Comprehensive Two-Dimensional Gas Chromatography with a TOF MS Detector—An Effective Tool to Trace the Signature of Grape Varieties
Abstract
:1. Introduction
2. Results
2.1. Oenological Parameters of Grape Samples
2.2. Optimization of HS-SPME-GC × GC-TOFMS Methodology
2.3. Application of HS-SPME-GC × GC-TOFMS Methodology for Analysis of Varietal Volatile Composition
2.4. Linear Discriminant Analysis (LDA)
3. Materials and Methods
3.1. Samples
3.2. HS-SPME Sampling Conditions
3.3. GC × GC-TOFMS Analysis
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Seaweed Foliar Applications at Two Dosages to Tempranillo Blanco (Vitis vinifera L.) Grapevines in Two Seasons: Effects on Grape and Wine Volatile Composition. Food Res. Int. 2020, 130, 108918. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Study of the Terpene Profile at Harvest and during Berry Development of Vitis vinifera L. Aromatic Varieties Aleatico, Brachetto, Malvasia Di Candia Aromatica and Moscato Bianco. J. Sci. Food Agric. 2017, 97, 2898–2907. [Google Scholar] [CrossRef] [PubMed]
- Könen, P.P.; Wüst, M. Analysis of Sesquiterpene Hydrocarbons in Grape Berry Exocarp (Vitis vinifera L.) Using in Vivo-Labeling and Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry (GC × GC − MS). Beilstein J. Org. Chem. 2019, 15, 1945–1961. [Google Scholar] [CrossRef]
- Perestrelo, R.; Barros, A.S.; Rocha, S.M.; Câmara, J.S. Optimization of Solid-Phase Microextraction Combined with Gas Chromatography–Mass Spectrometry Based Methodology to Establish the Global Volatile Signature in Pulp and Skin of Vitis vinifera L. Grape Varieties. Talanta 2011, 85, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Slegers, A.; Angers, P.; Ouellet, É.; Truchon, T.; Pedneault, K. Volatile Compounds from Grape Skin, Juice and Wine from Five Interspecific Hybrid Grape Cultivars Grown in Québec (Canada) for Wine Production. Molecules 2015, 20, 10980–11016. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The Actual and Potential Aroma of Winemaking Grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, M.J.; Costa Freitas, A.M.; Laureano, O.; Borsa, D.; Di Stefano, R. Aroma Compounds in Varietal Wines from Alentejo, Portugal. J. Food Compos. Anal. 2007, 20, 375–390. [Google Scholar] [CrossRef]
- Black, C.A.; Parker, M.; Siebert, T.E.; Capone, D.L.; Francis, I.L. Terpenoids and Their Role in Wine Flavour: Recent Advances: Terpenoids: Role in Wine Flavour. Aust. J. Grape Wine Res. 2015, 21, 582–600. [Google Scholar] [CrossRef]
- Petronilho, S.; Coimbra, M.A.; Rocha, S.M. A Critical Review on Extraction Techniques and Gas Chromatography Based Determination of Grapevine Derived Sesquiterpenes. Anal. Chim. Acta 2014, 846, 8–35. [Google Scholar] [CrossRef]
- Cincotta, F.; Verzera, A.; Tripodi, G.; Condurso, C. Determination of Sesquiterpenes in Wines by HS-SPME Coupled with GC-MS. Chromatography 2015, 2, 410–421. [Google Scholar] [CrossRef]
- Li, Z.; Howell, K.; Fang, Z.; Zhang, P. Sesquiterpenes in Grapes and Wines: Occurrence, Biosynthesis, Functionality, and Influence of Winemaking Processes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 247–281. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Qian, M.C. Development of C13-Norisoprenoids, Carotenoids and Other Volatile Compounds in Vitis vinifera L. Cv. Pinot Noir Grapes. Food Chem. 2016, 192, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Slaghenaufi, D.; Vanzo, L.; Luzzini, G.; Arapitsas, P.; Marangon, M.; Curioni, A.; Mattivi, F.; Piombino, P.; Moio, L.; Versari, A.; et al. Monoterpenoids and Norisoprenoids in Italian Red Wines: This Article Is Published in Cooperation with Macrowine 2021, 23–30 June 2021. OENO One 2022, 56, 185–193. [Google Scholar] [CrossRef]
- Vinholes, J.; Coimbra, M.A.; Rocha, S.M. Rapid Tool for Assessment of C13 Norisoprenoids in Wines. J. Chromatogr. A 2009, 1216, 8398–8403. [Google Scholar] [CrossRef] [PubMed]
- Ribereau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology. In The Chemistry of Wine and Stabilization Treatments, 2nd ed.; John and Wiley & Sons: Hoboken, NJ, USA; Wiley: Hoboken, NJ, USA, 2006; Volume 2, pp. 205–231. [Google Scholar]
- Liang, Z.; Fang, Z.; Pai, A.; Luo, J.; Gan, R.; Gao, Y.; Lu, J.; Zhang, P. Glycosidically Bound Aroma Precursors in Fruits: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 215–243. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Destrac-Irvine, A.; Gowdy, M.; Lytra, G.; Marchal, A.; Marchand, S.; Plantevin, M.; Poitou, X.; et al. Aromatic Maturity Is a Cornerstone of Terroir Expression in Red Wine: This Article Is Published in Cooperation with Terclim 2022 (XIVth International Terroir Congress and 2nd ClimWine Symposium), 3–8 July 2022, Bordeaux, France. OENO One 2022, 56, 335–351. [Google Scholar] [CrossRef]
- Rocha, S.M.; Coelho, E.; Zrostlíková, J.; Delgadillo, I.; Coimbra, M.A. Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry of Monoterpenoids as a Powerful Tool for Grape Origin Traceability. J. Chromatogr. A 2007, 1161, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Marín-San Román, S.; Rubio-Bretón, P.; Pérez-Álvarez, E.P.; Garde-Cerdán, T. Advancement in Analytical Techniques for the Extraction of Grape and Wine Volatile Compounds. Food Res. Int. 2020, 137, 109712. [Google Scholar] [CrossRef]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-Phase Extraction of Organic Compounds: A Critical Review (Part I). TrAC Trends Anal. Chem. 2016, 80, 641–654. [Google Scholar] [CrossRef]
- Panighel, A.; Flamini, R. Solid Phase Extraction and Solid Phase Microextraction in Grape and Wine Volatile Compounds Analysis. Sample Prep. 2015, 2, 55–65. [Google Scholar] [CrossRef]
- Prosen, H.; Zupančič-Kralj, L. Solid-Phase Microextraction. TrAC Trends Anal. Chem. 1999, 18, 272–282. [Google Scholar] [CrossRef]
- Lancioni, C.; Castells, C.; Candal, R.; Tascon, M. Headspace Solid-Phase Microextraction: Fundamentals and Recent Advances. Adv. Sample Prep. 2022, 3, 100035. [Google Scholar] [CrossRef]
- Seeley, J.V. Recent Advances in Flow-Controlled Multidimensional Gas Chromatography. J. Chromatogr. A 2012, 1255, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Marriott, P.J.; Chin, S.-T.; Maikhunthod, B.; Schmarr, H.-G.; Bieri, S. Multidimensional Gas Chromatography. TrAC Trends Anal. Chem. 2012, 34, 1–21. [Google Scholar] [CrossRef]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Alcaraz Zini, C. Characterization of the Volatile Profile of Brazilian Merlot Wines through Comprehensive Two Dimensional Gas Chromatography Time-of-Flight Mass Spectrometric Detection. J. Chromatogr. A 2012, 1226, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Boss, P.K.; Heymann, H.; Solomon, P.S.; Trengove, R.D. Development of a Sensitive Non-Targeted Method for Characterizing the Wine Volatile Profile Using Headspace Solid-Phase Microextraction Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2011, 1218, 504–517. [Google Scholar] [CrossRef]
- Bjerk, T.R.; Machado, M.E.; Caramão, E.B.; Tranchida, P.Q.; Mondello, L.; Zini, C.A. Moduladores de Fluxo Para Cromatografia Gasosa Bidimensional Abrangente. Sci. Chromatogr. 2017, 9, 101–116. [Google Scholar] [CrossRef]
- Tranchida, P.Q.; Salivo, S.; Franchina, F.A.; Mondello, L. Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography Combined with a High-Resolution Time-of-Flight Mass Spectrometer: A Proof-of-Principle Study. Anal. Chem. 2015, 87, 2925–2930. [Google Scholar] [CrossRef]
- Duhamel, C.; Cardinael, P.; Peulon-Agasse, V.; Firor, R.; Pascaud, L.; Semard-Jousset, G.; Giusti, P.; Livadaris, V. Comparison of Cryogenic and Differential Flow (Forward and Reverse Fill/Flush) Modulators and Applications to the Analysis of Heavy Petroleum Cuts by High-Temperature Comprehensive Gas Chromatography. J. Chromatogr. A 2015, 1387, 95–103. [Google Scholar] [CrossRef]
- Amaral, M.S.S.; Nolvachai, Y.; Marriott, P.J. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal. Chem. 2020, 92, 85–104. [Google Scholar] [CrossRef] [PubMed]
- Boswell, H.A.; Edwards, M.; Górecki, T. Comparison of Thermal and Flow-Based Modulation in Comprehensive Two-Dimensional Gas Chromatography—Time-of-Flight Mass Spectrometry (GC × GC-TOFMS) for the Analysis of Base Oils. Separations 2020, 7, 70. [Google Scholar] [CrossRef]
- Weldegergis, B.T.; Crouch, A.M.; Górecki, T.; De Villiers, A. Solid Phase Extraction in Combination with Comprehensive Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry for the Detailed Investigation of Volatiles in South African Red Wines. Anal. Chim. Acta 2011, 701, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Carlin, S.; Vrhovsek, U.; Franceschi, P.; Lotti, C.; Bontempo, L.; Camin, F.; Toubiana, D.; Zottele, F.; Toller, G.; Fait, A.; et al. Regional Features of Northern Italian Sparkling Wines, Identified Using Solid-Phase Micro Extraction and Comprehensive Two-Dimensional Gas Chromatography Coupled with Time-of-Flight Mass Spectrometry. Food Chem. 2016, 208, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Redondo, J.M.; Ruiz-Moreno, M.J.; Puertas, B.; Cantos-Villar, E.; Moreno-Rojas, J.M. Multivariate Optimization of Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry for the Analysis of Terpenoids in Sparkling Wines. Talanta 2020, 208, 120483. [Google Scholar] [CrossRef] [PubMed]
- Rebière, L.; Clark, A.C.; Schmidtke, L.M.; Prenzler, P.D.; Scollary, G.R. A Robust Method for Quantification of Volatile Compounds within and between Vintages Using Headspace-Solid-Phase Micro-Extraction Coupled with GC–MS—Application on Semillon Wines. Anal. Chim. Acta 2010, 660, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Duan, C.-Q.; Shi, Y.; Zhu, B.-Q.; Javed, H.U.; Wang, J. Free and Glycosidically Bound Volatile Compounds in Sun-Dried Raisins Made from Different Fragrance Intensities Grape Varieties Using a Validated HS-SPME with GC–MS Method. Food Chem. 2017, 228, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Peña, R.M.; Barciela, J.; Herrero, C.; García-Martín, S. Optimization of Solid-phase Microextraction Methods for GC-MS Determination of Terpenes in Wine. J. Sci. Food Agric. 2005, 85, 1227–1234. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N.; et al. Recent Advancements in Understanding the Terroir Effect on Aromas in Grapes and Wines: This Article Is Published in Cooperation with the XIIIth International Terroir Congress 17–18 November 2020, Adelaide, Australia. Guests Editors: Cassandra Collins and Roberta De Bei. OENO One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Petronilho, S.; Rudnitskaya, A.; Coimbra, M.A.; Rocha, S.M. Comprehensive Study of Variety Oenological Potential Using Statistic Tools for the Efficient Use of Non-Renewable Resources. Appl. Sci. 2021, 11, 4003. [Google Scholar] [CrossRef]
- Díaz-Fernández, Á.; Díaz-Losada, E.; Cortés-Diéguez, S. Approach to the Chemotaxonomic Characterization of Traditional Cultivation Grape Varieties through Their Varietal Aroma Profile. Foods 2022, 11, 1427. [Google Scholar] [CrossRef]
- Cabrita, M.J.; Freitas, A.M.C.; Laureano, O.; Stefano, R.D. Glycosidic Aroma Compounds of Some Portuguese Grape Cultivars. J. Sci. Food Agric. 2006, 86, 922–931. [Google Scholar] [CrossRef]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C. Differentiation of Wines According to Grape Variety Using Multivariate Analysis of Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometric Detection Data. Food Chem. 2013, 141, 3897–3905. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Pati, S.; Palombi, L.; Grieco, F.; Losito, I. Use of Multivariate Statistics in the Processing of Data on Wine Volatile Compounds Obtained by HS-SPME-GC-MS. Foods 2022, 11, 910. [Google Scholar] [CrossRef] [PubMed]
- OIV. Available online: http://www.oiv.int/en/normes-etdocumentstechniques/methodes-danalyse/recueil-des-methodesinternationales-danalyse-des-vins-et-des-mouts-2-vol (accessed on 18 December 2023).
Year | Potential Alcohol Degree (% vol) | pH | Total Acidity (g L−1) 1 | |
---|---|---|---|---|
Trinc | 2021 | 12.9 | 3.17 | 5.51 |
2022 | 13.0 | 4.70 | 3.60 | |
CS | 2021 | 13.1 | 3.11 | 7.82 |
2022 | 13.2 | 3.40 | 6.72 | |
TB | 2021 | 13.6 | 3.66 | 4.74 |
2022 | 14.3 | 3.59 | 4.27 | |
Sy | 2021 | 13.6 | 3.43 | 4.89 |
2022 | 13.3 | 3.40 | 5.84 | |
Cast | 2021 | 12.9 | 3.31 | 5.35 |
2022 | 13.0 | 3.66 | 5.44 |
Compounds | 1Dtr (min) a | 2Dtr (min) b | LRI calc c | LRI lit d | Varieties 2021 | Varieties 2022 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trinc | CS | TB | Sy | Cast | Trinc | CS | TB | Sy | Cast | |||||
Monoterpenic Compounds | ||||||||||||||
β-Myrcene e | 19.32 | 3.00 | 986 | 992 | nd | nd | 6.83 ± 3.96 | nd | nd | nd | nd | 6.33 ± 4.09 | nd | nd |
p-Cymene e | 21.31 | 3.34 | 1024 | 1031 | 2.31 ± 0.42 | 3.69 ± 0.24 | 2.16 ± 0.28 | 1.60 ± 0.33 | 4.19 ± 0.15 | 1.06 ± 0.43 | 2.74 ± 0.45 | 3.81 ± 1.51 | 1.27 ± 0.12 | 1.76 ± 0.64 |
d-Limonene e | 21.50 | 3.12 | 1027 | 1035 | 15.01 ± 6.03 | 19.55 ± 14.55 | 25.25 ± 2.51 | 15.62 ± 3.80 | 45.13 ± 1.52 | 4.45 ± 0.89 | 15.71 ± 6.89 | 17.59 ± 17.36 | 10.91 ± 5.08 | 10.94 ± 0.29 |
Ocimene e | 21.60 | 3.17 | 1037 | 1037 | 9.78 ± 4.52 | nd | nd | nd | 5.63 ± 0.35 | 10.49 ± 1.53 | nd | nd | nd | 18.47 ± 2.54 |
γ-Terpinene e | 23.03 | 3.19 | 1054 | 1065 | nd | 1.52 ± 0.35 | 1.03 ± 0.28 | 0.89 ± 0.60 | 2.64 ± 0.07 | nd | nd | 1.30 ± 0.30 | nd | nd |
Dihydromyrcenol | 23.78 | 3.24 | 1066 | 1080 | nd | nd | 1.43 ± 0.22 | nd | nd | nd | nd | 2.67 ± 0.87 | nd | 3.85 ± 0.21 |
α-Terpinolene e | 24.39 | 3.23 | 1082 | 1092 | nd | 0.91 ± 0.26 | 0.80 ± 0.46 | 0.64 ± 0.07 | 0.93 ± 0.57 | nd | nd | 0.95 ± 0.52 | nd | nd |
p-Cymenene | 24.87 | 3.53 | 1076 | 1101 | 1.88 ± 0.38 | 7.62 ± 5.74 | 1.40 ± 0.07 | 1.33 ± 0.13 | 2.11 ± 0.07 | 1.05 ± 0.29 | 1.30 ± 0.68 | 2.68 ± 0.47 | 2.03 ± 0.18 | 2.31 ± 0.81 |
Tetrahydrolinalool | 25.09 | 3.06 | 1091 | 1106 | nd | 0.65 ± 0.20 | 0.79 ± 0.19 | 0.59 ± 0.07 | 0.67 ± 0.14 | 1.06 ± 0.16 | 1.97 ± 1.09 | 0.66 ± 0.21 | 1.03 ± 0.21 | |
Linalool e | 25.17 | 3.33 | 1086 | 1107 | 2.83 ± 0.32 | 1.86 ± 0.51 | 3.28 ± 0.43 | 2.72 ± 0.30 | 3.02 ± 0.36 | 1.24 ± 0.23 | 2.99 ± 0.26 | 6.07 ± 1.91 | 3.78 ± 0.60 | 3.39 ± 0.32 |
Hotrienol | 25.42 | 3.41 | 1107 | 1112 | nd | nd | 0.40 ± 0.17 | nd | nd | nd | nd | 3.11 ± 3.56 | nd | nd |
γ-Terpineol | 26.58 | 3.22 | 1170 | 1135 | nd | nd | 1.25 ± 0.57 | 0.66 ± 0.10 | 0.83 ± 0.08 | nd | nd | 2.11 ± 0.94 | nd | nd |
Menthol e | 29.37 | 3.32 | 1169 | 1191 | nd | nd | 0.72 ± 0.47 | nd | 1.20 ± 0.26 | nd | nd | 1.71 ± 1.16 | nd | 3.09 ± 0.37 |
α-Terpineol e | 30.25 | 3.56 | 1182 | 1209 | nd | 0.90 ± 0.14 | 0.28 ± 0.08 | 0.65 ± 0.19 | 0.50 ± 0.16 | nd | nd | 0.78 ± 0.23 | 0.63 ± 0.03 | nd |
β-Citronellol e | 31.50 | 3.44 | 1214 | 1236 | nd | nd | 0.54 ± 0.20 | nd | nd | nd | nd | 0.82 ± 0.36 | nd | nd |
Nerol e | 32.66 | 3.54 | 1218 | 1261 | nd | 0.64 ± 0.09 | 4.62 ± 0.36 | nd | nd | nd | nd | 5.78 ± 3.20 | 2.92 ± 0.37 | nd |
cis-Myrtanol | 34.42 | 3.43 | 1261 | 1299 | 2.05 ± 0.64 | 1.42 ± 0.50 | 2.90 ± 1.13 | 2.17 ± 0.51 | 2.48 ± 0.58 | 1.97 ± 0.11 | nd | nd | 2.90 ± 1.13 | 3.40 ± 0.47 |
Total | 33.86 ± 12.29 | 38.76 ± 22.56 | 53.67 ± 11.39 | 26.88 ± 6.12 | 69.34 ± 4.32 | 20.27 ± 3.48 | 23.80 ± 8.44 | 57.69 ± 37.57 | 22.20 ± 6.59 | 48.23 ± 5.58 | ||||
Sesquiterpenic compounds | ||||||||||||||
δ-Elemene | 36.42 | 3.05 | 1343 | 1343 | nd | 1.13 ± 0.18 | nd | 1.37 ± 0.16 | nd | 0.72 ± 0.11 | 1.87 ± 0.44 | nd | 1.99 ± 0.22 | 1.38 ± 0.66 |
Compounds | 1Dtr (min) a | 2Dtr (min) b | LRI calc c | LRI lit d | Varieties 2021 | Varieties 2022 | ||||||||
Trinc | CS | TB | Sy | Cast | Trinc | CS | TB | Sy | Cast | |||||
α-Cubebene | 36.94 | 3.02 | 1358 | 1354 | nd | 0.99 ± 0.13 | nd | 1.38 ± 0.15 | 0.40 ± 0.02 | 0.55 ± 0.03 | 1.85 ± 0.23 | nd | 1.47 ± 0.60 | 0.82 ± 0.11 |
α-Ylangene | 38.00 | 3.10 | 1376 | 1378 | nd | nd | nd | 0.72 ± 0.11 | nd | 0.98 ± 0.37 | nd | 1.32 ± 0.75 | 1.52 ± 0.33 | nd |
α-Copaene | 38.33 | 3.10 | 1380 | 1385 | 4.24 ± 0.35 | 4.96 ± 0.83 | 2.19 ± 1.10 | 3.74 ± 2.11 | 1.53 ± 0.06 | 5.80 ± 0.31 | 7.60 ± 0.65 | 1.88 ± 0.33 | 4.79 ± 0.56 | 2.83 ± 0.33 |
β-Elemene | 38.94 | 3.17 | 1388 | 1399 | nd | nd | nd | 0.50 ± 0.12 | nd | nd | nd | nd | 0.90 ± 0.40 | nd |
Isocaryophyllene | 39.67 | 3.26 | 1403 | 1417 | 0.61 ± 0.02 | nd | nd | nd | nd | 0.40 ± 0.19 | nd | nd | nd | nd |
α-Gurjunene | 39.75 | 3.18 | 1406 | 1419 | 1.37 ± 0.14 | 1.44 ± 0.20 | 0.95 ± 0.36 | 1.19 ± 0.13 | 0.49 ± 0.12 | 1.70 ± 0.14 | 1.95 ± 0.39 | 1.10 ± 0.36 | 1.25 ± 0.21 | 0.77 ± 0.04 |
Longifolene | 40.08 | 3.25 | 1409 | 1427 | 0.99 ± 0.75 | 0.61 ± 0.09 | 0.64 ± 0.31 | 0.72 ± 0.04 | nd | 0.57 ± 0.13 | 0.93 ± 0.21 | 1.18 ± 0.93 | 0.86 ± 0.21 | 1.09 ± 0.40 |
α-Cedrene e | 40.25 | 3.22 | 1414 | 1431 | nd | nd | nd | 0.66 ± 0.07 | nd | nd | nd | nd | 0.91 ± 0.10 | nd |
β-Caryophyllene e | 40.37 | 3.23 | 1424 | 1434 | 14.00 ± 1.85 | 4.47 ± 1.46 | 4.75 ± 3.44 | 5.86 ± 0.93 | 1.72 ± 0.41 | 9.62 ± 0.48 | 4.90 ± 0.80 | 3.08 ± 2.99 | 5.51 ± 0.48 | 2.87 ± 0.88 |
γ-Elemene | 40.58 | 3.18 | 1432 | 1439 | 0.60 ± 0.03 | 0.93 ± 0.11 | nd | 1.10 ± 0.13 | 0.63 ± 0.06 | 0.67 ± 0.08 | 1.67 ± 0.07 | nd | 1.88 ± 0.47 | 1.17 ± 0.22 |
Aromadendrene | 40.78 | 3.17 | 1447 | 1444 | nd | nd | nd | 0.71 ± 0.15 | nd | nd | nd | nd | 0.97 ± 0.45 | nd |
Aristolene | 41.17 | 3.21 | 1429 | 1454 | nd | 0.45 ± 0.14 | nd | 0.37 ± 0.02 | nd | 0.48 ± 0.03 | 0.66 ± 0.04 | nd | 0.78 ± 0.07 | 0.90 ± 0.20 |
β-Coapene | 41.58 | 3.20 | 1434 | 1464 | 0.54 ± 0.05 | 0.67 ± 0.49 | nd | 0.52 ± 0.01 | nd | 0.53 ± 0.06 | nd | nd | 1.16 ± 0.16 | 0.53 ± 0.05 |
α-Humulene e | 41.93 | 3.24 | 1456 | 1472 | 3.58 ± 0.68 | 4.07 ± 1.08 | 6.69 ± 3.08 | 6.03 ± 0.68 | 2.06 ± 0.36 | 6.31 ± 0.09 | 4.85 ± 0.91 | 6.01 ± 1.71 | 6.04 ± 0.77 | 4.22 ± 0.45 |
β-Guaiene | 42.15 | 3.21 | 1482 | 1478 | 0.59 ± 0.11 | 0.68 ± 0.25 | 0.72 ± 0.19 | 0.57 ± 0.24 | nd | 0.96 ± 0.13 | 1.19 ± 0.02 | 0.67 ± 0.38 | 0.83 ± 0.38 | 0.65 ± 0.13 |
γ-Selinene | 42.41 | 3.23 | 1486 | 1484 | 0.55 ± 0.05 | 0.47 ± 0.05 | 0.62 ± 0.25 | nd | nd | 0.73 ± 0.22 | nd | nd | nd | nd |
Valencene e | 42.50 | 3.21 | 1487 | 1487 | 0.48 ± 0.08 | nd | nd | nd | nd | 0.65 ± 0.54 | 1.56 ± 1.31 | nd | nd | nd |
γ-Muurolene | 42.62 | 3.21 | 1478 | 1489 | 0.64 ± 0.24 | 1.38 ± 0.63 | nd | 1.50 ± 0.45 | 0.77 ± 0.28 | 1.13 ± 0.27 | 1.34 ± 0.52 | nd | 3.50 ± 0.57 | 1.35 ± 0.18 |
α-Amorphene | 42.71 | 3.15 | 1479 | 1492 | 0.89 ± 0.02 | 0.59 ± 0.16 | nd | 6.26 ± 8.17 | 0.79 ± 0.13 | 1.65 ± 0.39 | 0.90 ± 0.14 | nd | 2.01 ± 0.61 | 1.76 ± 0.30 |
δ-Selinene | 43.00 | 3.22 | 1506 | 1499 | nd | nd | nd | nd | nd | 0.55 ± 0.25 | nd | nd | 0.64 ± 0.05 | nd |
Zonarene | 43.33 | 3.20 | 1530 | 1508 | nd | 0.64 ± 0.12 | nd | 0.61 ± 0.09 | nd | 0.63 ± 0.18 | 2.17 ± 0.12 | nd | 0.83 ± 0.04 | 0.74 ± 0.12 |
α-Cadinene | 43.35 | 3.20 | 1522 | 1508 | 0.87 ± 0.09 | 0.59 ± 0.04 | 0.44 ± 0.11 | 1.16 ± 0.32 | 0.77 ± 0.31 | 2.25 ± 0.91 | 1.10 ± 0.18 | 0.65 ± 0.08 | 3.18 ± 1.49 | 2.86 ± 0.50 |
β-Cadinene | 44.15 | 3.23 | 1522 | 1530 | 10.56 ± 2.28 | 6.48 ± 1.94 | 12.23 ± 1.76 | 6.21 ± 0.33 | 4.93 ± 0.67 | 15.87 ± 0.25 | 8.21 ± 0.86 | 7.27 ± 0.50 | 9.16 ± 1.24 | 10.18 ± 0.57 |
cis-Calamenene | 44.40 | 3.33 | 1531 | 1537 | 13.18 ± 2.09 | 9.19 ± 3.34 | 9.90 ± 1.57 | 6.30 ± 0.56 | 4.48 ± 0.55 | 17.87 ± 1.24 | 11.56 ± 1.51 | 6.24 ± 0.53 | 9.28 ± 0.58 | 9.49 ± 0.59 |
m/z 105/161/189/204 | 44.83 | 3.48 | --- | 1547 | 0.61 ± 0.12 | 0.53 ± 0.23 | nd | 0.49 ± 0.10 | nd | 0.93 ± 0.10 | 0.65 ± 0.07 | nd | 0.81 ± 0.03 | 0.78 ± 0.07 |
α-Calacorene | 45.17 | 3.49 | 1536 | 1557 | 1.51 ± 0.04 | 1.02 ± 0.33 | 1.26 ± 0.11 | 1.02 ± 0.22 | 0.93 ± 0.04 | 2.12 ± 0.23 | 1.61 ± 0.25 | 1.15 ± 0.12 | 1.15 ± 0.08 | 1.24 ± 0.17 |
Cadalene | 49.65 | 3.67 | 1662 | 1700 | 1.74 ± 0.32 | 0.85 ± 0.39 | 1.18 ± 0.30 | 0.48 ± 0.12 | nd | 1.64 ± 0.20 | 0.93 ± 0.06 | 1.16 ± 0.45 | 0.81 ± 0.06 | 1.08 ± 0.12 |
Total | 57.53 ± 9.31 | 42.16 ± 12.20 | 41.57 ± 12.58 | 49.49 ± 15.41 | 20.70 ± 3.24 | 75.29 ± 6.94 | 57.50 ± 8.79 | 31.71 ± 9.15 | 62.22 ± 10.17 | 46.72 ± 6.09 | ||||
C13-Norisoprenoids | ||||||||||||||
β-Cyclocitral | 31.46 | 3.89 | 1198 | 1236 | 3.94 ± 0.89 | 5.80 ± 0.63 | 2.56 ± 0.46 | 3.78 ± 0.21 | 3.80 ± 0.58 | 1.85 ± 0.26 | 5.06 ± 0.82 | 5.35 ± 1.45 | 2.60 ± 0.80 | 2.53 ± 0.61 |
Vitispirane | 34.12 | 3.31 | 1286 | 1292 | nd | 1.14 ± 0.12 | nd | 1.18 ± 0.51 | 1.13 ± 0.39 | - | 0.92 ± 0.27 | nd | 0.65 ± 0.10 | nd |
Theaspirane A | 35.00 | 3.36 | 1284 | 1311 | 0.47 ± 0.10 | 3.17 ± 0.41 | nd | 11.58 ± 1.94 | nd | 0.44 ± 0.11 | 3.44 ± 0.21 | nd | 7.37 ± 0.80 | nd |
Theaspirane B | 35.75 | 3.38 | 1299 | 1328 | nd | 1.90 ± 0.47 | nd | 3.99 ± 0.66 | 0.78 ± 0.48 | - | 2.00 ± 0.11 | nd | 1.86 ± 0.31 | nd |
Compounds | 1Dtr (min) a | 2Dtr (min) b | LRI calc c | LRI lit d | Varieties 2021 | Varieties 2022 | ||||||||
Trinc | CS | Trinc | CS | Trinc | CS | Trinc | CS | Trinc | CS | |||||
β-Damascenone | 38.60 | 3.80 | 1368 | 1392 | nd | 3.42 ± 0.30 | nd | 1.14 ± 0.22 | 1.74 ± 0.50 | - | 3.26 ± 0.72 | 1.02 ± 0.12 | 0.98 ± 0.22 | nd |
Geranylacetone | 41.33 | 3.45 | 1431 | 1458 | 2.56 ± 0.26 | 1.52 ± 0.24 | 0.76 ± 0.20 | 0.75 ± 0.14 | nd | 1.04 ± 0.06 | 1.96 ± 0.29 | 1.64 ± 0.81 | 1.00 ± 0.04 | 1.27 ± 0.18 |
β-Ionone | 42.73 | 3.63 | 1491 | 1492 | 1.63 ± 0.33 | 2.13 ± 0.28 | 1.44 ± 0.28 | 1.20 ± 0.23 | 1.43 ± 0.22 | 1.11 ± 0.16 | 2.07 ± 0.27 | 2.58 ± 1.08 | 1.12 ± 0.14 | 1.25 ± 0.26 |
Total | 8.61 ± 1.58 | 19.08 ± 2.46 | 4.76 ± 0.94 | 23.63 ± 3.91 | 9.96 ± 2.28 | 4.44 ± 0.59 | 18.70 ± 2.70 | 10.59 ± 3.46 | 15.58 ± 2.39 | 5.05 ± 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, D.; Martins, N.; Garcia, R.; Cabrita, M.J. Comprehensive Two-Dimensional Gas Chromatography with a TOF MS Detector—An Effective Tool to Trace the Signature of Grape Varieties. Molecules 2024, 29, 1989. https://doi.org/10.3390/molecules29091989
Fonseca D, Martins N, Garcia R, Cabrita MJ. Comprehensive Two-Dimensional Gas Chromatography with a TOF MS Detector—An Effective Tool to Trace the Signature of Grape Varieties. Molecules. 2024; 29(9):1989. https://doi.org/10.3390/molecules29091989
Chicago/Turabian StyleFonseca, Daniela, Nuno Martins, Raquel Garcia, and Maria João Cabrita. 2024. "Comprehensive Two-Dimensional Gas Chromatography with a TOF MS Detector—An Effective Tool to Trace the Signature of Grape Varieties" Molecules 29, no. 9: 1989. https://doi.org/10.3390/molecules29091989
APA StyleFonseca, D., Martins, N., Garcia, R., & Cabrita, M. J. (2024). Comprehensive Two-Dimensional Gas Chromatography with a TOF MS Detector—An Effective Tool to Trace the Signature of Grape Varieties. Molecules, 29(9), 1989. https://doi.org/10.3390/molecules29091989