Advances and Prospects in the Study of Spherical Polyelectrolyte Brushes as a Dopant for Conducting Polymers
Abstract
:1. Introduction
2. Dopants of Conducting Polymers
2.1. Acids
2.2. Surfactants
2.3. Inorganic Nanoparticles
2.4. Polymers
3. Spherical Polyelectrolyte Brushes
3.1. Synthesis Methods
3.1.1. Physisorption
3.1.2. Chemical Bonding
3.2. Characteristic Methods and Conformation
3.2.1. Characteristic Methods
3.2.2. Conformation
4. Synthesis of Conducting Polymers Doped with SPB
4.1. Synthesis Methods of Conducting Polymers
4.1.1. Chemical Oxidation Polymerization
4.1.2. Electrochemical Oxidation Polymerization
4.2. PANI Doped by SPB
4.3. PPy Doped by SPB
4.4. PANI-PPy Doped by SPB
5. Research Methods
5.1. Spectra Analysis
5.1.1. FTIR
5.1.2. UV-Vis
5.1.3. Raman
5.1.4. XPS
5.2. Morphological Analysis
5.3. Performance Tests
6. Theory of Conducting Polymers Doped by SPB
6.1. Doping and Conducting Mechanism of Conducting Polymers
6.2. Three-Dimensional Variable Range Hopping (3D VRH) Theoretical Models
6.3. Template Theory
7. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirakawa, H.; Louis, E.L.; MacDiarmid, A.G. Synthesis of electrically conducting organic polymers: Halogen derivatives of Polyacetylene, (CH) x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Andriianova, A.N.; Biglova, Y.N.; Mustafin, A.G. Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv. 2020, 10, 7468–7491. [Google Scholar] [CrossRef] [PubMed]
- Tissera, N.D.; Wijesena, R.N.; Rathnayake, S.; Silva, R.M.; Nalin de Silva, K.M. Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: Improved electrical conductivity, electrical switching, and tuning properties. Carbohydrate polymers. Carbohyd. Polym. 2018, 186, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Hien, H.T.; Tuan, C.V.; Thu, D.T.A.; Ngan, P.Q.; Thai, G.H.; Doanh, S.C.; Giang, H.T.; Van, N.D.; Trung, T. Influence of surface morphology and doping of PPy film simultaneously polymerized by vapour phase oxidation on gas sensing. Synth. Met. 2019, 250, 35–41. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Wu, P.; Li, X.; Zhang, M.; Zhu, J. Polypyrrole capacitance characteristics with different doping ions and thickness. Phys. Chem. Chem. Phys. 2017, 19, 21165–21173. [Google Scholar] [CrossRef] [PubMed]
- Shindalkar, S.S.; Reddy, M.; Singh, R.; Nainar, M.A.M.; Kandasubramanian, B. Polythiophene blends and composites as potential energy storage materials. Synth. Met. 2023, 299, 117467. [Google Scholar] [CrossRef]
- Das, S.; Chatterjee, D.P.; Ghosh, R.; Nandi, A.K. Water soluble polythiophenes: Preparation and applications. RSC Adv. 2015, 5, 20160–20177. [Google Scholar] [CrossRef]
- Yi, K.; Chen, X.; Jin, Z.; Zhang, C.; Wei, D.; Liu, Y. A two-dimensional cross-linked polythiophene network. J. Mater. Chem. C 2019, 7, 9362–9368. [Google Scholar] [CrossRef]
- Han, Q.; Li, Y.; Han, L.; Lu, Z.; Liu, L. In-situ polymerization of polypyrrole on Prussian blue analogue for high capacity and flexible zinc-ion batteries. Synth. Met. 2024, 301, 117510. [Google Scholar] [CrossRef]
- Muthusamy, S.; Charles, J. In situ synthesis of ternary prussian blue, hierarchical SnO2 and polypyrrole by chemical oxidative polymerization and their sensing properties to volatile organic compounds. Optik 2021, 241, 166968. [Google Scholar] [CrossRef]
- Arvas, M.B.; Yazar, S.; Eglence-Bakir, S.; Sahin, M. Electrochemical synthesis of some thiosemicarbazide derivatives doped polypyrrole electrodes and supercapacitor applications. Synth. Met. 2023, 300, 117486. [Google Scholar] [CrossRef]
- Anwar, N.; Shakoor, A.; Ali, G.; Ahmad, H.; Niaz, N.A.; Arooj, S.U.; Mahmood, A. Synthesis and electrochemical characterization of polyaniline doped cadmium oxide (PANI-CdO) nanocomposites for supercapacitor applications. J. Energy Storage 2022, 55, 105446. [Google Scholar] [CrossRef]
- Zadeh, M.K.; Yeganeh, M.; Shoushtari, M.T.; Esmaeilkhanian, A. Corrosion performance of polypyrrole-coated metals: A review of perspectives and recent advances. Synth. Met. 2021, 274, 116723. [Google Scholar] [CrossRef]
- Sumi, V.S.; Arunima, S.R.; Deepa, M.J.; Sha, M.A.; Riyas, A.H.; Meera, M.S.; Saji, V.S.; Shibli, S.M.A. PANI-Fe2O3 composite for enhancement of active life of alkyd resin coating for corrosion protection of steel. Mater. Chem. Phys. 2020, 247, 122881. [Google Scholar] [CrossRef]
- Saeed, M.S.; Seyed-Yazdi, J.; Hekmatara, H. Fe2O3/Fe3O4/PANI/MWCNT nanocomposite with the optimum amount and uniform orientation of Fe2O3/Fe3O4 NPs in polyaniline for high microwave absorbing performance. J. Alloy. Compd. 2020, 843, 156052. [Google Scholar] [CrossRef]
- Lin, W.; Wang, Z. Fabrication of core-shell NiFe2O4@C@PPy composite microspheres with efficient microwave absorption properties. Mater. Lett. 2023, 352, 135212. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, R.; Zhong, W.; Yang, W. Mechanically robust double-crosslinked network functionalized grapheme/polyaniline stiff hydrogels for superior performance supercapacitors. J. Mater. Chem. A 2018, 6, 8568–8578. [Google Scholar] [CrossRef]
- Chu, X.; Yang, W.; Li, H. Recent advances in polyaniline-based micro-supercapacitors. Mater. Horiz. 2023, 10, 670–697. [Google Scholar] [CrossRef]
- Lawaniya, S.D.; Kumar, S.; Yu, Y.; Awasthi, K. Ammonia sensing properties of PPy nanostructures (urchins/flowers) towards low-cost and flexible gas sensors at room temperature. Sensor. Actuators B Chem. 2023, 382, 133566. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, L.; Du, H.; Chu, J. Improved NO2 gas-sensing performance of PPy by hydrogen plasma treatment: Experimental study and DFT verification. Sensor Actuators A Phys. 2023, 364, 114848. [Google Scholar] [CrossRef]
- Sen, T.; Mishra, S.; Shimpi, N.G. Synthesis and sensing applications of polyaniline nanocomposites: A review. RSC Adv. 2016, 6, 42196–42222. [Google Scholar] [CrossRef]
- Kumar, P.R.; Suryawanshi, P.L.; Gumfekar, S.P.; Sonawane, S.H. Ultrasound-assisted synthesis of conducting polymer-based electrocatalysts for fuel cell applications. Chem. Eng. Process. 2017, 121, 50–56. [Google Scholar] [CrossRef]
- Kim, A.R.; Poudel, M.B.; Chu, J.Y.; Vinothkannan, N.; Kumar, R.S.; Logeshwaran, N.; Park, B.H.; Han, M.K.; Yoo, D.J. Advanced performance and ultra-high, long-term durability of acid-base blended membranes over 900 hours containing sulfonated PEEK and quaternized poly (arylene ether sulfone) in H2/O2 fuel cells. Compos. Part B-Eng. 2023, 254, 110558. [Google Scholar] [CrossRef]
- Arunkumar, I.; Gokulapriyan, R.; Sakthivel, V.; Kim, A.R.; Oh, M.S.; Lee, J.Y.; Kim, S.; Lee, S.; Yoo, D.J. Functionalized graphene nanofiber-incorporated fumion anion-exchange membranes with enhanced alkaline stability and fuel-cell performances. ACS Appl. Energy Mater. 2023, 6, 7702–7713. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar]
- Yang, J.; Liu, Y.; Liu, S.; Li, L.; Zhang, C.; Liu, T. Conducting polymer composites: Material synthesis and applications in electrochemical capacitive energy storage. Mater. Chem. Front. 2017, 1, 251–268. [Google Scholar] [CrossRef]
- Sengodu, P.; Deshmukh, A.D. Conducting polymers and their inorganic composites for advanced Li-ion batteries: A review. RSC Adv. 2015, 5, 42109–42130. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Shoaie, I.S.; Khalilzadeh, M.A.; Asl, M.S.; Le, Q.V.; Zhang, K.; Jang, H.W.; Shokouhimehr, M. Recent developments in conducting polymers: Applications for electrochemistry. RSC Adv. 2020, 10, 37834–37856. [Google Scholar] [CrossRef]
- Borges, M.H.R.; Nagay, B.E.; Costa, R.C.; Souza, J.G.S.; Mathew, M.T.; Barão, V.A.R. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Adv. Colloid Interfac. 2023, 314, 102860. [Google Scholar] [CrossRef]
- Wang, G.; Morrin, A.; Li, M.; Liu, N.; Luo, X. Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. J. Mater. Chem. B 2018, 6, 4173–4190. [Google Scholar] [CrossRef]
- Ballauff, M. Spherical polyelectrolyte brushes. Prog. Polym. Sci. 2007, 32, 1135–1151. [Google Scholar] [CrossRef]
- Das, S.; Banik, M.; Chen, G.; Sinha, S.; Mukherjee, R. Polyelectrolyte brushes: Theory, modeling, synthesis and applications. Soft Matter 2015, 11, 8550–8583. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, G. Ionic effects on synthetic polymers: From solutions to brushes and gels. Soft Matter 2020, 16, 4087–4104. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Bhushan, B. Smart polymer brushes and their emerging applications. RSC Adv. 2012, 2, 8557–8578. [Google Scholar] [CrossRef]
- Su, N. Spherical Polyelectrolyte Brushes as Flocculants and Retention Aids in Wet-End Papermaking. Molecules 2023, 28, 7984. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ballauff, M. Spherical polyelectrolyte brushes as nanoreactors forthe generation of metallic and oxidic nanoparticles:Synthesis and application in catalysis. Prog. Polym. Sci. 2016, 59, 86–90. [Google Scholar] [CrossRef]
- Ozkazanc, E.; Yegin, B.; Guven, N.C.; Er, K.D.; Ozkazanc, H. Multifunctional P(Py/NMPy) copolymer doped by DBSA for electronic, photoelectric and biomedical applications. Synth. Met. 2022, 288, 117118. [Google Scholar] [CrossRef]
- Zhou, Y.; Takahashi, K.; Naidu, S.V.R.; Kumar, V.; Yokozeki, T.; Goto, T.; Takahashi, T. Comparison of semi-doped PANI/DBSA complex achieved by thermal doping and roll-mill process: A new perspective for application. Polymer 2020, 202, 122723. [Google Scholar] [CrossRef]
- Kong, D.; Qin, C.; Cao, L.; Fang, Z.; Lai, F.; Lin, Z.; Zhang, P.; Li, W.; Lin, H. Synthesis of biomass-based porous carbon nanofibre/polyaniline composites for supercapacitor electrode materials. Int. J. Electrochem. Sci. 2020, 15, 265–279. [Google Scholar] [CrossRef]
- Li, K.; Zhang, H.; Ma, Y.; Sun, T.; Jia, J. Nanostructured polypyrrole cathode based dual rotating disk photo fuel cell for textile wastewater purification and electricity generation. Electrochim. Acta 2019, 303, 329–340. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, D.Y.; Kim, C.Y. Synthesis of soluble polypyrrole of the doped state in organic solvents. Synth. Met. 1995, 74, 103–106. [Google Scholar] [CrossRef]
- Lee, J.Y.; Song, K.T.; Kim, S.Y.; Kim, Y.C.; Kim, D.Y.; Kim, C.Y. Synthesis and characterization of soluble polypyrrole. Synth. Met. 1997, 84, 137–140. [Google Scholar] [CrossRef]
- Omastovà, M.; Mravčáková, M.; Chodák, I. Conductive polypropylene/clay/polypyrrole nanocomposites. Polym. Eng. Sci. 2006, 46, 1069–1078. [Google Scholar] [CrossRef]
- Yin, W.S.; Ruckenstein, E. Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid. Synth. Met. 2000, 108, 39–46. [Google Scholar] [CrossRef]
- Shen, Y.Q.; Wan, M.X. Soluble conducting polypyrrole doped with DBSA–CSA mixed acid. J. Appl. Polym. Sci. 1998, 68, 1277–1284. [Google Scholar] [CrossRef]
- Wang, J.; Xu, S.; Du, H.; Zhang, Z.; Lv, J.; Sun, Y.; Wang, L. Mechanism research of SDBS-functionalized polypyrrole to improve electrochemical performance of screen-printed graphene electrode. Electrochim. Acta 2023, 454, 142408. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, K.; Zhang, K.; Wang, Z.; Liu, Z.; Hu, S.; Fang, Y.; He, C. Studies on corrosion behaviors of Q235 steel coated by the polypyrrole films doped with different dopants. Int. J. Electrochem. Sci. 2020, 15, 2594–2603. [Google Scholar] [CrossRef]
- Káčerová, S.; Víchová, Z.; Valášková, K.; Vícha, J.; Münster, L.; Kašpárková, V.; Vašíček, O.; Humpolíček. Biocompatibility of colloidal polypyrrole. Colloids Surf. B 2023, 232, 113605. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.; Yan, F.; Zhao, Y.; Wang, S.; Guo, B.; He, J.; Zou, D. Vapor deposition synthesis of polypyrrole nanoparticles with a tunable photothermal conversion capacity. Colloids Surf. A 2021, 613, 126073. [Google Scholar] [CrossRef]
- Liao, Q.; Hou, H.; Liu, X.; Yao, Y.; Dai, Z.; Yu, C.; Li, D. l-lactic acid and sodium p-toluenesulfonate co-doped polypyrrole for high performance cathode in sodium ion battery. J. Phys. Chem. Solids 2018, 115, 233–237. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Ni, S.; Xiao, H. In situ synthesis of conductive nanocrystal cellulose/polypyrrole composite hydrogel based on semi-interpenetrating network. Mater. Lett. 2018, 232, 175–178. [Google Scholar] [CrossRef]
- Yusuke, H.; Zaragoza-Contreras, E.A.; Farnood, R.; Kobayashi, T. Nanosized polypyrrole affected by surfactant agitation for emulsion polymerization. Polym. Bull. 2012, 68, 1689–1705. [Google Scholar]
- Zhou, D.H.; Li, Y.H.; Wang, J.Y.; Xu, P.; Han, X. Synthesis of polyaniline nanofibers with high electrical conductivity from CTAB-SDBS mixed surfactants. Mater. Lett. 2011, 65, 3601–3604. [Google Scholar] [CrossRef]
- Feng, X.M.; Liu, Y.G.; Lu, C.L.; Hou, W.; Zhu, J. One-step synthesis of AgCl/polyaniline core–shell composites with enhanced electroactivity. Nanotechnology 2006, 17, 3578–3583. [Google Scholar] [CrossRef] [PubMed]
- Hena, S.; Fatihah, N.; Tabassum, S.; Lalung, J.; Jing, S.Y. Magnetophoretic harvesting of freshwater microalgae using polypyrrole/Fe3O4nanocomposite and its reusability. J. Appl. Phycol. 2016, 28, 1597–1609. [Google Scholar] [CrossRef]
- Wu, J.Y.; Hsu, K.Y. Controllable fabrication of SiO2-polypyrrole core-shell dimer and trimer spheres. J. Mater. Sci. 2015, 26, 3148–3154. [Google Scholar] [CrossRef]
- Sun, B.; He, X.; Leng, X.; Jiang, Y.; Zhao, Y.; Suo, H.; Zhao, C. Flower-like polyaniline–NiO structures: A high specific capacity supercapacitor electrode material with remarkable cycling stability. RSC Adv. 2016, 6, 43959–43963. [Google Scholar] [CrossRef]
- Sumi, V.S.; Elias, L.; Deepa, M.J.; Shibli, S.M.A. Tuning of the electrocatalytic characteristics of PANI/Fe2O3 composite coating for alkaline hydrogen evolution reaction. Dalton Trans. 2020, 49, 11628–11639. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.W.; Xue, G. Magnetic and conducting particles: Preparation of polypyrrole layer on Fe3O4 nanospheres. Appl. Surf. Sci. 2003, 218, 215. [Google Scholar] [CrossRef]
- Liu, X.H.; Wu, H.Y.; Ren, F.L. Controllable fabrication of SiO(2)/polypyrrole core-shell particles and polypyrrole hollow spheres. Mater. Chem. Phys. 2008, 109, 5–9. [Google Scholar] [CrossRef]
- Shambharkar, B.H.; Umare, S.S. Synthesis and characterization of polyaniline/NiO nanocomposite. J. Appl. Polym. Sci. 2011, 122, 1905–1912. [Google Scholar] [CrossRef]
- Dawo, C.; Iyer, P.K.; Chaturvedi, H. Carbon nanotubes/PANI composite as an efficient counter electrode material for dye sensitized solar cell. Mater. Sci. Eng. B 2023, 297, 116722. [Google Scholar] [CrossRef]
- Chen, P.Y.; Courchesne, N.M.D.; Hyder, M.N.; Qi, J.; Belcher, A.M.; Hammond, P.T. Carbon nanotube–polyaniline core–shell nanostructured hydrogel for electrochemical energy storage. RSC Adv. 2015, 5, 37970–37977. [Google Scholar] [CrossRef]
- Yhirugnanam, L.; Ganguly, D.; Sundara, R. PPy coated on SiO2 encapsulated porous carbon nanofibers as a potential anode material for high rate capable and long-life Li-ion battery. Mater. Lett. 2021, 298, 130029. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Chen, B.; Wang, L.; Yang, J.; Wang, B. Nitrogen-doped hierarchically constructed interconnected porous carbon nanofibers derived from polyaniline (PANI) for highly selective CO2 capture and effective methanol adsorption. J. Environ. Chem. Eng. 2022, 10, 108847. [Google Scholar] [CrossRef]
- Rasouli, H.; Naji, L.; Hosseini, M.G. 3D structured polypyrrole/reduced graphene oxide (PPy/rGO)-based electrode ionic soft actuators with improved actuation performance. New J. Chem. 2018, 42, 12104–12118. [Google Scholar] [CrossRef]
- Wang, J.; Xu, S.; Du, H.; Lv, J.; He, W.; Yin, S.; Wang, Q.; Wang, L. Enhanced electrochemical properties of graphene-based screen-printed carbon electrode by PPy modification: Experimental and DFT investigations. J. Electroanal. Chem. 2023, 934, 117300. [Google Scholar] [CrossRef]
- Jeon, I.Y.; Choi, H.J.; Tan, L.S.; Baek, J.B. Nanocomposite prepared from in situ grafting of polypyrrole to aminobenzoyl-functionalized multiwalled carbon nanotube and its electrochemical properties. J. Polym. Sci. Polym. Chem. 2011, 49, 2529–2537. [Google Scholar] [CrossRef]
- Nekrasov, A.A.; Iakobson, O.D.; Gribkova, O.L. Raman spectroelectrochemical study of pyrrole electropolymerization in the presence of sulfonated polyelectrolytes. Electrochim. Acta 2021, 390, 138869. [Google Scholar] [CrossRef]
- Kim, B.C.; Spinks, G.M.; Too, G.G.; Wallace, G.G.; Bae, Y.H.; Ogata, N. Incorporation of novel polyelectrolyte dopants into conducting polymers. React. Funct. Polym. 2000, 44, 245–258. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, X.; Rappich, J.; Hinrichs, K. In situ infrared ellipsometric monitoring of the growth process of polyaniline thin films and doping with poly (4-styrenesulfonate). Appl. Surf. Sci. 2015, 344, 181–187. [Google Scholar] [CrossRef]
- Goel, S.; Mazumda, N.A.; Gupta, A. Synthesis and characterization of polypyrrole nanofibers with different dopants. Polym. Advan. Technol. 2010, 21, 205–210. [Google Scholar] [CrossRef]
- Wei, J.; Xiong, S.; Bai, Y.; Jia, P.; Ma, J.; Lu, X. Polyaniline nanoparticles doped with star-like poly(styrene sulfonate): Synthesis and electrochromic properties. Sol. Energ. Mat. Sol. C 2012, 99, 141–147. [Google Scholar] [CrossRef]
- Mpoukouvalas, K.; Wang, J.J.; Wegner, G. Conductivity of poly (pyrrole)-poly (styrene sulfonate) core–shell nanoparticles. Chem. Phys. Chem. 2010, 11, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Falah, S.; Ghorbani, M.; Ahmadpour, J. Photocatalytic degradation of anionic and cationic dyes over PPy/CuFe2O4 nanocomposite under visible-light and bactericidal action. J. Taiwan Inst. Chem. E 2023, 144, 104767. [Google Scholar] [CrossRef]
- Bayat, M.; Izadan, H.; Santiagao, S.; Estrany, F.; Dinari, M.; Semnani, D.; Alemán, C.; Guirado, G. Study on the electrochromic properties of polypyrrole layers doped with different dye molecules. Electroanal. Chem. 2021, 886, 115113. [Google Scholar] [CrossRef]
- Harley, C.C.; Annibaldi, V.; Yu, T.; Breslin, C.B. The selective electrochemical sensing of dopamine at a polypyrrole film doped with an anionic β−cyclodextrin. Electroanal. Chem. 2019, 855, 113614. [Google Scholar] [CrossRef]
- Reece, D.A.; Ralph, S.F.; Wallace, G.G. Metal transport studies on inherently conducting polymer membranes containing cyclodextrin dopants. J. Membr. Sci. 2005, 249, 9–20. [Google Scholar] [CrossRef]
- Bhayo, A.M.; Yang, Y.; He, X. Polymer brushes: Synthesis, characterization, properties and applications. Prog. Mater. Sci. 2022, 130, 101000. [Google Scholar] [CrossRef]
- Pincus, P. Colloid stabilization with grafted polyelectrolytes. Macromolecules 1991, 24, 2912–2919. [Google Scholar] [CrossRef]
- Borisov, O.V.; Birshtein, T.M.; Zhulina, E.B. Collapse of grafted polyelectrolyte layer. J. Phys. II 1991, 1, 521–526. [Google Scholar] [CrossRef]
- Csajka, F.S.; Netz, R.R.; Seidel, C.; Joanny, J.F. Collapse of polyelectrolyte brushes: Scaling theory and simulations. Eur. Phys. E 2001, 4, 505–513. [Google Scholar] [CrossRef]
- Sandberg, D.J.; Carrillo Jan-Michael, Y.; Dobrynin, A.V. Molecular dynamics simulations of polyelectrolyte brushes: From single chains to bundles of chains. Langmuir 2007, 23, 12716–12728. [Google Scholar] [CrossRef] [PubMed]
- Al-Baradi, A.; Tomlinson, M.R.; Zhang, Z.J.; Geoghegan, M. Determination of the molar mass of surface-grafted weak polyelectrolyte brushes using force spectroscopy. Polymer 2015, 67, 111–117. [Google Scholar] [CrossRef]
- Lee, C.F. The properties of core–shell composite polymer latex: Effect of heating on the morphology and physical properties of PMMA/PS core–shell composite latex and the polymer blends. Polymer 2000, 41, 1337–1344. [Google Scholar] [CrossRef]
- Kurapati, R.; Natarajan, U. Role of concentration and hydrophobic nature of weak polyelectrolytes on adsorption structure and thermodynamics at oil-water interface: Study of several carboxylate polymers. Polymer 2023, 285, 126315. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, T.; Peng, H.; Li, M.; Zhu, X.; Yao, Y. Nanostructured switchable pH-responsive membranes prepared via spherical polyelectrolyte brushes. J. Membr. Sci. 2019, 580, 117–124. [Google Scholar] [CrossRef]
- Beheshti, A.; Huang, Y.; Blakey, I.; Stokes, J.R. Macroscale superlubricity induced by film-forming polymer brush-grafted colloidal additives. J. Colloid Interface Sci. 2023, 634, 703–714. [Google Scholar] [CrossRef]
- He, Y.; Li, H.; Li, O.; Ding, F.; Zhan, Z.; Zhong, Y. Preparation and characterisation of water-based aluminium pigments modified with SiO2 and polymer brushes. Corros. Sci. 2016, 111, 802–810. [Google Scholar] [CrossRef]
- Farrukh, A.; Ashraf, F.; Kaltbeitzel, A.; Ling, X.; Wagner, M.; Duran, H.; Ghaffar, A.; Rehman, H.; Parekh, S.H.; Domke, K.F.; et al. Polymer brush functionalized SiO2 nanoparticle based Nafion nanocomposites: A novel avenue to low-humidity proton conducting membranes. Polym. Chem. 2015, 6, 5782–5789. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, H.; Xue, P.; Qi, Y.; Lv, Z.; Wang, R.; Wang, Y.; Sun, S. Construction of a multi-layer protection of CS polymer brush grafted DA@CNTs coating on PVDF membrane for effective removal of dye effluent. J. Hazard. Mater. 2023, 460, 132435. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, P.; Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Salami-Kalajahi, M.; Mardani, H. Polymer grafting on graphene layers by controlled radical polymerization. Adv. Colloid Interface Sci. 2019, 273, 102021. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Bolados, H.; Yazdani-Pedram, M.; Quinteros-Jara, E.; Cuenca-Bracamonte, Q.; Quijada, R.; Carretero-González, J.; Avilés, F.; Lopez-Manchado, M.; Verdejo, R. Synthesis of sustainable, lightweight and electrically conductive polymer brushes grafted multi-layer graphene oxide. Polym. Test. 2021, 93, 106986. [Google Scholar] [CrossRef]
- Bakhshandeh, A.; Segala, M.; Colla, T.E. Equilibrium conformations and surface charge regulation of spherical polymer brushes in stretched regimes. Macromolecules 2022, 55, 35–48. [Google Scholar] [CrossRef]
- Li, C.; Mao, J.; Li, S.; Wang, Y.; Liu, H. A long chain-induced depletion effect for abnormal grafting in the preparation of bimodal bidisperse polymer-grafted nanoparticles. Phys. Chem. Chem. Phys. 2023, 25, 5627–5637. [Google Scholar] [CrossRef]
- Hu, L.; Hao, Q.; Wang, L.; Cui, Z.; Fu, P.; Liu, M.; Qiao, X.; Pang, X. The in situ “grafting from” approach for the synthesis of polymer brushes on upconversion nanoparticles via NIR-mediated RAFT polymerization. Polym. Sci. 2021, 12, 545–553. [Google Scholar] [CrossRef]
- Hafner, D.; Jordan, R. Substrate-independent Cu (0)-mediated controlled radical polymerization: Grafting of block copolymer brushes from poly (dopamine) modified surfaces. Polym. Sci. 2020, 11, 2129–2136. [Google Scholar] [CrossRef]
- Su, N. Synthesis of poly (2-Acrylamido-2-methylpropanesulfnoinc Salt) modified carbon spheres. Polymers 2023, 15, 3510. [Google Scholar] [CrossRef]
- Flejszar, M.; Ślusarczyk, K.; Chmielarz, P.; Wolski, K.; Isse, A.A.; Gennaro, A.; Wytrwal-Sarna, M.; Oszajca, M. Working electrode geometry effect: A new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions. Polymer 2022, 255, 125098. [Google Scholar] [CrossRef]
- Wang, S.; Song, J.; Li, Y.; Zhao, X.; Chen, L.; Li, G.; Wang, L.; Jia, Z.; Ge, X. Grafting antibacterial polymer brushes from titanium surface via polydopamine chemistry and activators regenerated by electron transfer ATRP. React. Funct. Polym. 2019, 140, 48–55. [Google Scholar] [CrossRef]
- Li, X.; Wang, W. Grafting PDMAEMA brushes onto graphene oxide for fabricating Ag nanosheet-assembled microspheres as SERS substrates. Chem. Phys. Lett. 2023, 813, 140296. [Google Scholar] [CrossRef]
- Su, M.; Amalie, L.F.; Dale, L.H.; Glenn, H.F. Self-assembly in a mixed polymer brush with inhomogeneous grafting density composition. Soft Matter 2013, 9, 5341–5354. [Google Scholar]
- Venault, A.; Wei, T.C.; Shih, H.L.; Yeh, C.C.; Chinnathambi, A.; Alharbi, S.A.; Carretier, S.; Aimar, P.; Lai, J.Y.; Chang, Y. Antifouling pseudo-zwitterionic poly(vinylidene fluoride) membranes with efficient mixed-charge surface grafting via glow dielectric barrier discharge plasma-induced copolymerization. J. Membr. Sci. 2016, 516, 13–25. [Google Scholar] [CrossRef]
- Kurniawan, D.; Kim, B.S.; Lee, H.Y.; Lim, J.Y. Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites. Compos. Part B Eng. 2012, 43, 1010–1014. [Google Scholar] [CrossRef]
- Wittemann, A.; Drechsler, M.; Talmon, Y.; Ballauff, M. High elongation of polyelectrolyte chains in the osmotic limit of spherical polyelectrolyte brushes: a study by cryogenic transmission electron microscopy. J. Am. Chem. Soc. 2005, 127, 9688–9689. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Li, L.; Tian, Y.; Wang, Y.; Ye, Z.; Yang, Q.; Wang, Y.; Klizing, R.V.; Guo, X. Spherical polyelectrolyte nanogels as templates to prepare hollow silica nanocarriers: Observation by small angle X-ray scattering and TEM. RSC Adv. 2017, 7, 47877–47885. [Google Scholar] [CrossRef]
- Henzler, K.; Haupt, B.; Rosenfeldt, S.; Harnau, L.; Narayanan, T.; Ballauff, M. Interaction strength between proteins and polyelectrolyte brushes: A small angle X-ray scattering study. Phys. Chem. Chem. Phys. 2011, 13, 17599. [Google Scholar] [CrossRef]
- Kilbey, S.M.; Ankner, J.F. Neutron reflectivity as a tool to understand polyelectrolyte brushes. Curr. Opin. Colloid Interface Sci. 2012, 17, 83–89. [Google Scholar] [CrossRef]
- Eskhan, A.; Johnson, D. Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Adv. Colloid Interface Sci. 2022, 310, 102796. [Google Scholar] [CrossRef]
- Jalili, K.; Abbasi, F.; Behboodpour, L. In situ probing of switchable nanomechanical properties of responsive high-density polymer brushes on poly (dimethylsiloxane): An AFM nanoindentation approach. J. Mech. Behav. Biomed. Mater. 2019, 93, 118–129. [Google Scholar] [CrossRef]
- Conrad, J.C.; Robertson, M.L. Shaping the structure and response of surface-grafted polymer brushes via the molecular weight distribution. JACS Au 2023, 3, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Li, T.H.; Robertson, M.L.; Conrad, J.C. Molecular weight and dispersity affect chain conformation and pH-response in weak polyelectrolyte brushes. Polym. Chem. 2021, 12, 6737–6744. [Google Scholar] [CrossRef]
- Brondi, C.; Baldanza, A.; Chiarcos, R.; Laus, M.; Scherillo, G.; Mensitieri, G.; Milano, G. Partition by molecular weight of polymer brushes: A combined reactive grand canonical Monte Carlo and self-consistent field investigation of grafting to processes. Polymer 2024, 294, 126737. [Google Scholar] [CrossRef]
- Manav, M.; Anilkumar, P.; Phani, A.S. Mechanics of polymer brush based soft active materials– theory and experiments. J. Mech. Phys. Solids 2018, 121, 296–312. [Google Scholar] [CrossRef]
- Wiebe, M.; Leermakers, F.A.M. Modeling the structure of a polydisperse polymer brush. Polymer 2009, 50, 305–316. [Google Scholar]
- Zhulina, E.B.; Amoskov, V.M.; Polotsky, A.A.; Birshtein, T.M. Analytical self-consistent field model of arm-grafted starlike polymers in nonlinear elasticity regime. Polymer 2014, 55, 5160–5167. [Google Scholar] [CrossRef]
- Song, X.; Man, J.; Qiu, Y.; Wang, J.; Liu, J.; Li, R.; Zhang, Y.; Li, J.; Li, J.; Chen, Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater. 2024, 175, 76–105. [Google Scholar] [CrossRef] [PubMed]
- Sugimura, N.; Ohno, K. A Monte Carlo simulation of water + oil + ABA triblock copolymer ternary system II. Rheology under shear flow field by Monte Carlo Brownian Dynamics method. Chem. Phys. Lett. 2021, 777, 138382. [Google Scholar] [CrossRef]
- Meng, H.; Zhao, K. Dielectric analysis of different spherical polyelectrolyte brushes: Influence of pH and mass fraction on movement of counterions and electrical properties for different SPBs. Colloids Surf. A Physicochem. Eng. Asp. 2016, 508, 205–217. [Google Scholar] [CrossRef]
- Song, H.; Yao, Y.; Tang, C.; Zhang, L.; Lu, Y.; Sun, Q.; Huang, F.; Zuo, C. Tunable thermoelectric properties of free-standing PEDOT nanofiber film through adjusting its nanostructure. Synth. Met. 2021, 275, 116742. [Google Scholar] [CrossRef]
- Utane, R.; Mahatme, U.B.; Tidke, G.D.; Rangari, A. Effect of oxidants and dopant on morphology, crystallinity and optical absorbance of nano structural polyindole. Mater. Today Proc. 2022, 49, 2161–2167. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Lin, H.; Liu, G.; Wang, X. Three new coordination polymers based on a flexible bis(pyridyl-tetrazole): Synthesis, fluorescent and photocatalytic properties. Polyhedron 2018, 145, 101–107. [Google Scholar] [CrossRef]
- Ganiger, S.K.; Chaluvaraju, B.V.; Ananda, S.R.; Murugendrappa, M.V. Feasibility study of polypyrrole/zinc tungstate (ceramics) nano composites for D. C. conductivity and as a humidity Sensor. Mater. Today Proc. 2018, 5, 2803–2810. [Google Scholar] [CrossRef]
- An, J.; Feng, Y.; Zhao, Q.; Wang, X.; Liu, J.; Li, N. Sensor. Electrosynthesis of H2O2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. Environ. Sci. Ecotech. 2022, 11, 100170. [Google Scholar]
- Chen, Y.; Zhang, Q.; Jing, X.; Han, J.; Yu, L. Synthesis of Cu-doped polyaniline nanocomposites (nano Cu@PANI) via the H2O2-promoted oxidative polymerization of aniline with copper salt. Mater. Lett. 2019, 242, 170–173. [Google Scholar] [CrossRef]
- Duan, X.; Deng, J.; Wang, X.; Guo, J.; Liu, P. Preparation of polypyrrole nanocomposites for supercapacitor using spent battery powder as raw materials. Electrochim. Acta 2016, 210, 646–654. [Google Scholar] [CrossRef]
- Yang, S.; Yin, Q.; Lian, J.; Li, G.; Wei, Y.; Zhu, Q. Porous surface-induced growth of HCl-doped PANi flexible electrode for high performance Zn-ion batteries with convertible storage sites. Electrochim. Acta 2023, 439, 141691. [Google Scholar] [CrossRef]
- Daikh, S.; Zeggai, F.Z.; Bellil, A.; Benyoucef, A. Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: Differences between the synthesized nanocomposites. J. Phys. Chem. Solids 2018, 121, 78–84. [Google Scholar] [CrossRef]
- Bilal, S.; Begum, B.; Gul, S.; Ali-Shah, A.H. PANI/DBSA/H2SO4: A promising and highly efficient electrode material for aqueous supercapacitors. Synth. Met. 2018, 235, 1–15. [Google Scholar] [CrossRef]
- Qiu, Y.; Xie, F.; Ji, Y.; Jia, X.; Li, H.; Zhang, M. Anchoring polypyrrole on nitrogen and sulfur codoped graphene fibers to construct flexible supercapacitors. Synth. Met. 2024, 301, 117519. [Google Scholar] [CrossRef]
- Zhao, W.; He, D.W.; Wang, Y.S.; Hu, Y.; Hao, X. Effects of acid dopants on the capacitance of polyaniline by using graphene hydrogels as substrates. RSC Adv. 2015, 5, 98241–98247. [Google Scholar] [CrossRef]
- Xu, H.; Wu, X. Effects of counter-ions on the electropolymerization behaviors and properties of polyaniline. Int. J. Electrochem. Sci. 2021, 16, 211212. [Google Scholar] [CrossRef]
- Murugesan, R.; Subramanian, E. Effect of organic dopants on electrodeposition and characteristics of polyaniline under the varying influence of H2SO4 and HClO4 electrolyte media. Mater. Chem. Phys. 2003, 80, 731–739. [Google Scholar] [CrossRef]
- Gao, J.W.; Li, G.; Yao, Y.F.; Jang, J.M. Preparation and characterization of montmorillonite/polypyrrole nanocomposites by in-situ chemical polymerization. J. Macromol. Sci. B 2011, 1364, 50. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, L.; Li, C. Preparation of highly conductive polypyrrole/graphite oxide composites via in situ polymerization. J. Macromol. Sci. B 2009, 1093, 48. [Google Scholar] [CrossRef]
- Wu, T.M.; Chang, H.L.; Lin, Y.W. Synthesis and characterization of conductive polypyrrole with improved conductivity and processability. Polym. Int. 2009, 58, 1065–1070. [Google Scholar] [CrossRef]
- Porramezan, M.; Eisazadeh, H. Fabrication and characterization of polyaniline nanocomposite modified with Ag2O. Nanoparticles Compos. Part B 2011, 42, 1980–1986. [Google Scholar] [CrossRef]
- Can, M.; Uzun, S.; Pekmez, N.O. Chemical polymerization of aniline using periodic acid in acetonitrile. Synth. Met. 2009, 159, 1486–1490. [Google Scholar] [CrossRef]
- Rubinger, C.P.L.; Costa, L.C.; Esteves, A.C.C.; Barros-Timmons, A.; Martins, J.A. Martins Hopping conduction on PPy/SiO2 nanocomposites obtained via in situ emulsion polymerization. Mater. Sci. 2008, 43, 3333–3337. [Google Scholar] [CrossRef]
- Asim, N.; Radiman, S.; Yarmo, M.A. Preparation and characterization of core–shell polyaniline/V2O5 nanocomposite via microemulsion method. Mater. Lett. 2008, 62, 1044–1047. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Xu, X.; Liu, F.; Zhai, G.; Hao, J.; Li, G. Preparation of PANI-coated poly (styrene-co-styrene sulfonate) nanoparticles in microemulsion media. Colloids Surf. A Physicochem. Eng. Asp. 2009, 345, 71–74. [Google Scholar] [CrossRef]
- Balkhandia, M.; Kedia, R.; Khatak, M.; Chaudhary, N.; Patra, A. Tailoring the properties in conjugated copolymer P (EDOS-co-EDOT): Electrochemical polymerization and role of heteroatom. Electrochim. Acta 2023, 466, 143002. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, A.; Zhang, Y.; Zhao, Z.; Ye, S.; Qin, Y. Construction of hierarchical graphene/polyaniline@polyaniline electrodes by chemical and electrochemical polymerization for high-energy supercapacitors. Electrochim. Acta 2023, 454, 142414. [Google Scholar] [CrossRef]
- Li, P.; Shi, K.; Zhang, G.; Li, W.; Yu, Z.; Han, Z.; Wang, F.; Peng, Z.; Shi, H.; Zhu, X.; et al. Flexible, long cycle-life micro-supercapacitor with polypyrrole@Ag-wall interdigitated electrodes fabricated by micro-3D printing and electrochemical polymerization. J. Manuf. Process. 2023, 94, 338–347. [Google Scholar] [CrossRef]
- Masa, J.; Schilling, T.; Bron, M.; Schhmann, W. Electrochemical synthesis of metal–polypyrrole composites and their activation for electrocatalytic reduction of oxygen by thermal treatment. Electrochim. Acta 2012, 60, 410–418. [Google Scholar] [CrossRef]
- Javier, H.F.; Alejandro, A.C.; Martinez, M. Electrochemical synthesis and characterization of single-walled carbon nanotubes/polypyrrole films on transparent substrates. Electrochim. Acta 2012, 64, 1–9. [Google Scholar]
- Diaz, A.F.; Logan, J.A. Electroactive polyaniline films. J. Electroanal. Chem. 1980, 111, 111. [Google Scholar] [CrossRef]
- Ruan, C.; Chen, Y.; Wang, K.; Zhang, K.; Chen, S. Study on electrochemical performance of porous integrated PANI-Fe in supercapacitors. Ceram. Int. 2023, 49, 21755–21766. [Google Scholar] [CrossRef]
- Liu, X.X.; Zhang, L.; Li, Y.B.; Bian, L.J.; Huo, Y.Q.; Su, Z. Electrosynthesis of polyaniline/SiO2 composite at high pH in the absence of extra. Polym. Bull. 2006, 57, 825–832. [Google Scholar] [CrossRef]
- Chowdhury, A.N.; Rahman, M.R.; Islam, D.S. Electrochemical preparation and characterization of conducting copolymer/silica composite. J. Appl. Polym. Sci. 2008, 110, 808–816. [Google Scholar] [CrossRef]
- Borole, D.D.; Kapadi, U.R.; Kumbhar, P.P.; Hundiwale, D.G. Influence of inorganic and organic supporting electrolytes on the electrochemical synthesis of polyaniline, poly(o-toluidine) and their copolymer thin films. Mater. Lett. 2002, 56, 685–691. [Google Scholar] [CrossRef]
- Stafström, S.; Brédas, J.L.; Epstein, A.J.; Woo, H.S.; Tanner, D.B.; Huang, W.S.; MacDiarmid, A.G. Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. Phys. Rev. Lett. 1987, 59, 1464–1467. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, F. Synthesis and characterization of polyaniline. Acta. Polym. Sin. 1988, 2, 120–124. [Google Scholar]
- Aoki, K.; Chen, J.Y.; Ke, Q.; Armes, S.P.; Randall, D.P. Redox Reactions of polyaniline-coated latex suspensions. Langmuir 2003, 19, 5511–5516. [Google Scholar] [CrossRef]
- Su, N.; Gu, P.; Zhao, J. Preparation and properties of polyaniline–anionic spherical polyelectrolyte brushes nanocomposite. Micro. Nano. Lett. 2014, 0451, 175–178. [Google Scholar] [CrossRef]
- Korovin, A.N.; Sergeyev, V.G.; Pyshkina, O.A.; Hanske, C.; Fery, A.; Wittemann, A.; Tsarkova, L. Nanoreactor-Assisted Polymerization toward Stable Dispersions of Conductive Composite Particles. Macromol. Rapid Commun. 2011, 32, 462. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, X.; Huang, X.; Li, H.; Huang, C. Preparation of conductive polypyrrole composite particles based on spherical polyelectrolyte brushes. Mater. Express 2015, 5, 56–62. [Google Scholar] [CrossRef]
- Basili, T.; Kalyon, H.Y.; Gencten, M.; Macit, M.; Sahin, Y. High performance supercapacitive behaviors of oximes in a poly (aniline-co-pyrrole) based conducting polymer structure. New J. Chem. 2023, 47, 691–707. [Google Scholar] [CrossRef]
- Lv, D.; Shen, W.; Chen, W.; Wang, Y.; Tan, R.; Zhao, M.; Song, W. Emerging poly (aniline co-pyrrole) nanocomposites by in-situ polymerized for high-performance flexible ammonia sensor. Sens. Actuators A Phys. 2023, 349, 114078. [Google Scholar] [CrossRef]
- Liu, B.; Sun, H.; Peng, T.; Zhi, X. 3D core-shell poly (aniline-co-pyrrole)/reduced graphene oxide composite for supercapacitor performance. Diam. Relat. Mater. 2021, 118, 108498. [Google Scholar] [CrossRef]
- Moyseowicz, A.; González, Z.; Menéndez, R.; Gryglewicz, G. Three-dimensional poly(aniline-co-pyrrole)/thermally reduced graphene oxide composite as a binder-free electrode for high-performance supercapacitors. Compos. Part B Eng. 2018, 145, 232–239. [Google Scholar] [CrossRef]
- Fard, L.A.; Ojani, R.; Raoof, J.B.; Zare, E.N.; Lakouraj, M.M. Poly (pyrrole-co-aniline) hollow nanosphere supported Pd nanoflowers as high-performance catalyst for methanol electrooxidation in alkaline media. Energy 2017, 127, 419–427. [Google Scholar] [CrossRef]
- Huang, Y.; Zhan, Z.; Zhang, X.; Li, H.; Huang, C. An anionic spherical polyelectrolyte brushes-driven approach to synthesize conductive composites. J. Nanopart. Res. 2015, 17, 334. [Google Scholar] [CrossRef]
- Su, W.P.; Schrieffer, J.R.; Heeger, J. Solitons in polyacetylene. Phys. Rev. Lett. 1979, 42, 1698. [Google Scholar] [CrossRef]
- Carrasco, P.M.; Grande, H.J.; Cortazar, M.; Alberdi, J.M.; Areizaga, J.; Pomposo, J.A. Structure-conductivity relationships in chemical polypyrroles of low, medium and high conductivity. Synth. Met. 2006, 156, 420. [Google Scholar] [CrossRef]
- Baughman, R.; Shacklelette, L. Conductivity as a function of conjugation length: Theory and experiment for conducting polymer complexes. Phys. Rev. B 1989, 39, 5872. [Google Scholar] [CrossRef] [PubMed]
- Nicho, M.E.; Hu, H. Fourier transform infrared spectroscopy studies of polypyrrole composite coatings. Sol. Energ. Mat. Sol. C 2000, 63, 423–435. [Google Scholar] [CrossRef]
- Hatchett, D.W.; Josowicz, M.; Janata, J. Acid doping of polyaniline: Spectroscopic and electrochemical studies. J. Phys. Chem. B 1999, 103, 10992–10998. [Google Scholar] [CrossRef]
- Shen, Y.; Wan, M. Soluble conductive polypyrrole synthesized by in situ doping with b-naphthalene sulphonic acid. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 3689–3695. [Google Scholar] [CrossRef]
- Malinauskas, A.; Holze, R. In situ UV-Vis spectroelectrochemical study of polyaniline degradation. J. Appl. Polym. Sci. 1999, 73, 287–294. [Google Scholar] [CrossRef]
- Pruneanu, S.; Veress, E.; Marian, I.; Oniciu, L. Characterization of polyaniline by cyclic voltammetry and UV-Vis absorption spectroscopy. J. Mater. Sci. 1999, 34, 2733–2739. [Google Scholar] [CrossRef]
- Silva, C.H.B.; Ferreira, D.C.; Constantino, V.R.L.; Temperini, M.L.A. Temperini characterization of the products of aniline peroxydisulfate oligo/polymerization in media with different pH by resonance Raman spectroscopy at 413.1 and 1064 nm excitation wavelengths. J. Raman Spectrosc. 2011, 42, 1653–1659. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lim, H.; Choi, G.R.; Kim, J.D.; Suh, E.K.; Lee, S.K. Metal-to-insulating transition of single polyaniline (PANI) nanowire: A dedoping effect. J. Phys. Chem. C 2010, 114, 11939. [Google Scholar] [CrossRef]
- Lin, W.W.; Nan, J.Y.; Tian, Y.H.; Liang, H.J. XPS study of competing doping behavior of polyaniline. Chin. J. Chem. Phys. 2000, 13, 592. [Google Scholar]
- Su, N.; Li, H.B.; Yuan, S.J.; Yi, S.P.; Yin, E.Q. Synthesis and characterization of polypyrrole doped with anionic spherical polyelectrolyte brushes. Express Polym. Lett. 2012, 6, 697–705. [Google Scholar] [CrossRef]
- Fielding, L.A.; Hillier, J.K.; Burchell, M.J.; Armes, S.P. Space science applications for conducting polymer particles: Synthetic mimics for cosmic dust and micrometeorites. Chem. Commun. 2015, 51, 16886–16899. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Luo, L.; Zhu, J.; Qin, H.; Liu, P.; Sun, Z.; Lei, Y.; Jiang, M. A hybrid lithium sulfonated polyoxadiazole derived single-ion conducting gel polymer electrolyte enabled effective suppression of dendritic lithium growth. Chin. Chem. Lett. 2022, 33, 1025–1031. [Google Scholar] [CrossRef]
- Zhu, X.; Han, X.; Guo, R.; Yuan, P.; Dang, L.; Liu, Z.; Lei, Z. Vapor-phase polymerization of fibrous PEDOT on carbon fibers film for fast pseudocapacitive energy storage. Appl. Surf. Sci. 2022, 597, 153684. [Google Scholar] [CrossRef]
- Li, J.; Que, T.; Huang, J. Synthesis and characterization of a novel tube-in-tube nanostructured PPy/MnO2/CNTs composite for supercapacitor. Mater. Res. Bull. 2013, 48, 747–751. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, C.; Li, Z.; Zhou, D.; Chen, W.; Xue, G. Synthesis of ordered spiral and ring-like polypyrrole nanowires in cetyltrimethylammounium bromide crystalline suspension. Colloid Polym. Sci. 2009, 287, 1325–1330. [Google Scholar] [CrossRef]
- Mahajan, C.M.; Sawant, S. Wet chemical synthesis of entangled nano-fibrous conducting polyaniline (PANI) mesh: Effect of heating and stirring. J. Wuhan Univ. Technol. 2020, 34, 1463–1469. [Google Scholar] [CrossRef]
- Yang, S.M.; Chen, K.H.; Yang, Y.F. Synthesis of polyaniline nanotubes in the channels of anodic alumina membrane. Synth. Met. 2005, 152, 65–68. [Google Scholar] [CrossRef]
- Su, N. Improving electrical conductivity, thermal stability, and solubility of polyaniline-polypyrrole nanocomposite by doping with anionic spherical polyelectrolyte brushes. Nanoscale Res. Lett. 2015, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Cheah, K.; Forsyth, M.; Truong, V.T. An XRD/XPS approach to structural change in conducting PPy. Synth. Met. 1999, 101, 19. [Google Scholar] [CrossRef]
- Aliha, H.M.; Khodadadi, A.A.; Yadollah, M.; Lotfollahi, M.N. Novel SnO2/PAni nanocomposites for selective detection of ammonia at room temperature. Appl. Surf. Sci. 2023, 615, 156381. [Google Scholar] [CrossRef]
- Ozbay, S.; Korkut, I.; Erden, F. The relationships between surface and electrical properties of CSA doped PANI films. Colloid Surf. A 2023, 667, 131381. [Google Scholar] [CrossRef]
- Pruneanu, S.; Graupner, W.; Oniciu, L.; Brie, M.; Turcu, R. Electrochemical and X-ray diffraction studies on polypyrrole films. Mater. Chem. Phys. 1996, 46, 55–60. [Google Scholar] [CrossRef]
- Józefowiczt, M.E.; Epstein, A.J.; Pouget, J.P.; Masters, J.G.; Ray, A.; Sun, Y.; Tang, X.; Macdiarmid, A.G.J. X-ray structure of polyaniline. Macromolecules 1991, 24, 723–726. [Google Scholar]
- Thiéblemont, J.C.; Brun, A.; Marty, J.; Planche, M.F.; Calo, P. Thermal analysis of polypyrrole oxidation in air. Polymer 1995, 36, 1605–1610. [Google Scholar] [CrossRef]
- Jain, A.; Nabeel, A.N.; Bhagwat, S.; Kumar, R.; Sharma, S.; Kozak, D.; Hunjet, A.; Kumar, A.; Singh, R. Fabrication of polypyrrole gas sensor for detection of NH3 using an oxidizing agent and pyrrole combinations: Studies and characterizations. Heliyon 2023, 9, 17611. [Google Scholar] [CrossRef]
- Guo, X.; Yao, J.; Ji, F.; Wang, R.; Hao, L. UV curable PUA ink with polymerizable surfactant-enhanced Ag@PPy for fabricating flexible and durable conductive coating on the surface of cotton fabric. Prog. Org. Coat 2023, 174, 107239. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X. Heat storage and conductive properties of the polypyrrole aerogel-based new shape-stabilized phase change composite. Sol. Energy 2023, 252, 380–390. [Google Scholar] [CrossRef]
- Somboonsub, B.; Srisuwan, S.; Invernale, M.A.; Thongyai, S.; Praserthdam, P.; Scola, D.A.; Sotzing, G.A. Comparison of the thermally stable conducting polymers PEDOT, PANi, and PPy using sulfonated poly(imide) templates. Polymer 2010, 51, 4472–4476. [Google Scholar] [CrossRef]
- Kim, S.Y.; Palmore, G.T.R. Conductive hydrogel for bio-electrocatalytic reduction of dioxygen. Electrochem. Commun. 2012, 23, 90–93. [Google Scholar] [CrossRef]
- Irfan, M.; Zang, Y.; Yang, Z.; Zhang, W. Hydrophobicity of 2-((8-hydroxyoctyl) oxy) ethyl-sulfanetrione in conducting solid polymer electrolyte boosting the electrochemical performance of lithium metal batteries. J. Power Sources 2023, 576, 233206. [Google Scholar] [CrossRef]
- Cui, C.; Wu, G.; Yang, H.; She, S.; Shen, J.; Zhou, B.; Zhang, Z. Synthesis, characterization and electrochemical impedance spectroscopy of VOx-NTs/PPy composites. Solid State Commun. 2010, 150, 1807–1811. [Google Scholar] [CrossRef]
- Ngaboyamahina, E.; Cachet, H.; Pailleret, A.; Sutter, E.M.M. Electrochemical impedance spectroscopy characterization of conducting polymer/TiO2 nanotube array hybrid structures. Electroanal. Chem. 2015, 737, 37–45. [Google Scholar] [CrossRef]
- Hassanzadeh, R.; Sabzi, R.E.; Faraji, M. Polypyrrole/MoO3 composite as an appropriate anode of microbial fuel cell in both pulsed and permanent polarization with excellent performance. J. Power Sources 2024, 589, 233723. [Google Scholar] [CrossRef]
- Moon, J.; Diaz, V.; Patel, D.; Underwood, R.; Warren, R. Dissolvable conducting polymer supercapacitor for transient electronics. Org. Electron. 2022, 101, 106412. [Google Scholar] [CrossRef]
- Gosh, M.A.; Barman, A.K.; Meikap, S.K.D.; Chatterjee, S. Hopping transport in HCl doped conducting polyaniline. Phys. Lett. A 1999, 260, 138–148. [Google Scholar] [CrossRef]
- Jaroslav, S.; Pavel, K.; Aubrey, D.J. The formantion of polyaniline and the nature of its structures. Polymer 1996, 37, 367–369. [Google Scholar]
- Su, N. Polyaniline-doped spherical polyelectrolyte brush nanocomposites with enhanced electrical conductivity, thermal stability, and solubility property. Polymers 2015, 7, 1599–1616. [Google Scholar] [CrossRef]
- Huang, Y.; Su, N.; Zhang, X.; Zhao, J.; Li, H.; Liu, X.; Zhang, H. Controllable synthesis and characterization of poly(aniline-co-pyrrole) using anionic spherical polyelectrolyte brushes as dopant and template. Polym. Compos. 2014, 35, 1858–1863. [Google Scholar] [CrossRef]
- Liu, D.Y.; Sui, G.X.; Bhattacharyya, D.B. Synthesis and characterisation of nanocellulose-based polyaniline conducting films. Compos. Sci. Technol. 2014, 99, 31–36. [Google Scholar] [CrossRef]
- Wang, J.J.; Sun, L.; Mpoukouvalas, K.; Fassbender, B.; Bonaccurso, E.; Brunklaus, G.; Muehlebach, A.; Rime, F.; Butt, H.J.; Wegner, G. Facile Synthesis of Spherical polyelectrolyte brushes as carriers for conducting polymers to be used in plastic electronics. Macromolecules 2009, 210, 1504. [Google Scholar] [CrossRef]
- Chen, Y.; Lyu, S.; Han, S.; Chen, Z.; Wang, W.; Wang, S. Nanocellulose/polypyrrole aerogel electrodes with higher conductivity via adding vapor grown nano-carbon fibers as conducting networks for supercapacitor application. RSC Adv. 2018, 8, 39918–39928. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.P.; Zhang, Y.H.; Liu, C.B.; Cui, H.Z. Polydopamine wrapped polyaniline nanosheets: Synthesis and anticorrosion application for waterborne epoxy coatings. J. Mater. Sci. Technol. 2024, 176, 155–166. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, K.; Yin, Y.; Geng, C.; Zhou, Q. Shape memory self-healing coating based on photothermal effect of PPy@PDA nanoparticles. Synth. Met. 2021, 280, 116869. [Google Scholar] [CrossRef]
- Khodarahmian, K.; Ghiasvand, A.; Barkhordari, A. Exploring the optimal electropolymerization strategy for the preparation of solid-phase microextraction fibers using pyrrole-dopamine copolymers. J. Chromatogr. A 2024, 1714, 464562. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, N. Advances and Prospects in the Study of Spherical Polyelectrolyte Brushes as a Dopant for Conducting Polymers. Molecules 2024, 29, 1315. https://doi.org/10.3390/molecules29061315
Su N. Advances and Prospects in the Study of Spherical Polyelectrolyte Brushes as a Dopant for Conducting Polymers. Molecules. 2024; 29(6):1315. https://doi.org/10.3390/molecules29061315
Chicago/Turabian StyleSu, Na. 2024. "Advances and Prospects in the Study of Spherical Polyelectrolyte Brushes as a Dopant for Conducting Polymers" Molecules 29, no. 6: 1315. https://doi.org/10.3390/molecules29061315
APA StyleSu, N. (2024). Advances and Prospects in the Study of Spherical Polyelectrolyte Brushes as a Dopant for Conducting Polymers. Molecules, 29(6), 1315. https://doi.org/10.3390/molecules29061315