Effects of Different Sera Conditions on Olfactory Ensheathing Cells in Vitro
Abstract
:1. Introduction
2. Results
2.1. Immunofluorescence Results and OEC Counts
2.2. Cell Viability
2.3. NT-3 Concentrations in the Supernatant
2.4. Real-Time Quantitative RT-PCR
Group | Purity of OEC |
---|---|
5% FBS | 93.82% |
10% FBS | 95.83% |
15% FBS | 95.75% |
20% FBS | 98.49% |
5% RS | 96.56% |
10% RS | 96.61% |
15% RS | 96.18% |
20% RS | 95.01% |
10% FBS–5% RS * | 89.67% |
10% FBS–15% RS * | 95.33% |
10% FBS–20% RS * | 96.49% |
5% FBS–5% RS * | 94.25% |
10% FBS–10% RS * | 92.84% |
15% FBS–15% RS * | 90.88% |
20% FBS–20% RS * | 94.96% |
10%FBS—10%RS + spinal cord explants ** | 96.98% |
3. Discussion
4. Materials and Methods
4.1. Experimental Animals
4.2. Culture Medium Preparation
4.3. Spinal Corsd Explants Preparation
4.4. Primary Culture and OEC Purification
4.5. OEC Subculture
4.6. MTT Assay
4.7. Neurotrophin-3 (NT-3) Concentration Measurements
4.8. Immunofluorescence Staining
4.9. Real-Time Quantitative RT-PCR
4.10. Image Analysis and Statistics
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ramon-Cueto, A.; Avila, J. Olfactory ensheathing glia: Properties and function. Brain Res. Bull. 1998, 46, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Liu, W.; Zhou, B.Y.; Wang, J.; Li, B. Animal experiments and clinical application of olfactory ensheathing cell transplantation for treatment of spinal cord injury. Neural Regen. Res. 2008, 3, 313–316. [Google Scholar]
- Fehlings, M.G.; Vawda, R. Cellular treatments for spinal cord injury: The time is right for clinical trials. Neurotherapeutics 2011, 8, 704–720. [Google Scholar] [CrossRef] [PubMed]
- Ramoncueto, A.; Valverde, F. Olfactory-bulb ensheathing glia—A unique cell-type with axonal growth-promoting properties. Glia 1995, 14, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Feron, F.; Perry, C.; Cochrane, J.; Licina, P.; Nowitzke, A.; Urquhart, S.; Geraghty, T.; Mackay-Sim, A. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain: J. Neurol. 2005, 128, 2951–2960. [Google Scholar] [CrossRef]
- Mackay-Sim, A.; Feron, F.; Cochrane, J.; Bassingthwaighte, L.; Bayliss, C.; Davies, W.; Fronek, P.; Gray, C.; Kerr, G.; Licina, P.; et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: A 3-year clinical trial. Brain: J. Neurol. 2008, 131, 2376–2386. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Raisman, G. Transplanted schwann cells, not olfactory ensheathing cells, myelinate optic nerve fibres. Glia 2007, 55, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Babiarz, J.; Kane-Goldsmith, N.; Basak, S.; Liu, K.; Young, W.; Grumet, M. Juvenile and adult olfactory ensheathing cells bundle and myelinate dorsal root ganglion axons in culture. Exp. Neurol. 2011, 229, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Granger, N.; Blamires, H.; Franklin, R.J.M.; Jeffery, N.D. Autologous olfactory mucosal cell transplants in clinical spinal cord injury: A randomized double-blinded trial in a canine translational model. Brain: J. Neurol. 2012, 135, 3227–3237. [Google Scholar] [CrossRef]
- Tabakow, P.; Jarmundowicz, W.; Czapiga, B.; Fortuna, W.; Miedzybrodzki, R.; Czyz, M.; Huber, J.; Szarek, D.; Okurowski, S.; Szewczyk, P.; et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013, 22, 1591–1612. [Google Scholar] [CrossRef] [PubMed]
- Nash, H.H.; Borke, R.C.; Anders, J.J. New method of purification for establishing primary cultures of ensheathing cells fom the adult olfactory bulb. Glia 2001, 34, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Ramoncueto, A.; Nietosampedro, M. Regeneration into the spinal-cord of transected dorsal-root axons is promoted by ensheathing glia transplants. Exp. Neurol. 1994, 127, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Field, P.M.; Raisman, G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 1997, 277, 2000–2002. [Google Scholar] [CrossRef] [PubMed]
- Polentes, J.; Stamegna, J.C.; Nieto-Sampedro, M.; Gauthier, P. Phrenic rehabilitation and diaphragm recovery after cervical injury and transplantation of olfactory ensheathing cells. Neurobiol. Dis. 2004, 16, 638–653. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, M.Y. Neural stem cell grafts for complete spinal cord injury. Neurosurgery 2012, 71, N13–N15. [Google Scholar] [CrossRef] [PubMed]
- All, A.H.; Bazley, F.A.; Gupta, S.; Pashai, N.; Hu, C.; Pourmorteza, A.; Kerr, C. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury. PLoS One 2012, 7, e47645. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, B.; Song, Y.; Deng, Y.; Jia, Y.; Gong, Q. Bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury. Neural Regen. Res. 2011, 6, 978–982. [Google Scholar]
- Jung, D.I.; Ha, J.; Kang, B.T.; Kim, J.W.; Quan, F.S.; Lee, J.H.; Woo, E.J.; Park, H.M. A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J. Neurol. Sci. 2009, 285, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-M. Breaking news in spinal cord injury research FDA approved phase I clinical trial of human, autologous schwann cell transplantation in patients with spinal cord injuries. Neural Regen. Res. 2012, 7, 1685–1687. [Google Scholar]
- Kumar, A.A.; Kumar, S.R.; Narayanan, R.; Arul, K.; Baskaran, M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: A phase I/II clinical safety and primary efficacy data. Exp. Clin. Transplant. 2009, 7, 241–248. [Google Scholar] [PubMed]
- Huang, H.; Xi, H.; Chen, L.; Zhang, F.; Liu, Y. Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury. Cell Transplant. 2012, 21, S23–S31. [Google Scholar] [CrossRef] [PubMed]
- Kachramanoglou, C.; Law, S.; Andrews, P.; Li, D.; Choi, D. Culture of olfactory ensheathing cells for central nerve repair: The limitations and potential of endoscopic olfactory mucosal biopsy. Neurosurgery 2013, 72, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Gorrie, C.A.; Hayward, I.; Cameron, N.; Kailainathan, G.; Nandapalan, N.; Sutharsan, R.; Wang, J.; Mackay-Sim, A.; Waite, P.M.E. Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury. Brain Res. 2010, 1337, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, A.; Jindrich, D.L.; Munoz-Quiles, C.; Zhong, H.; van den Brand, R.; Pham, D.L.; Ziegler, M.D.; Ramon-Cueto, A.; Roy, R.R.; Edgerton, V.R.; et al. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation. J. Neurosci. 2011, 31, 4298–4310. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.D.; Hsu, D.; Takeoka, A.; Zhong, H.; Ramon-Cueto, A.; Phelps, P.E.; Roy, R.R.; Edgerton, V.R. Further evidence of olfactory ensheathing glia facilitating axonal regeneration after a complete spinal cord transection. Exp. Neurol. 2011, 229, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centenaro, L.A.; Jaeger, M.d.C.; Ilha, J.; de Souza, M.A.; Balbinot, L.F.; do Nascimento, P.S.; Marcuzzo, S.; Achaval, M. Implications of olfactory lamina propria transplantation on hyperreflexia and myelinated fiber regeneration in rats with complete spinal cord transection. Neurochem. Res. 2013, 38, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Deumens, R.; van Gorp, S.F.J.; Bozkurt, A.; Beckmann, C.; Fuehrmann, T.; Montzka, K.; Tolba, R.; Kobayashi, E.; Heschel, I.; Weis, J.; et al. Motor outcome and allodynia are largely unaffected by novel olfactory ensheathing cell grafts to repair low-thoracic lesion gaps in the adult rat spinal cord. Behav. Brain Res. 2013, 237, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Abercrombie, M. Contact inhibition: The phenomenon and its biological implications. Natl. Cancer Inst. Monogr. 1967, 26, 249–277. [Google Scholar] [PubMed]
- Woodhouse, A.; Vincent, A.J.; Kozel, M.A.; Chung, R.S.; Waite, P.M.; Vickers, J.C.; West, A.K.; Chuah, M.I. Spinal cord tissue affects ensheathing cell proliferation and apoptosis. Neuroreport 2005, 16, 737–740. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Dong, J.; Lu, T.; Lv, H.; Yang, P.; Cheng, Z.; Li, J.; Liang, B.; Xu, J.; Li, H.; et al. Effects of Different Sera Conditions on Olfactory Ensheathing Cells in Vitro. Int. J. Mol. Sci. 2015, 16, 420-438. https://doi.org/10.3390/ijms16010420
Lu M, Dong J, Lu T, Lv H, Yang P, Cheng Z, Li J, Liang B, Xu J, Li H, et al. Effects of Different Sera Conditions on Olfactory Ensheathing Cells in Vitro. International Journal of Molecular Sciences. 2015; 16(1):420-438. https://doi.org/10.3390/ijms16010420
Chicago/Turabian StyleLu, Meng, Jun Dong, Teng Lu, Hongjun Lv, Pinglin Yang, Zhijian Cheng, Jin Li, Baobao Liang, Junkui Xu, Haopeng Li, and et al. 2015. "Effects of Different Sera Conditions on Olfactory Ensheathing Cells in Vitro" International Journal of Molecular Sciences 16, no. 1: 420-438. https://doi.org/10.3390/ijms16010420
APA StyleLu, M., Dong, J., Lu, T., Lv, H., Yang, P., Cheng, Z., Li, J., Liang, B., Xu, J., Li, H., & He, X. (2015). Effects of Different Sera Conditions on Olfactory Ensheathing Cells in Vitro. International Journal of Molecular Sciences, 16(1), 420-438. https://doi.org/10.3390/ijms16010420