. 2017, 97, 137–145. [Google Scholar] [CrossRef]
- Wang, X.; Cao, J.G.; Dai, X.L.; Xiao, J.B.; Wu, Y.H.; Wang, Q.X. Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China): Phylogeny and ecological factors. PLoS ONE 2017, 12, e0173003. [Google Scholar]
- Mehmood, A.; Hussain, A.; Irshad, M.; Hamayun, M.; Iqbal, A.; Rahman, H.; Tawab, A.; Ahmad, A.; Ayaz, S. Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root. Plant Physiol. Biochem. 2019, 135, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Tan, C.H.; Jiang, S.H.; Zhu, D.Y. Serratene-Type Triterpenoids from Huperzia serrata. J. Nat. Prod. 2003, 66, 1328–1332. [Google Scholar] [CrossRef]
- Zhu, Q.F.; Zhao, Q.S. Chemical constituents and biological activities of lycophytes and ferns. Chin. J. Nat. Medicines 2019, 17, 887–891. [Google Scholar] [CrossRef]
- Huang, H.H.; Lin, L.Y.; Chiang, H.M.; Lay, S.J.; Wu, C.S.; Chen, H.C. Analysis of volatile compounds from different parts of Citrus grandis (L.) Osbeck flowers by headspace solid-phase microextraction-gas chromatography-mass spectrometry. J. Essent. Oil Bear. Plants 2017, 20, 1057–1065. [Google Scholar] [CrossRef]
- Nešović, M.; Gašić, U.; Tosti, T.; Horvacki, N.; Nedić, N.; Sredojević, M.; Blagojević, S.; Ignjatović, L.; Tešić, Ž. Distribution of polyphenolic and sugar compounds in different buckwheat plant parts. RSC Adv. 2021, 11, 25816–25829. [Google Scholar] [CrossRef]
- Pan, J.; Zheng, W.; Pang, X.; Zhang, J.; Chen, X.; Yuan, M.; Yu, K.; Guo, B.; Ma, B.J.M. Comprehensive investigation on ginsenosides in different parts of a garden-cultivated ginseng root and rhizome. Molecules 2021, 26, 1696. [Google Scholar] [CrossRef] [PubMed]
- Eseyin, A.E.; Steele, P.H. An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem. 2015, 3, 42–47. [Google Scholar] [CrossRef]
- Kabbour, M.; Luque, R. Chapter 10-Furfural as a platform chemical: From production to applications. Biomass Biofuels Biochem. 2020, 283–297. [Google Scholar]
- Xu, P.; Zhu, F.; Buss, G.K.; Leal, W.S. 1-Octen-3-ol—The attractant that repels. F1000Research 2015, 4, 156. [Google Scholar] [CrossRef]
- Wang, X.Z.; Huang, M.M.; Peng, Y.; Yang, W.T.; Shi, J.Y. Antifungal activity of 1-octen-3-ol against Monilinia fructicola and its ability in enhancing disease resistance of peach fruit. Food Control 2022, 135, 108804. [Google Scholar] [CrossRef]
- Sivakumar, R.; Jebanesan, A.; Govindarajan, M.; Rajasekar, P. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.)(Diptera: Culicidae). Asian Pac. J. Trop. Med. 2011, 4, 706–710. [Google Scholar] [CrossRef]
- Lynch, H.N.; Kozal, J.S.; Russell, A.J.; Thompson, W.J.; Divis, H.R.; Freid, R.D.; Calabrese, E.J.; Mundt, K.A. Systematic review of the scientific evidence on ethylene oxide as a human carcinogen. Chem-Biol. Interact. 2022, 364, 110031. [Google Scholar] [CrossRef]
- Mendes, G.C.C.; Brandão, T.R.S.; Silva, C.L.M. Ethylene oxide sterilization of medical devices: A review. Am. J. Infect. Control 2007, 35, 574–581. [Google Scholar] [CrossRef]
- He, F.; Hu, S.; Liu, R.; Li, X.; Guo, S.; Wang, H.; Tian, G.; Qi, Y.; Wang, T. Decoding the biological toxicity of phenanthrene on intestinal cells of Eisenia fetida: Effects, toxicity pathways and corresponding mechanisms. Sci. Total Environ. 2023, 904, 166903. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, X.; Xie, Y.; Liang, J. Antifungal properties and mechanisms of three volatile aldehydes (octanal, nonanal and decanal) on Aspergillus flavus. Grain Oil Sci. Technol. 2021, 4, 131–140. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug. Des. 2012, 80, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Liu, B.D.; Wang, X.; Fan, Y.W. Comparison of constituents and antioxidant activity of above-ground and underground parts of Dryopteris crassirhizoma Nakai based on HS-SPME-GC-MS and UPLC/Q-TOF-MS. Molecules 2022, 7, 4991. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.B. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. 2017, 57, 1874–1905. [Google Scholar] [CrossRef] [PubMed]
No. | Time | Compound | Type | Compound Formula | Sporophyll | Rhizome | Petiole | Adventitious Root | Trophophyll | Crozier |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.797 | Ethylene oxide | Ethers | C2H4O | 2.479 | 2.884 | - | 2.201 | 1.063 | 4.022 |
2 | 3.354 | Hexanal | Aldehydes | C6H12O | 0.12 | 3.003 | 0.619 | 0.322 | - | - |
3 | 5.516 | Heptanal | Aldehydes | C7HO | 0.207 | - | - | - | - | - |
4 | 8.5 | Octanal | Aldehydes | C8H16O | 0.24 | - | - | - | 0.354 | - |
5 | 10.9 | 1-pentanol | Alcohols | C5H12O | - | 3.298 | 1.44 | 0.159 | - | - |
6 | 12.216 | Cyclohexanol | Alcohols | C6H12O | 3.785 | - | - | - | - | - |
7 | 12.249 | Nonanal | Aldehydes | C9H18O | - | - | - | - | 4.058 | - |
8 | 12.573 | Toluene | Benzene | C7H8 | - | - | - | - | 3.081 | 3.081 |
9 | 14.4 | Acetic acid | Acids | CH3COOH | 0.517 | - | - | - | 1.327 | 3.121 |
10 | 14.5 | 1-Octen-3-ol | Alcohols | C8H16O | - | 3.936 | 0.862 | 0.496 | - | - |
11 | 14.8 | Furfural | Aldehydes | C5H4O2 | 5.266 | 11.442 | 3.883 | 7.175 | 13.369 | 13.621 |
12 | 16.178 | Decanal | Aldehydes | C10H20O | - | - | - | - | 2.591 | - |
13 | 18.9 | 2-Furancarboxaldehyde, 5-methyl- | Aldehydes | C6H6O2 | 3.88 | 3.691 | 0.954 | 3.305 | 3.182 | 7.493 |
14 | 22.33 | Docosane | Hydrocarbon | C22H46 | - | - | - | 4.638 | - | - |
15 | 24.597 | Naphthalene, 1,2-dihydro-1,1,6-trimethyl- | Hydrocarbon | C13H16 | 3.491 | 0.404 | - | 1.179 | 4.884 | - |
16 | 29.56 | Heptanoic acid | Acids | C7H14O2 | - | 5.857 | 0.644 | 1.664 | - | 2.179 |
17 | 30.588 | Butanoic acid, anhydride | Acids | C8H14O3 | - | 3.507 | - | - | - | - |
18 | 30.602 | Butanoic acid, butyl ester | Acids | C8H16O2 | - | - | 3.888 | - | - | - |
19 | 30.607 | Isophytol | Alcohols | C20H40O | - | - | - | 5.729 | 1.969 | - |
20 | 32.38 | 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- | Ketenes | C13H20O | 1.37 | - | - | - | 3.88 | - |
21 | 34.374 | Benzene, 1,4-diethyl-2,3,5,6-tetramethyl- | Benzene | C14H22 | 3.002 | - | - | - | - | - |
22 | 34.393 | Benzene, 1,4-dimethyl-2,5-bis(1-methylethyl)- | Benzene | C14H22 | - | - | - | - | 4.986 | - |
23 | 36.812 | Pentadecanal | Aldehydes | C15H30O | - | - | - | - | - | 4.721 |
24 | 37.9 | 2-Pentadecanone, 6,10,14-trimethyl- | Ketenes | C18H36O | 2.592 | 0.829 | - | 0.813 | 0.504 | 3.769 |
25 | 38.945 | Phenanthrene | Hydrocarbon | C14H10 | - | - | 3.321 | - | - | - |
26 | 39.835 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | Acids | C16H22O4 | - | - | - | 4.251 | 3.136 | - |
27 | 40.2 | Phthalic acid | Acids | C8H6O4 | 3.853 | 6.695 | 13.15 | 1.245 | - | 2.679 |
28 | 40.412 | 1,2-Benzenedicarboxylic acid, decyl octyl ester | Acids | C26H42O4 | - | - | 7.934 | - | - | - |
29 | 40.983 | 2,2-Dichloroethyl methyl ether | Ethers | C3H6Cl2O | - | - | 3.025 | - | - | - |
30 | 41.126 | n-Hexadecanoic acid | Acids | C16H32O2 | - | 4.162 | - | - | - | - |
31 | 41.493 | 1,6-Dideoxy-l-mannitol | Alcohols | C6H14O4 | - | 3.753 | - | - | - | - |
32 | 41.545 | 12-Crown-4 | Ethers | C8H16O4 | 11.753 | - | - | - | 1.904 | - |
33 | 41.936 | Tetradecanoic acid | Acids | C14H28O2 | 3.241 | - | - | - | - | - |
34 | 42.331 | Pentaethylene glycol | Alcohols | C10H22O6 | - | - | 5.139 | - | - | - |
35 | 43.093 | 3,6,9-Trioxa-2-silaundecane, 2,2-dimethyl- | Hydrocarbon | C9H22O3Si | - | - | 3.871 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Guo, J.; Zang, S.; Liu, B.; Wu, Y. Comparison of Flavonoid Content, Antioxidant Potential, Acetylcholinesterase Inhibition Activity and Volatile Components Based on HS-SPME-GC-MS of Different Parts from Matteuccia struthiopteris (L.) Todaro. Molecules 2024, 29, 1142. https://doi.org/10.3390/molecules29051142
Wang X, Guo J, Zang S, Liu B, Wu Y. Comparison of Flavonoid Content, Antioxidant Potential, Acetylcholinesterase Inhibition Activity and Volatile Components Based on HS-SPME-GC-MS of Different Parts from Matteuccia struthiopteris (L.) Todaro. Molecules. 2024; 29(5):1142. https://doi.org/10.3390/molecules29051142
Chicago/Turabian StyleWang, Xin, Jiatao Guo, Siqi Zang, Baodong Liu, and Yuhuan Wu. 2024. "Comparison of Flavonoid Content, Antioxidant Potential, Acetylcholinesterase Inhibition Activity and Volatile Components Based on HS-SPME-GC-MS of Different Parts from Matteuccia struthiopteris (L.) Todaro" Molecules 29, no. 5: 1142. https://doi.org/10.3390/molecules29051142
APA StyleWang, X., Guo, J., Zang, S., Liu, B., & Wu, Y. (2024). Comparison of Flavonoid Content, Antioxidant Potential, Acetylcholinesterase Inhibition Activity and Volatile Components Based on HS-SPME-GC-MS of Different Parts from Matteuccia struthiopteris (L.) Todaro. Molecules, 29(5), 1142. https://doi.org/10.3390/molecules29051142