A Simple and Effective Mass Spectrometric Approach to Identify the Adulteration of the Mediterranean Diet Component Extra-Virgin Olive Oil with Corn Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Performance of MALDI-TOF MS Lipid Profiles in Discriminating Corn Oil
2.2. Analytical Performance of Polar Lipid MALDI-TOF MS Profiles in Discriminating the EVOO Adulteration with CO
Adulteration | 20/80 (v/v) | 10/90 (v/v) | 5/95 (v/v) | 1/99 (v/v) | 0.5/99.5 (v/v) |
---|---|---|---|---|---|
CO/EVOO | 0.139 | 0.127 | 0.346 | 0.340 | 0.311 |
3. Experimental Section
3.1. Synthesis of the Ionic Liquid Matrix Tributylamine-α-cyano-4-hydroxycinnamic Acid (TBA-CHCA)
3.2. Oil Sampling and Pre-Treatment
3.3. MALDI-TOF MS Spectra Acquisition
3.4. MALDI-TOF MS Spectra Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vasto, S.; Buscemi, S.; Barera, A.; di Carlo, M.; Accardi, G.; Caruso, C. Mediterranean diet and healthy ageing: A Sicilian perspective. Gerontology 2014, 60, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A. Traditional Mediterranean diet and longevity in the elderly: A review. Public Health Nutr. 2004, 7, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Larsen, L.F.; Jespersen, J.; Marckmann, P. Are olive oil diets antithrombotic? Diets enriched with olive, rapeseed, or sunflower oil affect postprandial factor VII differently. Am. J. Clin. Nutr. 1999, 70, 976–982. [Google Scholar] [PubMed]
- Stark, A.H.; Madar, Z. Olive oil as a functional food: Epidemiology and nutritional approaches. Nutr. Rev. 2002, 60, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Pitozzi, V.; Jacomelli, M.; Catelan, D.; Servili, M.; Taticchi, A.; Biggeri, A.; Dolara, P.; Giovannelli, L. Long-term dietary extravirgin olive oil rich in polyphenols reverses age-related dysfunctions inmotor coordination and contextualmemory in mice: Role of oxidative stress. Rejuv. Res. 2012, 15, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.B.; de Vries, J.H.M.; Feskens, E.J.M.; van Dijk, S.J.; Hoelen, D.W.M.; Siebelink, E.; Heijligenberg, R.; de Groot, L.C. Effect of a high monounsaturated fatty acids diet and a Mediterranean diet on serum lipids and insulin sensitivity in adults with mild abdominal obesity. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Bes-Rastrollo, M.; Roman-Vinas, B.; Pfrimer, K.; Sanchez-Villegas, A.; Martinez-Gonzalez, M.A. Dietary patterns and nutritional adequacy in a Mediterranean country. Br. J. Nutr. 2009, 101, S21–S28. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Miranda, J.; Perez-Jimenez, F.; Ros, E.; de Caterina, R.; Badimon, L.; Covas, M.I.; Escrich, E.; Ordovas, J.M.; Soriguer, F.; Abia, R.; et al. Olive oil and health: Summary of the II international conference on olive oil and health consensus report, Jaen and Cordoba (Spain) 2008. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, M.U.; O’Reilly, E.J.; Heitmann, B.L.; Pereira, M.A.; Balter, K.; Fraser, G.E.; Goldbourt, U.; Hallmans, G.; Knekt, P.; Liu, S.; et al. Major types of dietary fat and risk of coronary heart disease: A pooled analysis of 11 cohort studies. Am. J. Clin. Nutr. 2009, 89, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.I.; Nyyssonen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.J.F.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Baumler, H.; et al. The effect of polyphenols in olive oil on heart disease risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Ailhaud, G.; Massiera, F.; Alessandri, J.M.; Guesnet, P. Fatty acid composition as an early determinant of childhood obesity. Genes Nutr. 2007, 2, 39–40. [Google Scholar] [CrossRef] [PubMed]
- Haro-Mora, J.J.; García-Escobar, E.; Porras, N.; Alcázar, D.; Gaztambide, J.; Ruíz-Órpez, A.; García-Serrano, S.; Rubio-Martín, E.; García-Fuentes, E.; López-Siguero, J.P.; et al. Children whose diet contained olive oil had a lower likelihood of increasing their body mass index Z-score over 1 year. Eur. J. Endocrinol. 2011, 165, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Gawecka, A.; Michalkiewicz, J.; Kornacka, M.K.; Luckiewicz, J.; Kubiszewska, I. Immunologic properties differ in preterm infants fed olive oil vs. soy-based lipid emulsions during parenteral nutrition. J. Parenter. Enter. Nutr. 2008, 32, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, M.A.; de la Fuente-Arrillaga, C.; Nunez-Cordoba, J.M.; Basterra-Gortari, F.J.; Beunza, J.J.; Vazquez, Z.; Benito, S.; Tortosa, A.; Bes-Rastrollo, M. Adherence to Mediterranean diet and risk of developing diabetes: Prospective cohort study. Br. Med. J. 2008, 336, 1348–1351. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, F.; Alvarez de Cienfuegos, G.; Badimon, L.; Barja, G.; Battino, M.; Blanco, A.; Bonanome, A.; Colomer, R.; Corella-Piquer, D.; Covas, I.; et al. International conference on the healthy effect of virgin olive oil. Eur. J. Clin. Investig. 2005, 35, 421–424. [Google Scholar]
- Harris, W.S.; Baack, M.L. Beyond building better brains: Bridging the docosahexaenoic acid (DHA) gap of prematurity. J. Perinatol. 2015, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Kastorini, C.-M.; Pitsavos, C.; Stefanadis, C. The current Greek diet and the ω-6/ω-3 balance: The Mediterranean diet score is inversely associated with the ω-6/ω-3 ratio. World Rev. Nutr. Diet. 2011, 102, 53–56. [Google Scholar] [PubMed]
- Frisardi, V.; Panza, F.; Seripa, D.; Imbimbo, B.P.; Vendemiale, G.; Pilotto, A.; Solfrizzi, V. Nutraceutical properties of Mediterranean diet and cognitive decline: Possible underlying mechanisms. J. Alzheimers Dis. 2010, 22, 715–740. [Google Scholar] [PubMed]
- Del Chierico, F.; Vernocchi, P.; Dallapiccola, B.; Putignani, L. Mediterranean diet and health: Food effects on gut microbiota and disease control. Int. J. Mol. Sci. 2014, 15, 11678–11699. [Google Scholar] [CrossRef] [PubMed]
- Wengreen, H.; Munger, R.G.; Cutler, A.; Quach, A.; Bowles, A.; Corcoran, C.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A. Prospective study of dietary approaches to stop Hypertension- and Mediterranean-style dietary patterns and age-related cognitive change: The Cache County study on memory, health and aging. Am. J. Clin. Nutr. 2013, 98, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- La Vecchia, C.; Franceschi, S. Nutrition and gastric cancer. Can. J. Gastroenterol. 2000, 14, D51–D54. [Google Scholar]
- Harwood, J.L.; Yaqoob, P. Nutritional and health aspects of olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 685–697. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Virruso, C.; Accardi, G.; Colonna-Romano, G.; Candore, G.; Vasto, S.; Caruso, C. Nutraceutical properties of extra-virgin olive oil: A natural remedy for age-related disease? Rejuv. Res. 2014, 17, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; Palmisano, F.; Zambonin, C.G. Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols in oils. Rapid Commun. Mass Spectrom. 2005, 19, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Ramazzotti, M.; Mulinacci, N.; Pazzagli, L.; Moriondo, M.; Manao, G.; Vincieri, F.F.; Degl’Innocenti, D. Analytic investigations on protein content in refined seed oils: Implications in food allergy. Food Chem. Toxicol. 2008, 46, 3383–3388. [Google Scholar] [CrossRef] [PubMed]
- Blanch, G.P.; Caja, M.M.; Leon, M.; Herraiz, M. Determination of (E)-5-methylhept-2-en-4-one in deodorised hazelnut oil. Application to the detection of adulterated olive oils. J. Sci. Food Agric. 2000, 80, 140–144. [Google Scholar] [CrossRef]
- Zabaras, D.; Gordon, M.H. Detection of pressed hazelnut oil in virgin olive oil by analysis of polar components: Improvement and validation of the method. Food Chem. 2004, 84, 475–483. [Google Scholar] [CrossRef]
- Chiavaro, E.; Vittadini, E.; Rodriguez-Estrada, M.T.; Cerretani, L.; Bendini, A. Differential scanning calorimeter application to the detection of refined hazelnut oil in extra virgin olive oil. Food Chem. 2008, 110, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Agiomyrgianaki, A.; Petrakis, P.V.; Dais, P. Detection of refined olive oil adulteration with refined hazelnut oil by employing NMR spectroscopy and multivariate statistical analysis. Talanta 2010, 5, 2165–2171. [Google Scholar] [CrossRef] [PubMed]
- Mannina, L.; D’Imperio, M.; Capitani, D.; Rezzi, S.; Guillou, C.; Mavromoustakos, T.; Vilchez, M.D.; Fernández, A.H.; Thomas, F.; Aparicio, R. H1 NMR-based protocol for the detection of adulterations of refined olive oil with refined hazelnut oil. J. Agric. Food Chem. 2009, 57, 11550–11556. [Google Scholar] [CrossRef] [PubMed]
- Vlahov, G. C13 Nuclear magnetic resonance spectroscopic detection of the adulteration of extra virgin olive oils extracted from different cultivars with cold-pressed hazelnut oil. J. AOAC Int. 2009, 92, 1747–1754. [Google Scholar] [PubMed]
- Yang, Y.; Ferro, M.D.; Cavaco, I.; Liang, Y. Detection and identification of extra virgin olive oiladulteration by GC–MS combined with chemometrics. J. Agric. Food Chem. 2013, 61, 3693–3702. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; Aresta, A.; Zambonin, C.G. Detection of hazelnut oil in extra-virgin olive oil by analysis of polar components by micro-solid phase extraction based on hydrophilic liquid chromatography (HILIC l-SPE) and MALDI-TOF mass spectrometry. J. Mass Spectrom. 2010, 45, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Pena, F.; Cardenas, S.; Gallego, M.; Valcarcel, M. Direct olive oil authentication: Detection of adulteration of olive oil with hazelnut oil by direct coupling of headspace and mass spectrometry, and multivariate regression techniques. J. Chromatogr. A 2005, 1074, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, L.; Nozal, L.; Marina, M.L.; Crego, A.L. Determination of nonprotein amino acids and betaines in vegetable oils by flow injection triple-quadrupole tandem mass spectrometry: A screening method for the detection of adulterations of olive oils. J. Agric. Food Chem. 2012, 60, 896–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azadmard-Damirchi, S. Review of the use of phytosterols as a detection tool for adulteration of olive oil with hazelnut oil. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gonzalez, D.L.; Viera-Macias, M.; Aparicio-Ruiz, R.; Morale, M.T.; Aparicio, R. Validation of a method based on triglycerides for the detection of low percentages of hazelnut oil in olive oil by column liquid chromatography. J. AOAC Int. 2007, 90, 1346–1353. [Google Scholar] [PubMed]
- Bernardini, E. Oilseeds, Oils and Fats; B.E. Oil Publishing House: Rome, Italy, 1983; Volume I, pp. 173–178. [Google Scholar]
- Koidis, A.; Boskou, D. The contents of proteins and phospholipids in cloudy (veiled) virgin olive oils. Eur. J. Lipid Sci. Technol. 2006, 108, 323–328. [Google Scholar] [CrossRef]
- Calvano, C.D.; de Ceglie, C.; D’Accolti, L.; Zambonin, C.G. MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent. Food Chem. 2012, 134, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Vitagliano, M. I costituenti minori degli oli vegetali. Riv. Ital. Sostanze Grasse 1961, 35, 46–55. [Google Scholar]
- Boukhchina, S.; Sebai, K.; Cherif, A.; Kallel, H.; Mayer, P.M. Identification of glycerophospholipids in rapeseed, olive, almond, and sunflower oils by LC–MS and LC–MS–MS. Can. J. Chem. 2004, 82, 1210–1215. [Google Scholar] [CrossRef]
- Weber, E.J. Compositions of commercial corn and soybean lecithins. J. Am. Oil Chem. Soc. 1981, 58, 898–901. [Google Scholar] [CrossRef]
- Armstrong, D.W.; Zhang, L.K.; He, L.; Gross, M.L. Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2001, 73, 3679–3686. [Google Scholar] [CrossRef] [PubMed]
- Putignani, L.; del Chierico, F.; Onori, M.; Mancinelli, L.; Argentieri, M.; Bernaschi, P.; Coltella, L.; Lucignano, B.; Pansani, L.; Ranno, S.; et al. MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi. Mol. Biosyst. 2011, 7, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketterlinus, R.; Hsieh, S.Y.; Teng, S.H.; Lee, H.; Pusch, W. Fishing for biomarkers: Analyzing mass spectrometry data with the new ClinProTools software. Biotechniques 2005, 38, 37–40. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Girolamo, F.; Masotti, A.; Lante, I.; Scapaticci, M.; Calvano, C.D.; Zambonin, C.; Muraca, M.; Putignani, L. A Simple and Effective Mass Spectrometric Approach to Identify the Adulteration of the Mediterranean Diet Component Extra-Virgin Olive Oil with Corn Oil. Int. J. Mol. Sci. 2015, 16, 20896-20912. https://doi.org/10.3390/ijms160920896
Di Girolamo F, Masotti A, Lante I, Scapaticci M, Calvano CD, Zambonin C, Muraca M, Putignani L. A Simple and Effective Mass Spectrometric Approach to Identify the Adulteration of the Mediterranean Diet Component Extra-Virgin Olive Oil with Corn Oil. International Journal of Molecular Sciences. 2015; 16(9):20896-20912. https://doi.org/10.3390/ijms160920896
Chicago/Turabian StyleDi Girolamo, Francesco, Andrea Masotti, Isabella Lante, Margherita Scapaticci, Cosima Damiana Calvano, Carlo Zambonin, Maurizio Muraca, and Lorenza Putignani. 2015. "A Simple and Effective Mass Spectrometric Approach to Identify the Adulteration of the Mediterranean Diet Component Extra-Virgin Olive Oil with Corn Oil" International Journal of Molecular Sciences 16, no. 9: 20896-20912. https://doi.org/10.3390/ijms160920896
APA StyleDi Girolamo, F., Masotti, A., Lante, I., Scapaticci, M., Calvano, C. D., Zambonin, C., Muraca, M., & Putignani, L. (2015). A Simple and Effective Mass Spectrometric Approach to Identify the Adulteration of the Mediterranean Diet Component Extra-Virgin Olive Oil with Corn Oil. International Journal of Molecular Sciences, 16(9), 20896-20912. https://doi.org/10.3390/ijms160920896