Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of CNTs on Cement Hydration
2.2. Effect of CNTs on Mechanical Properties of Microencapsulated Phase Change Material Cement Paste (MPCM-CP)
Type of Cement Paste | 3 Days Flexural Strength/MPa | Increase (%) | 3 Days Compressive Strength/MPa | Increase (%) |
MPCM-CP-0% (control) | 1.92 | 0.0 | 10.4 | 0.0 |
MPCM-CP-0.25% | 2.31 | 20.3% | 10.8 | 3.8% |
MPCM-CP-0.5% | 2.53 | 31.8% | 11.2 | 7.7% |
MPCM-CP-1.0% | 2.43 | 26.6% | 10.5 | 1.0% |
Type of Cement Paste | 28 Days Flexural Strength/MPa | Increase (%) | 28 Days Compressive Strength/MPa | Increase (%) |
MPCM-CP-0% (control) | 4.22 | 0.0 | 27.1 | 0.0 |
MPCM-CP-0.25% | 5.25 | 24.4% | 28.4 | 4.8% |
MPCM-CP-0.5% | 5.94 | 40.8% | 27.9 | 3.0% |
MPCM-CP-1.0% | 5.39 | 27.7% | 27.6 | 1.8% |
2.3. Effect of CNTs on Thermal Performance of MPCM-CP
3. Experimental Section
3.1. Materials
Items | Data |
---|---|
Outer Diameter | 20~50 nm |
–OH Content | 0.51% |
Length | 10~30 μm |
Purity | >90 wt % |
Ash | <8 wt % |
Specific Surface Area (SSA) | 40 m2/g |
Electrical Conductivity (EC) | >102 s/cm |
3.2. MWCNT Dispersion Method
3.3. Test Methods along with the Details of Mix Design
3.3.1. Heat of Hydration of Microencapsulated PCM Cement Paste with CNTs
Heat of Hydration Test | |||||
---|---|---|---|---|---|
Type of Cement Paste | Cement | Water | CNTs | MPCM | Superplasticizer |
* MPCM-CP-0% (control) | 1 | 0.35 | 0% | 10% | / |
MPCM-CP-0.25% | 1 | 0.35 | 0.25% | 10% | / |
MPCM-CP-0.5% | 1 | 0.35 | 0.5% | 10% | / |
MPCM-CP-1.0% | 1 | 0.35 | 1.0% | 10% | / |
Compressive andFlexural Strength Test | |||||
MPCM-CP-0% (control) | 1 | 0.35 | 0% | 15% | 0.40% |
MPCM-CP-0.25% | 1 | 0.35 | 0.25% | 15% | 0.50% |
MPCM-CP-0.5% | 1 | 0.35 | 0.5% | 15% | 0.73% |
MPCM-CP-1.0% | 1 | 0.35 | 1.0% | 15% | 0.80% |
Thermal Performance Test | |||||
^ 0%-MPCM-CP (control) | 1 | 0.35 | 0.5% | 0% | 0.39% |
10%-MPCM-CP | 1 | 0.35 | 0.5% | 10% | 0.58% |
15%-MPCM-CP | 1 | 0.35 | 0.5% | 15% | 0.73% |
20%-MPCM-CP | 1 | 0.35 | 0.5% | 20% | 0.81% |
3.3.2. Mechanical Properties of MPCM-CP with Different Percentage of CNTs
3.3.3. Scanning Electron Microscopy
3.3.4. Thermal Performance of MPCM Cement Paste Panel Containing CNTs
4. Conclusions
- (1)
- The incorporation of carbon nanotubes in MPCM cement paste was obviously found to accelerate the cement hydration reaction.
- (2)
- CNTs enhanced the flexural and compressive strength of MPCM incorporated cement paste. The percentage increase in flexural and compressive strength at the age of 28 days and with different dosage of CNTs was found to be up to approximately 41% and 5% respectively. The optimum dosage of CNTs incorporated in MPCM cement paste was found to be 0.5 wt %.
- (3)
- From thermal performance test, an inverse relationship was found between the maximum temperature measured at the center of the room and the dosage of MPCM. The temperature decreased with the increase in the percentage of MPCM. In comparison to control room model, the reduction in maximum temperature measured at the center of the MCPM room model was as high as 4.6 °C. Moreover, the function of delaying the peak temperature of MPCM-CP was certified. Thus, the developed carbon nanotubes based composite MPCM is a potential candidate for structural–functional integrated application.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sun, S.; Yu, X.; Han, B.; Ou, J. In situ growth of carbon nanotubes/carbon nanofibers on cement/mineral admixture particles: A review. Constr. Build. Mater. 2013, 49, 835–840. [Google Scholar] [CrossRef]
- Han, B.; Sun, S.; Ding, S.; Zhang, L.; Yu, X.; Ou, J. Review of nanocarbon-engineered multifunctional cementitious composites. Compos. Part A Appl. Sci. Manuf. 2015, 70, 69–81. [Google Scholar] [CrossRef]
- Memon, S.A.; Cui, H.Z.; Zhang, H.; Xing, F. Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete. Appl. Energy 2015, 139, 43–55. [Google Scholar] [CrossRef]
- Memon, S.A. Phase change materials integrated in building walls: A state of the art review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [Google Scholar] [CrossRef]
- Soares, N.; Costa, J.J.; Gaspar, A.R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 2013, 59, 82–103. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castellón, C.; Nogués, M.; Medrano, M.; Leppers, R.; Zubillaga, O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 2007, 39, 113–119. [Google Scholar] [CrossRef]
- Giro-Paloma, J.; Oncins, G.; Barreneche, C.; Martínez, M.; Fernández, A.I.; Cabeza, L.F. Physico-chemical and mechanical properties of microencapsulated phase change material. Appl. Energy 2013, 109, 441–448. [Google Scholar] [CrossRef]
- Mochane, M.J.; Luyt, A.S. Preparation and properties of polystyrene encapsulated paraffin wax as possible phase change material in a polypropylene matrix. Thermochim. Acta 2012, 544, 63–70. [Google Scholar] [CrossRef]
- Giro-Paloma, J.; Barreneche, C.; Delgado, M.; Martínez, M.; Fernández, A.I.; Cabeza, L.F. Physicochemical and thermal study of a MPCM of PMMA shell and paraffin wax as a core. Energy Procedia 2014, 48, 347–354. [Google Scholar] [CrossRef]
- Cui, H.; Liao, W.; Memon, S.; Dong, B.; Tang, W. Thermophysical and mechanical properties of hardened cement paste with microencapsulated phase change materials for energy storage. Materials 2014, 7, 8070–8087. [Google Scholar] [CrossRef]
- Azhari, F.; Banthia, N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem. Concr. Compos. 2012, 34, 866–873. [Google Scholar] [CrossRef]
- Qu, J.; Han, B. Piezoresistive cement-based strain sensors and self-sensing concrete components. J. Intell. Mater. Syst. Struct. 2009, 20, 329–336. [Google Scholar]
- Chung, D. Piezoresistive cement-based materials for strain sensing. J. Intell. Mater. Syst. Struct. 2002, 13, 599–609. [Google Scholar] [CrossRef]
- Materazzi, A.L.; Ubertini, F.; D’Alessandro, A. Carbon nanotube cement-based transducers for dynamic sensing of strain. Cem. Concr. Compos. 2013, 37, 2–11. [Google Scholar] [CrossRef]
- Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. Beneficial role of nanosilica in cement based materials—A review. Constr. Build. Mater. 2013, 47, 1069–1077. [Google Scholar] [CrossRef]
- Manke, A.; Luanpitpong, S.; Dong, C.; Wang, L.; He, X.; Battelli, L.; Derk, R.; Stueckle, T.A.; Porter, D.W.; Sager, T.; et al. Effect of fiber length on carbon nanotube-induced fibrogenesis. Int. J. Mol. Sci. 2014, 15, 7444–7461. [Google Scholar]
- Xie, T.; Biernacki, J.J. The origins and evolution of cement hydration models. Comput. Concr. 2011, 8, 647–675. [Google Scholar] [CrossRef]
- Makar, J.M.; Chan, G.W. Growth of cement hydration products on single-walled carbon nanotubes. J. Am. Ceram. Soc. 2009, 92, 1303–1310. [Google Scholar] [CrossRef]
- Maker, J.M.; Margeson, J.C. Carbon nanotube/cement composites-early results and potential applications. In Procceedings of the 3rd International Conferenceon On Construction Materials: Performance, Innovations and Structural Implications, Vancouver, BC, USA, 22–24 August 2005; pp. 1–10.
- Wang, B.; Han, Y.; Liu, S. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Constr. Build. Mater. 2013, 46, 8–12. [Google Scholar] [CrossRef]
- Siddique, R.; Mehta, A. Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 2014, 50, 116–129. [Google Scholar] [CrossRef]
- Thomas, J.J.; Jennings, H.M.; Chen, J.J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J. Phys. Chem. C 2009, 113, 4327–4334. [Google Scholar] [CrossRef]
- Sindu, B.S.; Sasmal, S.; Gopinath, S. A multi-scale approach for evaluating the mechanical characteristics of carbon nanotube incorporated cementitious composites. Constr. Build. Mater. 2014, 50, 317–327. [Google Scholar] [CrossRef]
- Nochaiya, T.; Chaipanich, A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl. Surf. Sci. 2011, 257, 1941–1945. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Li, Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Chaipanich, A.; Nochaiya, T.; Wongkeo, W.; Torkittikul, P. Compressive strength and microstructure of carbon nanotubes–Fly ash cement composites. Mater. Sci. Eng. A 2010, 527, 1063–1067. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, D.; Li, P.; Li, Q.; Sun, G. Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Constr. Build. Mater. 2014, 70, 332–338. [Google Scholar] [CrossRef]
- Collins, F.; Lambert, J.; Duan, W.H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cem. Concr. Compos. 2012, 34, 201–207. [Google Scholar] [CrossRef]
- Han, B.; Yang, Z.; Shi, X.; Yu, X. Transport properties of carbon-nanotube/cement composites. J. Mater. Eng. Perform. 2012, 22, 184–189. [Google Scholar] [CrossRef]
- Musso, S.; Tulliani, J.-M.; Ferro, G.; Tagliaferro, A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 2009, 69, 1985–1990. [Google Scholar] [CrossRef]
- Yu, X.; Kwon, E. A carbon nanotube/cement composite with piezoresistive properties. Smart Mater. Struct. 2009, 18, 550–510. [Google Scholar]
- Torkittikul, P.; Chaipanich, A. Bioactivity and mechanical properties of White Portland cement paste with carbon nanotubes. In Proceedings of the 2010 3rd International IEEE Nanoelectronics Conference (INEC), Hong Kong, China, 3–8 January 2010; pp. 838–839.
- Li, M.; Wu, Z.; Tan, J. Heat storage properties of the cement mortar incorporated with composite phase change material. Appl. Energy 2013, 103, 393–399. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Medina, M.A.; Lee, K.O. Energy and economic analysis of a building enclosure outfitted with a phase change material board (PCMB). Energy Convers. Manag. 2014, 83, 73–78. [Google Scholar] [CrossRef]
- Shi, X.; Memon, S.A.; Tang, W.; Cui, H.; Xing, F. Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energy Build. 2014, 71, 80–87. [Google Scholar] [CrossRef]
- Memon, S.A.; Lo, T.Y.; Cui, H. Utilization of waste glass powder for latent heat storage application in buildings. Energy Build. 2013, 66, 405–414. [Google Scholar] [CrossRef]
- Xu, B.; Li, Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl. Energy 2013, 105, 229–237. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Yang, S.; Memon, S.A. Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application. Int. J. Mol. Sci. 2015, 16, 8027-8039. https://doi.org/10.3390/ijms16048027
Cui H, Yang S, Memon SA. Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application. International Journal of Molecular Sciences. 2015; 16(4):8027-8039. https://doi.org/10.3390/ijms16048027
Chicago/Turabian StyleCui, Hongzhi, Shuqing Yang, and Shazim Ali Memon. 2015. "Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application" International Journal of Molecular Sciences 16, no. 4: 8027-8039. https://doi.org/10.3390/ijms16048027
APA StyleCui, H., Yang, S., & Memon, S. A. (2015). Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application. International Journal of Molecular Sciences, 16(4), 8027-8039. https://doi.org/10.3390/ijms16048027