Characterization of Native Sicilian Wines by Phenolic Contents, Antioxidant Activity and Chemometrics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Results
2.2. Chemometric Analysis
3. Materials and Methods
3.1. Reagents and Standard Solutions
3.2. Sampling
3.3. HPLC Analysis
3.4. Determination of Total Phenolic Content
3.5. Determination of Antioxidant Activity
3.5.1. DPPH Assay
3.5.2. Ferric Reducing Antioxidant Power (FRAP)
3.5.3. Cupric Reducing Antioxidant Capacity (CUPRAC)
3.5.4. Figures of Merit
3.5.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Némethy, S. New, Regenerative Approaches to Sustainability: Redefining Ecosystem Functions, Environmental Management, and Heritage Conservation. Ecocycles 2021, 7, 86–91. [Google Scholar] [CrossRef]
- Piacentino, D.; Aronica, M.; Giuliani, D.; Mazzitelli, A.; Cracolici, M.F. The Effect of Agglomeration Economies and Geography on the Survival of Accommodation Businesses in Sicily. Spat. Econ. Anal. 2021, 16, 176–193. [Google Scholar] [CrossRef]
- Barbaro, S.; Napoli, G.; Trovato, M.R. Circular Economy and Social Circularity. Diffuse Social Housing and Adaptive Reuse of Real Estate in Internal Areas. In Urban Regeneration Through Valuation Systems for Innovation; Green Energy and Technology; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Ferrero, M.; Pinto, I. A Regenerative Tourism Approach for the Development of Marginalised Areas. Insights from Two Best Practices in Southern Italy. Turistica—Ital. J. Tour. 2023, 32, 128–149. [Google Scholar] [CrossRef]
- Ferrara, V.; Sala, G.; Ingemark, D.; La Mantia, T. The Green Granary of the Empire? Insights into Olive Agroforestry in Sicily (Italy) from the Roman Past and the Present. Ital. J. Agron. 2023, 18, 2184. [Google Scholar] [CrossRef]
- Graziano, T.; Ruggiero, L. From Periphery to Growth Pole (and Back Again?): Late Industrialism, Smart Strategies and Tourism in South-Eastern Sicily. Reg. Stud. Reg. Sci. 2023, 10, 89–105. [Google Scholar] [CrossRef]
- Sgroi, F. Food Products, Gastronomy and Religious Tourism: The Resilience of Food Landscapes. Int. J. Gastron. Food Sci. 2021, 26, 100435. [Google Scholar] [CrossRef]
- Matarazzo, A.; Schillaci, C. Bioeconomy Value Indicators in Sicily. In Proceedings of the 17th International Conference on Environmental Science and Technology, Athens, Greece, 1–4 September 2021; Volume 17. [Google Scholar]
- Scaffidi, F. Regional Implications of the Circular Economy and Food Greentech Companies. Sustainability 2022, 14, 9004. [Google Scholar] [CrossRef]
- Calvo, R.; Prestifilippo, M.; Venturella, G. Truffle Gathering and Trade in the Monti Sicani Regional Park (Sicily, Italy), a New Perspective for the Local Economy and for Employment in Economically Depressed Areas. Plant Biosyst. 2022, 156, 171–179. [Google Scholar] [CrossRef]
- Sgroi, F. Sustainability and Culinary Traditions? Understand the Role of Historical Markets in the Development of Agri-Food and Local Gastronomy from the Perspective of Behavioral Economics. Int. J. Gastron. Food Sci. 2023, 34, 100809. [Google Scholar] [CrossRef]
- Ciriminna, R.; Angellotti, G.; Luque, R.; Pagliaro, M. The Citrus Economy in Sicily in the Early Bioeconomy Era: A Case Study for Bioeconomy Practitioners. Biofuels Bioprod. Biorefining 2024, 18, 356–364. [Google Scholar] [CrossRef]
- Trovato, M.R.; Giuffrida, S.; Collesano, G.; Nasca, L.; Gagliano, F. People, Property and Territory: Valuation Perspectives and Economic Prospects for the Trazzera Regional Property Reuse in Sicily. Land 2023, 12, 789. [Google Scholar] [CrossRef]
- Asmundo, A.; Mazzola, F. The Sicilian Economy across the Two Crises (2008–2020). Riv. Int. Sci. Sociali 2021, 129, 125–163. [Google Scholar]
- Notarstefano, G.; Gristina, S. Eco-Sustainable Routes and Religious Tourism: An Opportunity for Local Development. The Case Study of Sicilian Routes. In Tourism in the Mediterranean Sea; Emerald Publishing Limited: Bingley, UK, 2021. [Google Scholar]
- Chinnici, G.; Pecorino, B.; Bracco, S.; D’Amico, M. Analisi Economico-Gestionale del Comparto Vinicolo Siciliano Attraverso Indici di Bilancio. Econ. Agro-Aliment. 2021, 3, 15–36. [Google Scholar] [CrossRef]
- Ingrassia, M.; Altamore, L.; Bellia, C.; Grasso, G.L.; Silva, P.; Bacarella, S.; Columba, P.; Chironi, S. Visitor’s Motivational Framework and Wine Routes’ Contribution to Sustainable Agriculture and Tourism. Sustainability 2022, 14, 12082. [Google Scholar] [CrossRef]
- Di Stefano, V.; Buzzanca, C.; Melilli, M.G.; Indelicato, S.; Mauro, M.; Vazzana, M.; Arizza, V.; Lucarini, M.; Durazzo, A.; Bongiorno, D. Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability 2022, 14, 6702. [Google Scholar] [CrossRef]
- Branzanti, E.; De Lorenzis, G.; Imazio, S.; Scienza, A.; Failla, O.; Brancadoro, L. Analysis of Genetic Structure of Twelve Sicilian Grapevine Cultivars. Acta Hortic. 2014, 1046, 677–680. [Google Scholar] [CrossRef]
- Maitti, C.; Andreani, L.; Geuna, F.; Brancadoro, L.; Scienza, A. Genetic Characterization of Vitis Vinifera Accessions Cultivated in Sicily (Italy). Acta Hortic. 2009, 827, 177–182. [Google Scholar] [CrossRef]
- Caracciolo, F.; Di Vita, G.; Lanfranchi, M.; D’Amico, M. Determinants of Sicilian Wine Consumption: Evidence from a Binary Response Model. Am. J. Appl. Sci. 2015, 12, 794–801. [Google Scholar] [CrossRef]
- Sgroi, F.; Modica, F. Qualitative Determinants of Wine Demand: An Exploratory Analysis of Two Sicilian Wines “Catarratto” and “Nero d’Avola”. J. Mar. Isl. Cult. 2023, 12, 153–162. [Google Scholar] [CrossRef]
- Kharadze, M.; Japaridze, I.; Kalandia, A.; Vanidze, M. Anthocyanins and Antioxidant Activity of Red Wines Made from Endemic Grape Varieties. Ann. Agrar. Sci. 2018, 16, 181–184. [Google Scholar] [CrossRef]
- Pajović Šćepanović, R.; Wendelin, S.; Raičević, D.; Eder, R. Characterization of the Phenolic Profile of Commercial Montenegrin Red and White Wines. Eur. Food Res. Technol. 2019, 245, 2233–2245. [Google Scholar] [CrossRef]
- Ricci, A.; Teslic, N.; Petropolus, V.I.; Parpinello, G.P.; Versari, A. Fast Analysis of Total Polyphenol Content and Antioxidant Activity in Wines and Oenological Tannins Using a Flow Injection System with Tandem Diode Array and Electrochemical Detections. Food Anal. Methods 2019, 12, 347–354. [Google Scholar] [CrossRef]
- Porgali, E.; Büyüktuncel, E. Determination of Phenolic Composition and Antioxidant Capacity of Native Red Wines by High Performance Liquid Chromatography and Spectrophotometric Methods. Food Res. Int. 2012, 45, 145–154. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Serreli, G.; Congiu, F.; Montoro, P.; Fenu, M.A. Characterization, Phenolic Profile, Nitrogen Compounds and Antioxidant Activity of Carignano Wines. J. Food Compos. Anal. 2017, 58, 60–68. [Google Scholar] [CrossRef]
- Bai, S.; Cui, C.; Liu, J.; Li, P.; Li, Q.; Bi, K. Quantification of Polyphenol Composition and Multiple Statistical Analyses of Biological Activity in Portuguese Red Wines. Eur. Food Res. Technol. 2018, 244, 2007–2017. [Google Scholar] [CrossRef]
- Büyüktuncel, E.; Porgalı, E.; Çolak, C. Comparison of Total Phenolic Content and Total Antioxidant Activity in Local Red Wines Determined by Spectrophotometric Methods. Food Nutr. Sci. 2014, 5, 1660–1667. [Google Scholar] [CrossRef]
- Di Majo, D.; La Guardia, M.; Giammanco, S.; La Neve, L.; Giammanco, M. The Antioxidant Capacity of Red Wine in Relationship with Its Polyphenolic Constituents. Food Chem. 2008, 111, 45–49. [Google Scholar] [CrossRef]
- Dugo, G.; Dugo, P.; Vilasi, F.; Magnisi, R.; Mondello, L.; La Torre, G.L. Determination of the Polyphenolic Content in Sicilian Red Wines of Protected Geographical Indication. Ital. J. Food Sci. 2006, 18, 409–422. [Google Scholar]
- Careri, M.; Corradini, C.; Elviri, L.; Nicoletti, I.; Zagnoni, I. Direct HPLC Analysis of Quercetin and Trans-Resveratrol in Red Wine, Grape, and Winemaking Byproducts. J. Agric. Food Chem. 2003, 51, 5226–5231. [Google Scholar] [CrossRef]
- Gervasi, T.; Oliveri, F.; Gottuso, V.; Squadrito, M.; Bartolomeo, G.; Cicero, N.; Dugo, G. Nero d’Avola and Perricone Cultivars: Determination of Polyphenols, Flavonoids and Anthocyanins in Grapes and Wines. Nat. Prod. Res. 2016, 30, 2329–2337. [Google Scholar] [CrossRef]
- La Torre, G.L.; Saitta, M.; Vilasi, F.; Pellicanò, T.; Dugo, G. Direct Determination of Phenolic Compounds in Sicilian Wines by Liquid Chromatography with PDA and MS Detection. Food Chem. 2006, 94, 640–650. [Google Scholar] [CrossRef]
- Dantas, D.L.L.; Pereira, G.E.; de Souza, A.L.; dos Santos Lima, M. Chemometric Analysis for Authentication of ‘Syrah’ and ‘Tempranillo’ Red Wines of San Francisco Valley-Brazil Compared to Wines from Other World Regions by the Molecular Profile in HPLC. J. Food Sci. Technol. 2023, 60, 2050–2062. [Google Scholar] [CrossRef]
- Lukić, I.; Radeka, S.; Budić-Leto, I.; Bubola, M.; Vrhovsek, U. Targeted UPLC-QqQ-MS/MS Profiling of Phenolic Compounds for Differentiation of Monovarietal Wines and Corroboration of Particular Varietal Typicity Concepts. Food Chem. 2019, 300, 125251. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Centonze, C.; Grasso, M.E.; Latronico, M.F.; Mastrangelo, P.F.; Sparascio, F.; Fanizzi, F.P.; Maffia, M. A Comparative Study of Phenols in Apulian Italian Wines. Foods 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Merkyte, V.; Longo, E.; Windisch, G.; Boselli, E. Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods 2020, 9, 1785. [Google Scholar] [CrossRef]
- Clarke, S.; Bosman, G.; du Toit, W.; Aleixandre-Tudo, J.L. White Wine Phenolics: Current Methods of Analysis. J. Sci. Food Agric. 2023, 103, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef] [PubMed]
- Dipalmo, T.; Crupi, P.; Pati, S.; Clodoveo, M.L.; Di Luccia, A. Studying the Evolution of Anthocyanin-Derived Pigments in a Typical Red Wine of Southern Italy to Assess Its Resistance to Aging. LWT 2016, 71, 1–9. [Google Scholar] [CrossRef]
- Rapa, M.; Giannetti, V.; Boccacci Mariani, M. Characterization of Polyphenols in a Sicilian Autochthonous White Grape Variety (PDO) for Monitoring Production Process and Shelf-Life of Wines. Agriculture 2022, 12, 1888. [Google Scholar] [CrossRef]
- Bosso, A.; Cassino, C.; Motta, S.; Panero, L.; Tsolakis, C.; Guaita, M. Polyphenolic Composition and in Vitro Antioxidant Activity of Red Grape Seeds as Byproducts of Short and Medium-Long Fermentative Macerations. Foods 2020, 9, 1451. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Apak, R. The Main and Modified CUPRAC Methods of Antioxidant Measurement. TrAC—Trends Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
Catarratto | Grillo | Nero D’Avola | Syrah | Zibibbo | |
---|---|---|---|---|---|
TPC (mg/L GAE) | 294 ± 313 b | 182 ± 22.2 b | 1490 ± 110 a | 1380 ± 155 a | 245 ± 93.1 b |
DPPH (μM TAEC) | 998 ± 1470 b | 341 ± 89.5 b | 5370 ± 446 a | 5280 ± 417 a | 395 ± 167 b |
FRAP (μM TAEC) | 2170 ± 2720 c | 944 ± 145 c | 14,600 ± 1910 a | 11,000 ± 1260 b | 1170 ± 356 c |
CUPRAC (μM TAEC) | 1930 ± 1880 b | 1190 ± 300 b | 13,000 ± 3620 a | 13,200 ± 3540 a | 1900 ± 905 b |
gallic acid (mg/L) | 9.44 ± 3.15 b | 8.17 ± 3.76 b | 152 ± 27 a | 144 ± 29 a | 15.4 ± 5.4 b |
p-hydroxybenzoic Acid (mg/L) | 33 ± 22.8 c | 12 ± 5.18 d | 70.9 ± 21.2 b | 86.3 ± 18.5 a | 34.4 ± 13.9 c |
ferulic fcid (mg/L) | 1.33 ± 0.52 b | 1.05 ± 0.72 b | 7.03 ± 4.42 a | 5.80 ± 4.16 a | 0.63 ± 0.53 b |
t-resveratrol (mg/L) | 0.123 ± 0.034 b | 0.113 ± 0.022 b | 0.620 ± 0.385 a | 0.529 ± 0.334 a | 0.101 ± 0.014 b |
Nero D’Avola | |||
---|---|---|---|
Reference | This Study | [30] | [34] |
Origin | Sicily | Sicily | Sicily |
Production year | 2019–2021 | 2003–2004 | 2002 |
TPC (mg/L GAE) | 1490 ± 110 | 2360–3730 | 2563–4209 |
DPPH (μM TAEC) | 5370 ± 446 | - | - |
FRAP (μM TAEC) | 14,600 ± 1910 | - | - |
CUPRAC (μM TAEC) | 13,000 ± 3620 | - | - |
gallic acid (mg/L) | 152 ± 27 | - | 28.34–100.73 |
p-hydroxybenzoic acid (mg/L) | 70.9 ± 21.2 | - | - |
ferulic acid (mg/L) | 7.03 ± 4.42 | - | 0.13–1.96 |
t-resveratrol (mg/L) | 0.620 ± 0.385 | - | 0.12–0.62 |
Syrah | ||||||
---|---|---|---|---|---|---|
This Study | [30] | [34] | [28] | [41] | [35] | |
Origin | Sicily | Sicily | Sicily | Portugal | Macedonia | Brazil, Chile, Australia, South Africa |
Production year | 2019–2021 | 2003–2004 | 2002 | 2008–2012 | 2012 | 2011–2019 |
TPC (mg/L GAE) | 1380 ± 155 | 3000–3410 | 3110–3900 | 1804–1992 | - | - |
DPPH (μM TAEC) | 5280 ± 417 | - | - | - | 3340–4010 | 1301–2099 |
FRAP (μM TAEC) | 11,000 ± 1260 | - | - | - | - | - |
CUPRAC (μM TAEC) | 13,200 ± 3540 | - | - | - | - | - |
gallic acid (mg/L) | 144 ± 29 | - | 39.07–106.66 | 20.73–25.89 | - | 42.42–81.90 |
p-hydroxybenzoic acid (mg/L) | 86.3 ± 18.5 | - | - | 0.19–0.24 | - | - |
ferulic acid (mg/L) | 5.80 ± 4.16 | - | 0.04–1.34 | 0.10–0.15 | - | - |
t-resveratrol (mg/L) | 0.529 ± 0.334 | - | 0.10–0.88 | 0.11–0.26 | - | 0.59–2.06 |
PC 1 | PC 2 | |
---|---|---|
TPC (mg/L GAE) | 14.4 | 5.3 |
DPPH (μM TAEC) | 14.2 | 5.2 |
FRAP (μM TAEC) | 14.2 | 2.9 |
CUPRAC (μM TAEC) | 14.2 | 0.3 |
gallic acid (mg/L) | 13.5 | 7.1 |
p-hydroxybenzoic Acid (mg/L) | 10.6 | 0.0 |
ferulic acid (mg/L) | 8.9 | 64.8 |
t-resveratrol (mg/L) | 10.0 | 14.2 |
Catarratto | Grillo | Nero D’Avola | Syrah | Zibibbo | |
---|---|---|---|---|---|
Catarratto | 4 | 6 | 0 | 0 | 2 |
Grillo | 0 | 12 | 0 | 0 | 0 |
Nero D’Avola | 0 | 0 | 11 | 1 | 0 |
Syrah | 0 | 0 | 1 | 11 | 0 |
Zibibbo | 0 | 2 | 0 | 0 | 10 |
R2 | Linearity Range | LOD | Precision | Accuracy | |
---|---|---|---|---|---|
TPC | 0.9978 | 200–600 mg/L | 165 mg/L | 2% | 93% |
DPPH | 0.9953 | 25–1000 μM | 10 μM | 2% | 88% |
FRAP | 0.9985 | 100–1000 μM | 80 μM | 1% | 97% |
CUPRAC | 0.9977 | 50–500 μM | 30 μM | 1% | 96% |
Gallic Acid | 0.9981 | 0.4–150 mg/L | 0.30 mg/L | 0.5% | 95% |
p-Hydroxybenzoic Acid | 0.9995 | 0.4–90 mg/L | 0.33 mg/L | 0.5% | 93% |
Ferulic Acid | 0.9999 | 0.4–100 mg/L | 0.27 mg/L | 0.5% | 95% |
t-Resveratrol | 0.9997 | 0.1–100 mg/L | 0.05 mg/L | 0.5% | 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapa, M.; Di Fabio, M.; Boccacci Mariani, M.; Giannetti, V. Characterization of Native Sicilian Wines by Phenolic Contents, Antioxidant Activity and Chemometrics. Molecules 2025, 30, 534. https://doi.org/10.3390/molecules30030534
Rapa M, Di Fabio M, Boccacci Mariani M, Giannetti V. Characterization of Native Sicilian Wines by Phenolic Contents, Antioxidant Activity and Chemometrics. Molecules. 2025; 30(3):534. https://doi.org/10.3390/molecules30030534
Chicago/Turabian StyleRapa, Mattia, Martina Di Fabio, Maurizio Boccacci Mariani, and Vanessa Giannetti. 2025. "Characterization of Native Sicilian Wines by Phenolic Contents, Antioxidant Activity and Chemometrics" Molecules 30, no. 3: 534. https://doi.org/10.3390/molecules30030534
APA StyleRapa, M., Di Fabio, M., Boccacci Mariani, M., & Giannetti, V. (2025). Characterization of Native Sicilian Wines by Phenolic Contents, Antioxidant Activity and Chemometrics. Molecules, 30(3), 534. https://doi.org/10.3390/molecules30030534