Chemical Composition of Piper nigrum L. Cultivar Guajarina Essential Oils and Their Biological Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yields of Essential Oils
2.2. Chemical Composition
Piper nigrum cv Guajarina | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aroma (SDE) | Essential Oil (HD) | Essential Oil (SD) | ||||||||||||
Constituents | * RIL | ** RIC | L-mar | St-mar | s-nov | s-mar | L-nov | L-nar | St-nov | St-mar | s-nov | s-mar | L-nov | L-mar |
(2E)-Hexenal | 846 | 846 | 0.2 | |||||||||||
α-Thujene | 924 | 919 | 0.5 | 0.7 | 0.7 | |||||||||
α-Pinene | 932 | 932 | 0.1 | 1.6 | 5.6 | 5.5 | 0.1 | 1.4 | 2.4 | |||||
Sabinene | 969 | 969 | 5.8 | 0.1 | 6.4 | |||||||||
β-Pinene | 974 | 974 | 0.1 | 0.6 | 19.1 | 22.7 | 8.2 | 9.4 | ||||||
Myrcene | 988 | 988 | 0.1 | 2 | 1.1 | |||||||||
α-Phellandrene | 1002 | 997 | 0.2 | 0.2 | 0.2 | |||||||||
α-Terpinene | 1014 | 1013 | 0.2 | 1 | 1 | 0.5 | 0.1 | 0.5 | 0.7 | |||||
p-Cymene | 1020 | 1020 | 0.2 | 0.1 | ||||||||||
Sylvestrene | 1025 | 1023 | 0.1 | |||||||||||
Limonene | 1024 | 1024 | 0.2 | 2.9 | 19.3 | 17.3 | 0.1 | 0.3 | 0.1 | 11.2 | 15.1 | |||
(Z)-β-Ocimene | 1032 | 1032 | 0.4 | 1.1 | 1.6 | 1.3 | ||||||||
(E)-β-Ocimene | 1044 | 1044 | 1.8 | 0.1 | 0.1 | 0.9 | ||||||||
γ-Terpinene | 1054 | 1055 | 0.4 | 1.8 | 1.2 | 0.8 | 0.2 | 0.04 | 0.8 | 1.2 | ||||
cis-Sabinene hydrate | 1065 | 1066 | 0.2 | 0.4 | 1.6 | 0.3 | 1.2 | |||||||
Terpinolene | 1086 | 1083 | 0.1 | 0.3 | 0.5 | 0.3 | 0.1 | 0.3 | 0.4 | |||||
Linalool | 1095 | 1095 | 0.7 | 2.2 | 5.3 | 4.1 | 0.2 | 0.1 | 0.2 | 1.6 | 2.8 | |||
Phenyl ethyl alcohol | 1106 | 1104 | 0.03 | |||||||||||
(Z)-p-Menth-2-en-1-ol | 1118 | 1121 | 0.1 | 0.1 | 0.4 | 0.2 | 0.4 | |||||||
(E)-p-Menth-2-en-1-ol | 1136 | 1138 | 0.1 | 0.2 | 0.1 | 0.2 | ||||||||
Terpinen-4-ol | 1174 | 1177 | 0.2 | 0.7 | 2.1 | 3.9 | 0.2 | 0.1 | 3.1 | 5 | ||||
α-Terpineol | 1186 | 1191 | 0.1 | 0.8 | 0.7 | 0.5 | 0.5 | |||||||
Methyl chavicol | 1195 | 1195 | ||||||||||||
cis-Piperitol | 1195 | 1200 | 0.1 | 0.1 | ||||||||||
Nerol | 1227 | 1220 | 0.1 | 0.2 | 0.1 | 0.1 | ||||||||
Methyl citronellate | 1257 | 1257 | 0.1 | |||||||||||
p-Menth-1-en-7-ol | 1273 | 1267 | 0.1 | 0.1 | 0.1 | 0.1 | ||||||||
(Z)-Carvone oxide | 1273 | 1272 | 0.1 | 0.1 | ||||||||||
Safrole | 1285 | 1285 | 0.1 | |||||||||||
2-Undecanone | 1293 | 1289 | 0.2 | 0.4 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | |
δ-Elemene | 1335 | 1335 | 7.5 | 1.4 | 1.6 | 7.1 | 5.3 | 2.9 | 3.3 | 2.7 | 2.1 | 7 | 10.1 | |
α-Cubebene | 1345 | 1345 | 0.1 | 0.04 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | |
α-Ylangene | 1373 | 1363 | 0.1 | 0.1 | ||||||||||
α-Copaene | 1374 | 1374 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.4 | 0.8 |
β-Bourbonene | 1387 | 1387 | 0.2 | |||||||||||
β-Elemene | 1389 | 1389 | 3.2 | 2.1 | 1.1 | 1.1 | 2.9 | 3.5 | 2.7 | 2.5 | 1.9 | 1.5 | 2.8 | 3.5 |
α-Gurjunene | 1409 | 1401 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.04 | 0.2 | 0.3 | |
α-Cedrene | 1410 | 1408 | 0.3 | 0.1 | 0.3 | 0.1 | 0.2 | 0.3 | ||||||
β-Caryophyllene | 1417 | 1413 | 1.2 | 21.9 | 4.9 | 6.8 | 0.5 | 1.5 | 16.2 | 13.3 | 10.8 | 7.8 | 0.9 | 0.5 |
(E)-α-Bergamotene | 1432 | 1424 | 1.5 | |||||||||||
γ-Elemene | 1434 | 1425 | 23.2 | 14.1 | 8.8 | 7.5 | 32.6 | 34.4 | 26.8 | 29.3 | 18 | 12.5 | 33.9 | 31.8 |
β-Copaene | 1430 | 1430 | ||||||||||||
α-Guayene | 1437 | 1431 | 0.1 | 0.2 | 0.1 | 0.1 | 0.5 | 0.2 | 0.1 | 0.04 | 0.1 | |||
6,9-Guaiadiene | 1442 | 1437 | 0.1 | 0.2 | 0.2 | 0.2 | ||||||||
cis-Muurola-3,5-diene | 1448 | 1440 | 0.1 | 0.1 | 0.2 | |||||||||
Aromadendrene | 1439 | 1440 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.3 | ||||||
α-Humulene | 1452 | 1449 | 0.5 | 1.7 | 0.6 | 0.7 | 0.7 | 0.6 | 2.1 | 1.6 | 1.1 | 0.8 | 0.5 | 0.6 |
cis-Cadina-1,(6),4-diene | 1475 | 1456 | 0.1 | 0.1 | ||||||||||
trans-Cadina-1,(6),4-diene | 1475 | 1467 | 0.1 | |||||||||||
γ-Gurjunene | 1475 | 1475 | 0.3 | 0.1 | ||||||||||
γ-Muurolene | 1478 | 1478 | 0.1 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | |||||
Germacrene D | 1484 | 1484 | 3 | 1.3 | 0.6 | 0.7 | 2.4 | 2.6 | 1.5 | 2 | 1 | 0.9 | 2.2 | 4.1 |
cis-β-Guayene | 1492 | 1485 | 0.3 | |||||||||||
Curzerene | 1499 | 1488 | 23.7 | 14.8 | 8.3 | 6.9 | 31.2 | 27.4 | 20.4 | 22.9 | 17.1 | 10.7 | 31.7 | 27.1 |
β-Selinene | 1489 | 1489 | 1.4 | 2 | 1.1 | 1.2 | 1.7 | 2.2 | 4 | 3.3 | 2.2 | 1.7 | 1.5 | 1.9 |
(E)-Methyl-isoeugenol | 1491 | 1491 | ||||||||||||
δ-Selinene | 1492 | 1492 | ||||||||||||
α-Muurolene | 1500 | 1493 | 0.3 | 0.1 | 0.5 | 0.4 | 0.1 | 0.1 | 0.2 | 0.3 | ||||
β-Dihydro agarofuran | 1503 | 1494 | 0.2 | |||||||||||
(E)-Cycloisolongifol-5-ol | 1513 | 1495 | 0.1 | |||||||||||
(EE)-α-Farnesene | 1505 | 1496 | 0.2 | 0.3 | 0.2 | 0.7 | 0.4 | 0.3 | 0.4 | 0.3 | 0.4 | 0.4 | 0.4 | |
β-Bisabolene | 1505 | 1503 | 0.2 | 0.3 | ||||||||||
α-Cadinene | 1537 | 1503 | 0.5 | |||||||||||
trans-Calamene | 1521 | 1506 | 0.1 | |||||||||||
γ-Cadinene | 1513 | 1509 | 0.1 | 0.2 | 0.1 | 0.2 | ||||||||
δ-Cadinene | 1522 | 1513 | 0.7 | 0.5 | 0.2 | 0.8 | 0.7 | 0.9 | 0.7 | 0.5 | 0.3 | 0.8 | 0.8 | |
trans-Cadina-1.4-diene | 1533 | 1526 | 0.2 | 0.1 | ||||||||||
Guaia-3,9-diene | 1442 | 1530 | 0.1 | 0.3 | 0.6 | 0.1 | 0.4 | |||||||
Selina-3.7,(11)-diene | 1545 | 1535 | 0.2 | 0.4 | 0.3 | 0.7 | 0.2 | 0.5 | ||||||
γ-Vatirenene | 1546 | 1533 | 0.7 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.5 | |||||
α-Vatirenene | 1547 | 1537 | 0.4 | 0.5 | 0.3 | 0.4 | 0.6 | |||||||
Elemol | 1548 | 1542 | 2.9 | 0.9 | 1.5 | 0.9 | 1.3 | 1.5 | 0.6 | 1 | 1.2 | 1 | 1 | 1.4 |
Germacrene B | 1559 | 1559 | 2.6 | 1.3 | 0.7 | 0.5 | 2.8 | 2.7 | 3.8 | 2.3 | 1.1 | 0.8 | 3.2 | 2.4 |
(E)-Nerolidol | 1561 | 1561 | 1.4 | 0.7 | 0.2 | 0.2 | 0.5 | 0.8 | 0.4 | 0.8 | 0.3 | 0.2 | 0.4 | 0.6 |
Viridiflorol | 1592 | 1573 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | |||||||
Caryophyllene oxide | 1582 | 1574 | 0.3 | 2 | 0.6 | 1.1 | 0.1 | 0.1 | 0.7 | 1.4 | 1.2 | 1.2 | 0.1 | |
Globulol | 1590 | 1577 | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | |||
β-Atlantol | 1608 | 1602 | 4.9 | 0.2 | 2.1 | 0.1 | 1.4 | 0.2 | 0.8 | 0.2 | 1.8 | 1.2 | ||
Dill apiole | 1620 | 1607 | 0.5 | |||||||||||
Junenol | 1618 | 1618 | ||||||||||||
(Z)-Asarone | 1616 | 1619 | ||||||||||||
Muurola-4,10,(14)-di-en-1β-ol | 1630 | 1620 | 0.2 | 0.5 | 0.04 | 1.7 | 0.2 | 1 | 0.1 | 0.5 | 0.2 | |||
epi-α-Cadinol | 1638 | 1635 | 0.2 | 0.1 | ||||||||||
α-Muurulol | 1644 | 1639 | 0.3 | 0.1 | 0.3 | 0.4 | 0.2 | 0.1 | 0.6 | |||||
Exalatacin | 1655 | 1640 | ||||||||||||
β-Eudesmol | 1649 | 1647 | 0.3 | 0.2 | 0.2 | 0.5 | 0.6 | 0.5 | 0.7 | 0.4 | 0.5 | 0.1 | ||
Attractilone | 1657 | 1650 | 0.3 | 0.2 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | |||||
Selin-11-en-4α-ol | 1658 | 1658 | ||||||||||||
Intermedeol | 1665 | 1659 | ||||||||||||
(E)-Asarone | 1675 | 1675 | ||||||||||||
Eudesm-7,(11)-en-4-ol | 1700 | 1688 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 | 0.5 | 0.13 | 0.1 | 0.2 | |
2-α-Hydroxy-amorphous-4,7,(11)-diene | 1760 | 1760 | 0.1 | 0.3 | 0.12 | |||||||||
(E)-Isovalenennol | 1793 | 1789 | 0.1 | 0.2 | ||||||||||
Monoterpene hydrocarbons | 2.1 | 16 | 48.9 | 53.2 | 0.2 | 0.1 | 1 | 0.14 | 23.6 | 40.1 | 0 | 0 | ||
Oxygenated monoterpenes | 1.1 | 3.2 | 8.6 | 9.7 | 0.2 | 0.1 | 0.4 | 0.1 | 5.7 | 9.2 | 0 | 0 | ||
Hydrocarbon sesquiterpenes | 68.5 | 60.94 | 29.8 | 28.4 | 86.1 | 83.3 | 87.4 | 83.4 | 58.6 | 40.28 | 88.9 | 85.6 | ||
Oxygenated sequiterpenes | 11.2 | 5.5 | 5.9 | 3.14 | 6.5 | 4.3 | 5.8 | 5.4 | 6.35 | 3 | 4.5 | 3.6 | ||
Phenylpropanoids | 0.5 | |||||||||||||
Others | 0.2 | 0.4 | 0.3 | 0.23 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.3 | 0.1 | |||
Total | 83.6 | 86.04 | 93.5 | 94.67 | 93.1 | 87.9 | 94.7 | 89.14 | 94.45 | 92.88 | 93.4 | 89.3 |
2.2.1. Chemometric Analysis
2.2.2. Principal Component Analysis
2.3. Antioxidant Activity
2.4. Preliminary Toxicity
2.5. In Silico Study
Evaluation of the Interactions of Major Compounds with AChE
3. Materials and Methods
3.1. Collection of Botanical Material
3.2. Determination of Residual Moisture
3.3. Essential Oil Extraction
3.3.1. Hydrodistillation
3.3.2. Simultaneous Distillation and Extraction
3.3.3. Steam Distillation
3.4. Identification of Chemical Constituents
3.5. Determination of Preliminary Toxicity in Artemia salina Leach
3.6. Antioxidant Potential
3.7. Molecular Modeling Study
In Silico Analysis (Molecular Docking and Molecular Dynamics)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morais, V.P.; Cabral, F.V.; Fernandes, C.C.; Miranda, M.L.D. Brief Review on Piper aduncum L., Its Bioactive Metabolites and Its Potential to Develop Bioproducts. Braz. Arch. Biol. Technol. 2023, 66, e23220314. [Google Scholar] [CrossRef]
- Mesquita, K.d.S.M.; Feitosa, B.d.S.; Cruz, J.N.; Ferreira, O.O.; Franco, C.d.J.P.; Cascaes, M.M.; De Oliveira, M.S.; Andrade, E.H.d.A. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia circinnata Link Var. Circinnata. (Piperaceae) in Artemia salina Leach. Molecules 2021, 26, 7359. [Google Scholar] [CrossRef]
- Da Silva, J.K.; Da Trindade, R.; Alves, N.S.; Figueiredo, P.L.; Maia, J.G.S.; Setzer, W.N. Essential Oils from Neotropical Piper Species and Their Biological Activities. Int. J. Mol. Sci. 2017, 18, 2571. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, A.; Sacchetti, G.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Andreotti, E.; Tognolini, M.; Maldonado, M.E.; Bruni, R. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) Essential Oils from Eastern Ecuador. Environ. Toxicol. Pharmacol. 2009, 27, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Pandian, A.; Warkentin, T.D. Phytochemistry and Therapeutic Potential of Black Pepper [Piper nigrum (L.)] Essential Oil and Piperine: A Review. Clin. Phytosci. 2021, 7, 52. [Google Scholar] [CrossRef]
- Jeena, K.; Liju, V.B.; Umadevi, N.P.; Kuttan, R. Antioxidant, Anti-Inflammatory and Antinociceptive Properties of Black Pepper Essential Oil (Piper nigrum Linn). J. Essent. Oil-Bear. Plants 2014, 17, 1–12. [Google Scholar] [CrossRef]
- Ferreira, O.O.; Cruz, J.N.; de Moraes, Â.A.B.; Franco, C.d.J.P.; Lima, R.R.; Dos Anjos, T.O.; Siqueira, G.M.; Do Nascimento, L.D.; Cascaes, M.M.; de Oliveira, M.S.; et al. Essential Oil of the Plants Growing in the Brazilian Amazon: Chemical Composition, Antioxidants, and Biological Applications. Molecules 2022, 27, 4373. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, M.M.; Jovanović, K.K.; Marković, T.L.; Marković, D.L.; Gligorijević, N.N.; Radulović, S.S.; Kostić, M.; Glamočlija, J.M.; Soković, M.D. Antimicrobial Synergism and Cytotoxic Properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel Essential Oils. J. Pharm. Pharmacol. 2017, 69, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Rasyid, M.I.; Yuliani, H.; Triandita, N.; Angraeni, L.; Anggriawin, M. Toxicity Test of Laban Fruits (Vitex pinnata Linn) by Using Brine Shrimp Lethality Test (BSLT) Methode. IOP Conf. Ser. Earth Environ. Sci. 2022, 1059, 012051. [Google Scholar] [CrossRef]
- Sharififar, F.; Assadipour, A.; Moshafi, M. Bioassay Screening of the Essential Oil and Various Extracts of Nigella sativa L. Seeds Using Brine Shrimp Toxicity Assay. Herb. Med. 2017, 2, 16–23. [Google Scholar] [CrossRef]
- Vivekanandhan, P.; Swathy, K.; Shivakumar, M.S. Stability of Insecticidal Molecule Aucubin and Their Toxicity on Anopheles Stephensi, Aedes Aegypti, Culex Quinquefasciatus and Artemia Salina. Int. J. Trop. Insect Sci. 2022, 42, 3403–3417. [Google Scholar] [CrossRef]
- García-García, J.D.; Segura-Ceniceros, E.P.; Zaynullin, R.A.; Kunakova, R.V.; Vafina, G.F.; Tsypysheva, I.P.; Vargas-Segura, A.I.; Ilyina, A. Three (―)-Cytisine Derivatives and 1-Hydroxyquinopimaric Acid as Acetylcholinesterase Inhibitors. Toxicol. Rep. 2019, 6, 862–868. [Google Scholar] [CrossRef]
- Da Fonseca, A.M.; Luthierre Gama Cavalcante, A.; Mendes, A.M.d.S.; da Silva, F.D.F.C.; Ferreira, D.C.L.; Ribeiro, P.R.V.; dos Santos, J.C.S.; dos Santos, H.S.; Gaieta, E.M.; Marinho, G.S.; et al. Phytochemical Study of Lantana Camara Flowers, Ecotoxicity, Antioxidant, in Vitro and in Silico Acetylcholinesterase: Molecular Docking, MD, and MM/GBSA Calculations. J. Biomol. Struct. Dyn. 2022, 41, 9282–9296. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Zhang, C.; Pan, S.; Chen, L.; Liu, M.; Yang, K.; Zeng, X.; Tian, J. Analysis of Chemical Components and Biological Activities of Essential Oils from Black and White Pepper (Piper nigrum L.) in Five Provinces of Southern China. LWT 2020, 117, 108644. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, A.; Sachan, N.; Chandra, P. Anxiolytic and Antidepressant-like Effects of Essential Oil from the Fruits of Piper nigrum Linn. (Black Pepper) in Mice: Involvement of Serotonergic but Not GABAergic Transmission System. Heliyon 2021, 7, e06884. [Google Scholar] [CrossRef]
- Rajkumar, V.; Gunasekaran, C.; Dharmaraj, J.; Chinnaraj, P.; Paul, C.A.; Kanithachristy, I. Structural Characterization of Chitosan Nanoparticle Loaded with Piper nigrum Essential Oil for Biological Efficacy against the Stored Grain Pest Control. Pestic. Biochem. Physiol. 2020, 166, 104566. [Google Scholar] [CrossRef] [PubMed]
- Barata, L.M.; Andrade, E.H.; Ramos, A.R.; De Lemos, O.F.; Setzer, W.N.; Byler, K.G.; Maia, J.G.S.; Da Silva, J.K.R. Secondary Metabolic Profile as a Tool for Distinction and Characterization of Cultivars of Black Pepper (Piper nigrum L.) Cultivated in Pará State, Brazil. Int. J. Mol. Sci. 2021, 22, 890. [Google Scholar] [CrossRef]
- Abd El Mageed, M.A.; Mansour, A.F.; El Massry, K.F.; Ramadan, M.M.; Shaheen, M.S. The Effect of Microwaves on Essential Oils of White and Black Pepper (Piper nigrum L.) and Their Antioxidant Activities. J. Essent. Oil Bear. Plants 2011, 14, 214–223. [Google Scholar] [CrossRef]
- Bagheri, H.; Abdul Manap, M.Y.B.; Solati, Z. Antioxidant Activity of Piper nigrum L. Essential Oil Extracted by Supercritical CO2 Extraction and Hydro-Distillation. Talanta 2014, 121, 220–228. [Google Scholar] [CrossRef]
- Andriana, Y.; Xuan, T.D.; Quy, T.N.; Tran, H.D.; Le, Q.T. Biological Activities and Chemical Constituents of Essential Oils from Piper Cubeba Bojer and Piper nigrum L. Molecules 2019, 24, 1876. [Google Scholar] [CrossRef]
- Singh, S.; Kapoor, I.P.S.; Singh, G.; Schuff, C.; De Lampasona, M.P.; Catalan, C.A.N. Chemistry, Antioxidant and Antimicrobial Potentials of White Pepper (Piper nigrum L.) Essential Oil and Oleoresins. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2013, 83, 357–366. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Adams, R.P., Ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 1-93-263321-9. [Google Scholar]
- Stein, S.; Mirokhin, D.; Tchekhovskoi, D.; Mallard, G.; Mikaia, A.; Zaikin, V.; Sparkmanm, D. The NIST Mass Spectral Search Program for the Nist/Epa/Nih Mass Spectra Library; Standard Reference Data Program of the National Institute of Standards and Technology; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Hurtado, F.B.; Lima, R.A.; Teixeira, L.F.; Silva, I.C.; Bay, M.B.; Azevedo, M.S.; Facundo, V.A. Antioxidant Activity and Characterization of the Essential Oil from the Roots of Piper marginatum Jacq. Ciência Nat. 2016, 38, 1504. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, J.; Famous, E.; Pan, S.; Peng, X.; Tian, J. Antioxidant, Hepatoprotective and Antifungal Activities of Black Pepper (Piper nigrum L.) Essential Oil. Food Chem. 2021, 346, 128845. [Google Scholar] [CrossRef]
- Aboaba, S.; Akande, A.; Flamini, G. Chemical Composition, Toxicity and Antibacterial Activity of the Essential Oils of Garcinia Mangostana from Nigeria. J. Essent. Oil Bear. Plants 2014, 17, 78–86. [Google Scholar] [CrossRef]
- Senthil-Nathan, S. A Review of Resistance Mechanisms of Synthetic Insecticides and Botanicals, Phytochemicals, and Essential Oils as Alternative Larvicidal Agents Against Mosquitoes. Front. Physiol. 2020, 10, 1591. [Google Scholar] [CrossRef]
- Chiu, C.C.; Keeling, C.I.; Bohlmann, J. Toxicity of Pine Monoterpenes to Mountain Pine Beetle. Sci. Rep. 2017, 7, 6–13. [Google Scholar] [CrossRef]
- Benelli, G.; Govindarajan, M.; AlSalhi, M.S.; Devanesan, S.; Maggi, F. High Toxicity of Camphene and γ-Elemene from Wedelia Prostrata Essential Oil against Larvae of Spodoptera litura (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 2018, 25, 10383–10391. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Rajeswary, M.; Hoti, S.L.; Bhattacharyya, A.; Benelli, G. Eugenol, α-Pinene and β-Caryophyllene from Plectranthus Barbatus Essential Oil as Eco-Friendly Larvicides against Malaria, Dengue and Japanese Encephalitis Mosquito Vectors. Parasitol. Res. 2016, 115, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Rajeswary, M.; Senthilmurugan, S.; Vijayan, P.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Curzerene, Trans-β-Elemenone, and γ-Elemene as Effective Larvicides against Anopheles Subpictus, Aedes Albopictus, and Culex Tritaeniorhynchus: Toxicity on Non-Target Aquatic Predators. Environ. Sci. Pollut. Res. 2018, 25, 10272–10282. [Google Scholar] [CrossRef] [PubMed]
- Souto, R.N.P.; Harada, A.Y.; Andrade, E.H.A.; Maia, J.G.S. Insecticidal Activity of Piper Essential Oils from the Amazon Against the Fire Ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotrop. Entomol. 2012, 41, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Martianasari, R.; Hamid, P.H. Larvicidal, Adulticidal, and Oviposition-Deterrent Activity of Piper betle L. Essential Oil to Aedes Aegypti. Vet. World 2019, 12, 367–371. [Google Scholar] [CrossRef]
- De Oliveira, A.C.; Sá, I.S.C.; Mesquita, R.S.; Pereira, B.L.; Pocrifka, L.A.; de Souza, T.P.; Rodriguez Amado, J.R.; Azevedo, S.G.; Sanches, E.A.; Nunomura, S.M.; et al. Nanoemulsion Loaded with Volatile Oil from Piper alatipetiolatum as an Alternative Agent in the Control of Aedes Aegypti. Rev. Bras. Farmacogn. 2020, 30, 667–677. [Google Scholar] [CrossRef]
- Da Costa, J.S.; Barroso, A.S.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Seasonal and Antioxidant Evaluation of Essential Oil from Eugenia uniflora L., Curzerene-Rich, Thermally Produced in Situ. Biomolecules 2020, 10, 328. [Google Scholar] [CrossRef]
- Mau, J. Composition and Antioxidant Activity of the Essential Oil from Curcuma Zedoaria. Food Chem. 2003, 82, 583–591. [Google Scholar] [CrossRef]
- Da Silva, J.K.R.; Pinto, L.C.; Burbano, R.M.R.; Montenegro, R.C.; Guimarães, E.F.; Andrade, E.H.A.; Maia, J.G.S. Essential Oils of Amazon Piper Species and Their Cytotoxic, Antifungal, Antioxidant and Anti-Cholinesterase Activities. Ind. Crops Prod. 2014, 58, 55–60. [Google Scholar] [CrossRef]
- Da Costa, L.S.; de Moraes, Â.A.B.; Cruz, J.N.; Mali, S.N.; Almeida, L.Q.; do Nascimento, L.D.; Ferreira, O.O.; Varela, E.L.P.; Percário, S.; de Oliveira, M.S.; et al. First Report on the Chemical Composition, Antioxidant Capacity, and Preliminary Toxicity to Artemia salina L. of Croton campinarensis Secco, A. Rosário & PE Berry (Euphorbiaceae) Essential Oil, and In Silico Study. Antioxidants 2022, 11, 2410. [Google Scholar] [CrossRef] [PubMed]
- Van Den Dool, H.; Dec. Kratz, P. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, B.d.S.; Ferreira, O.O.; Mali, S.N.; Anand, A.; Cruz, J.N.; Franco, C.d.J.P.; Mahawer, S.K.; Kumar, R.; Cascaes, M.M.; De Oliveira, M.S.; et al. Chemical Composition, Preliminary Toxicity, and Antioxidant Potential of Piper marginatum Sensu Lato Essential Oils and Molecular Modeling Study. Molecules 2023, 28, 5814. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant Pressure Molecular Dynamics Algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Mali, S.N.; Pandey, A. Molecular Modeling Studies on 2,4-Disubstituted Imidazopyridines as Anti-Malarials: Atom-Based 3D-QSAR, Molecular Docking, Virtual Screening, In-Silico ADMET and Theoretical Analysis. J. Comput. Biophys. Chem. 2021, 20, 267–282. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision 16.A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, Synthesis, Antimicrobial Activity and Computational Studies of Novel Azo Linked Substituted Benzimidazole, Benzoxazole and Benzothiazole Derivatives. Comput. Biol. Chem. 2019, 78, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.N.; Pandey, A. Synthesis of New Hydrazones Using a Biodegradable Catalyst, Their Biological Evaluations and Molecular Modeling Studies (Part-II). J. Comput. Biophys. Chem. 2022, 21, 857–882. [Google Scholar] [CrossRef]
- Chow, E.; Rendleman, C.A.; Bowers, K.J.; Dror, R.O.; Hughes, D.H.; Gullingsrud, J.; Sacerdoti, F.D.; Shaw, D.E. Desmond Performance on a Cluster of Multicore Processors. Available online: http://deshawresearch.com (accessed on 1 January 2023).
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies Using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
Piper nigrum cv Guajarina | |||||||||
---|---|---|---|---|---|---|---|---|---|
(HD) | (SD) | ||||||||
Yield (%) EO | L-nov | L-mar | St-nov | St-mar | s-nov | s-mar | L-nov | L-mar | |
1.16 | 1.09 | 0.44 | 0.29 | 0.69 | 1.96 | 1.37 | 1.29 |
Samples (EOs) | Inhibition (%) | mg TE mL−1 |
---|---|---|
SD-L-nov | 61.8 ± 4.2 | 167.9 ± 11.5 |
SD-L-mar | 34.2 ± 2.8 | 93.1 ± 7.5 |
HD-L-mar | 40.3 ± 2.27 | 109.5 ± 7.3 |
HD-s-mar | 51.4 ± 1.9 | 139.6 ± 5.2 |
Sample | Concentration (µg mL−1) | Mortality (%) | R2 | LC50 |
---|---|---|---|---|
50 | 100 | (µg mL−1) | ||
Lapachol | 25 | 66.7 | ||
10 | 3.3 | 0.93 | 21.2 ± 2.2 | |
5 | 0 |
Sample | Concentration (µg mL−1) | Mortality (%) | R2 | LC50 (µg mL−1) |
---|---|---|---|---|
SD-L-nov | 25 | 100 | ||
10 | 76.6 | 1 | 6.40 ± 0.26 | |
5 | 43.3 | |||
1 | 0 | |||
SD-L-mar | 25 | 100 | ||
10 | 63.3 | 1 | 7.25 ± 0.05 | |
5 | 13.3 | |||
1 | 0 | |||
HD-L-nov | 25 | 100 | ||
10 | 26.6 | 0.9 | 7.95 ± 0.15 | |
5 | 16.6 | |||
1 | 0 | |||
HD-L-mar | 25 | 100 | ||
10 | 60 | 1 | 7.22 ± 0.26 | |
5 | 16.6 | |||
1 | 0 | |||
HD-s-nov | 25 | 100 | ||
10 | 76.6 | 1 | 6.44 ± 0.26 | |
5 | 40 | |||
1 | 0 | |||
HD-s-mar | 25 | 100 | ||
10 | 80 | 1 | 6.65 ± 0.11 | |
5 | 23.3 | |||
1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feitosa, B.d.S.; Ferreira, O.O.; Franco, C.d.J.P.; Karakoti, H.; Kumar, R.; Cascaes, M.M.; Jawarkar, R.D.; Mali, S.N.; Cruz, J.N.; de Menezes, I.C.; et al. Chemical Composition of Piper nigrum L. Cultivar Guajarina Essential Oils and Their Biological Activity. Molecules 2024, 29, 947. https://doi.org/10.3390/molecules29050947
Feitosa BdS, Ferreira OO, Franco CdJP, Karakoti H, Kumar R, Cascaes MM, Jawarkar RD, Mali SN, Cruz JN, de Menezes IC, et al. Chemical Composition of Piper nigrum L. Cultivar Guajarina Essential Oils and Their Biological Activity. Molecules. 2024; 29(5):947. https://doi.org/10.3390/molecules29050947
Chicago/Turabian StyleFeitosa, Bruna de Souza, Oberdan Oliveira Ferreira, Celeste de Jesus Pereira Franco, Himani Karakoti, Ravendra Kumar, Marcia Moraes Cascaes, Rahul D. Jawarkar, Suraj N. Mali, Jorddy Neves Cruz, Ilmarina Campos de Menezes, and et al. 2024. "Chemical Composition of Piper nigrum L. Cultivar Guajarina Essential Oils and Their Biological Activity" Molecules 29, no. 5: 947. https://doi.org/10.3390/molecules29050947
APA StyleFeitosa, B. d. S., Ferreira, O. O., Franco, C. d. J. P., Karakoti, H., Kumar, R., Cascaes, M. M., Jawarkar, R. D., Mali, S. N., Cruz, J. N., de Menezes, I. C., de Oliveira, M. S., & de Aguiar Andrade, E. H. (2024). Chemical Composition of Piper nigrum L. Cultivar Guajarina Essential Oils and Their Biological Activity. Molecules, 29(5), 947. https://doi.org/10.3390/molecules29050947