Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds
Abstract
:1. Introduction
2. Results
2.1. Unconfined Compression Experiments Show Differences in the Scaffold Properties
2.2. Role of Interstitial Fluid in the Poro-Mechanics of Scaffolds
2.3. Scaffold Microstructure and Porosity
3. Discussion
3.1. Mechanics of Porous Fluid Filled Scaffolds
3.2. Consolidation and Permeability of Silk Scaffolds
4. Materials and Methods
4.1. Preparation of Aqueous Silk Solution
4.2. Fabrication of Scaffolds
4.3. Measurement of Specimen Porosity and Scanning Electron Microscopy
4.4. Mechanical Testing
4.4.1. Unconfined and Confined Compression Experiments to Characterize Stress–Strain Properties
4.4.2. Confined Creep Experiments to Assess Material Permeability
4.4.3. Statistical Analysis
5. Modelling
5.1. Foam Mechanics
5.2. Mechanics of Fluid Filled Materials
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gosline, J.; Lillie, M.; Carrington, E.; Guerette, P.; Ortlepp, C.; Savage, K. Elastic proteins : Biological roles and mechanical properties. Philos. Trans. R. Soc. B Biol. Sci. 2002, 357, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.B.; Mann, J.K.; Kundu, S.C. Silk fibroin/gelatin multilayered films as a model system for controlled drug release. Eur. J. Pharm. Sci. 2009, 37, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ushida, T.; Tateishi, T. Scaffold design for tissue engineering. Macromol. Biosci. 2002, 2, 67–77. [Google Scholar] [CrossRef]
- Khademhosseini, A.; Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials 2007, 28, 5087–5092. [Google Scholar] [CrossRef] [PubMed]
- Tibbitt, M.W.; Anseth, K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009, 103, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Altman, G.H.; Horan, R.L.; Lu, H.H.; Moreau, J.; Martin, I.; Richmond, J.C.; Kaplan, D.L. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002, 23, 4131–4141. [Google Scholar] [CrossRef]
- Franceschini, G.; Bigoni, D.; Regitnig, P.; Holzapfel, G. Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 2006, 54, 2592–2620. [Google Scholar] [CrossRef]
- Ateshian, G.A.; Kim, J.J.; Grelsamer, R.P.; Mow, V.C.; Warden, W.H. Finite deformation of bovine material properties cartilage compression. J. Biomech. 1997, 30, 1157–1164. [Google Scholar] [CrossRef]
- Mow, V.C.; Ratcliffe, A.; Poole, A.R. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 1992, 13, 67–97. [Google Scholar] [CrossRef]
- Iritani, E.; Katagiri, N.; Yoo, K.; Hayashi, H. Consolidation and expansion of a granular bed of superabsorbent hydrogels. AIChE J. 2007, 53, 129–137. [Google Scholar] [CrossRef]
- Strange, D.G.T.; Fletcher, T.L.; Tonsomboon, K.; Brawn, H.; Zhao, X.; Oyen, M.L. Separating poroviscoelastic deformation mechanisms in hydrogels. Appl. Phys. Lett. 2013, 102, 031913. [Google Scholar] [CrossRef]
- Fox, A.J.S.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sport Health 2009, 1, 461–468. [Google Scholar]
- Baykal, D.; Underwood, R.J.; Mansmann, K.; Marcolongo, M.; Kurtz, S.M. Evaluation of friction properties of hydrogels based on a biphasic cartilage model. J. Mech. Behav. Biomed. Mater. 2013, 28, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Fujie, H.; Imade, K. Effects of low tangential permeability in the superficial layer on the frictional property of articular cartilage. Biosurf. Biotribol. 2015, 1, 124–129. [Google Scholar] [CrossRef]
- Kluge, J.A.; Rosiello, N.C.; Leisk, G.G.; Kaplan, D.L.; Dorfmann, A.L. The consolidation behavior of silk hydrogels. J. Mech. Behav. Biomed. Mater. 2010, 3, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Burt, H.M. Drug-eluting stents: factors governing local pharmacokinetics. Adv. Drug Deliv. Rev. 2006, 58, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Boschetti, F.; Pennati, G.; Gervaso, F.; Peretti, G.M.; Dubini, G. Biomechanical properties of human articular cartilage under compressive loads. Biorheology 2004, 41, 159–166. [Google Scholar] [PubMed]
- Chia, H.N.; Hull, M.L. Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate. J. Orthop. Res. 2008, 26, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.D.; Wharram, S.; Kluge, J.A.; Leisk, G.G.; Omenetto, F.G.; Rosenblatt, M.I.; Kaplan, D.L. Effect of hydration on silk film material properties. Macromol. Biosci. 2010, 10, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Yodmuang, S.; McNamara, S.L.; Nover, A.B.; Mandal, B.B.; Agarwal, M.; Kelly, T.A.N.; Chao, P.H.G.; Hung, C.; Kaplan, D.L.; Vunjak-Novakovic, G. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 2015, 11, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.; Melchels, F.P.W.; Jeon, J.E.; van Bussel, E.M.; Kimpton, L.S.; Byrne, H.M.; Dhert, W.J.A.; Dalton, P.D.; Hutmacher, D.W.; Malda, J. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat. Commun. 2015, 6, 6933. [Google Scholar] [CrossRef] [PubMed]
- Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Sridharan, A.; Murthy, N.S. Rectangular hyperbola method of consolidation. Geotechnique 1987, 37, 355–368. [Google Scholar] [CrossRef]
- Liu, Y.; Chan-Park, M.B. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 2009, 30, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, R.; Jin, H.-J.; Kaplan, D.L. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 2004, 5, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Ashby, M.F. The properties of foams and lattices. Philos. Trans. A Math. Phys. Eng. Sci. 2006, 364, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.J. Biomechanics of cellular solids. J. Biomech. 2005, 38, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.B.; Rajkhowa, R.; Kothari, V.K. Physical characteristics and structure of Indian silk fibres. Indian J. Fibre Text. Res. 2000, 25, 14–19. [Google Scholar]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Pergamon Press: Oxford, UK, 1988; Chapter 5; pp. 32–137. [Google Scholar]
- Knappett, J.A.; Craig, R.F. Craigs Soil Mechanics, 8th ed.; CRC press: Abingdon, UK, 2012; Chapter 4; pp. 121–123. [Google Scholar]
Scaffold | Elastic Modulus (kPa) | Yield Stress (kPa) | Strain at Yielding |
---|---|---|---|
Network | 27.2 ± 9.2 | 3.8 ± 1.1 | 0.13 ± 0.03 |
Matrix | 140.6 ± 29.8 | 9.6 ± 1.3 | 0.12 ± 0.01 |
Composite | 478.2 ± 83.9 | 41.1 ± 3.9 | 0.16 ± 0.01 |
Parameter | Load (N) | 3 | 6 | 9 | 12 | 15 |
---|---|---|---|---|---|---|
Cv (mm2/min) | Network | 0.88 ± 0.28 | 0.38 ± 0.1 | 0.15 ± 0.03 | 0.12 ± 0.02 | 0.07 ± 0.02 |
Composite | 0.65 ± 0.03 | 0.88 ± 0.04 | 0.40 ± 0.04 | 0.30 ± 0.02 | 0.16 ± 0.01 | |
Ec (kPa) | Network | 27.7 ± 3.71 | 46.60 ± 3.95 | 66.46 ± 4.94 | 85.06 ± 5.79 | 104.4 ± 6.83 |
Composite | 72.30 ± 7.99 | 74.41 ± 6.10 | 94.02 ± 5.88 | 110.6 ± 5.86 | 131.9 ± 6.74 | |
k × 10−10 (m4/Ns) | Network | 19.23 ± 5.99 | 4.90 ± 1.08 | 1.33 ± 0.20 | 0.84 ± 0.12 | 0.39 ± 0.08 |
Composite | 5.47 ± 0.79 | 7.14 ± 0.61 | 2.51 ± 0.14 | 1.64 ± 0.05 | 0.71 ± 0.03 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kundanati, L.; Singh, S.K.; Mandal, B.B.; Murthy, T.G.; Gundiah, N.; Pugno, N.M. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds. Int. J. Mol. Sci. 2016, 17, 1631. https://doi.org/10.3390/ijms17101631
Kundanati L, Singh SK, Mandal BB, Murthy TG, Gundiah N, Pugno NM. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds. International Journal of Molecular Sciences. 2016; 17(10):1631. https://doi.org/10.3390/ijms17101631
Chicago/Turabian StyleKundanati, Lakshminath, Saket K. Singh, Biman B. Mandal, Tejas G. Murthy, Namrata Gundiah, and Nicola M. Pugno. 2016. "Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds" International Journal of Molecular Sciences 17, no. 10: 1631. https://doi.org/10.3390/ijms17101631
APA StyleKundanati, L., Singh, S. K., Mandal, B. B., Murthy, T. G., Gundiah, N., & Pugno, N. M. (2016). Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds. International Journal of Molecular Sciences, 17(10), 1631. https://doi.org/10.3390/ijms17101631