Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid
Abstract
:1. Introduction
2. Results
2.1. Fourier Transform Infrared (FT-IR) Analysis to Verify Amide Bond
2.2. Kinetics of the Cross-Linking Reaction
2.3. Mechanical Properties
2.3.1. Optimization of Chemical Cross-Linking Reaction
2.3.2. The Effects of Adipic Acid, Cellulose Nanofibrils (CNFs), and Plasticizer on the Mechanical Properties of the Films
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Chitosan Film Preparations
4.3. Kinetics Study
4.4. Film Characterization
4.4.1. Fourier Transform Infrared (FT-IR) Analysis
4.4.2. Mechanical Properties
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CS | Chitosan |
Ac | Acetic acid |
Ad | Adipic acid |
CNFs | Cellulose nanofibrils |
CLD | Cross-linking degree |
TS | Tensile strength |
EB | Elongation at break |
YM | Young’s modulus |
CSAd | Chitosan-adipic acid uncured film |
CSAc | Chitosan-acetic acid film |
CScAd | Chitosan-adipic acid chemically cross-linked film |
pCSAc | 20 wt % glycerol plasticized chitosan-acetic acid film |
pCScAd | 20 wt % glycerol plasticized chitosan-adipic acid chemically cross-linked film |
P3CSAc | Plasticized chitosan-acetic acid film reinforced by 3 wt % CNFs |
p5CScAd | Plasticized chitosan-adipic acid chemically cross-linked film reinforced by 5 wt % CNFs |
References
- Azeredo, H.; Mattoso, L.H.C.; Avena-Bustillos, R.J.; Munford, M.L.; Wood, D.; McHugh, T.H. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J. Food Sci. 2010, 75, N1–N7. [Google Scholar] [CrossRef]
- Khan, A.; Khan, R.A.; Salmieri, S.; Le Tien, C.; Riedl, B.; Bouchard, J.; Chauve, G.; Tan, V.; Kamal, M.R.; Lacroix, M. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr. Polym. 2012, 90, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Ostadhossein, F.; Mahmoudi, N.; Morales-Cid, G.; Tamjid, E.; Navas-Martos, F.; Soriano-Cuadrado, B.; Paniza, J.; Simchi, A. Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing. Materials 2015, 8, 5309. [Google Scholar] [CrossRef]
- Quesada, J.; Sendra, E.; Navarro, C.; Sayas-Barberá, E. Antimicrobial active packaging including chitosan films with thymus vulgaris l. Essential oil for ready-to-eat meat. Foods 2016, 5, 57. [Google Scholar] [CrossRef]
- Zamani, A. Superabsorbent Polymers from the Cell Wall of Zygomycetes Fungi; Chalmers University of Technology: Göteborg, Sweden, 2010. [Google Scholar]
- Azuma, K.; Izumi, R.; Osaki, T.; Ifuku, S.; Morimoto, M.; Saimoto, H.; Minami, S.; Okamoto, Y. Chitin, chitosan, and its derivatives for wound healing: Old and new materials. J. Funct. Biomater. 2015, 6, 104–142. [Google Scholar] [CrossRef] [PubMed]
- Hamdine, M.; Heuzey, M.-C.; Bégin, A. Effect of organic and inorganic acids on concentrated chitosan solutions and gels. Int. J. Biolog. Macromol. 2005, 37, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-H.; Kuo, T.-Y.; Liu, F.-H.; Hwang, Y.-H.; Ho, M.-H.; Wang, D.-M.; Lai, J.-Y.; Hsieh, H.-J. Use of dicarboxylic acids to improve and diversify the material properties of porous chitosan membranes. J. Agri. Food Chem. 2008, 56, 9015–9021. [Google Scholar] [CrossRef] [PubMed]
- Mitra, T.; Sailakshmi, G.; Gnanamani, A.; Mandal, A.B. Adipic acid interaction enhances the mechanical and thermal stability of natural polymers. J. Appl. Polym. Sci. 2012, 125, E490–E500. [Google Scholar] [CrossRef]
- Sashiwa, H.; Aiba, S.-i. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci. 2004, 29, 887–908. [Google Scholar] [CrossRef]
- Jin, J.; Song, M.; Hourston, D. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules 2004, 5, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Gong, J.; Cao, J.; Chen, Y.; Luo, X. In situ chemically crosslinked chitosan membrane by adipic acid. J. Appl. Polym. Sci. 2013, 128, 3308–3314. [Google Scholar] [CrossRef]
- Pelc, H.; Elvers, B.; Hawkins, S. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2005. [Google Scholar]
- Kennedy, G.L., Jr. Toxicity of adipic acid. Drug Chem. Toxicol. 2002, 25, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Picataggio, S.; Beardslee, T. Biological Methods for Preparing Adipic Acid. U.S. Patent 20120021474 A1, 26 January 2012. [Google Scholar]
- Pillai, C.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Suyatma, N.E.; Tighzert, L.; Copinet, A.; Coma, V. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J. Agric. Food Chem. 2005, 53, 3950–3957. [Google Scholar] [CrossRef] [PubMed]
- HPS, A.K.; Saurabh, C.K.; Adnan, A.; Fazita, M.N.; Syakir, M.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C.; Haafiz, M.; Dungani, R. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr. Polym. 2016, 150, 216–226. [Google Scholar]
- Cui, Z.; Beach, E.S.; Anastas, P.T. Modification of chitosan films with environmentally benign reagents for increased water resistance. Green Chem. Lett. Rev. 2011, 4, 35–40. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.; Bryce, D.L. Spectrometric Identification of Organic Compounds; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Pawar, S.V.; Yadav, G.D. Pva/chitosan–glutaraldehyde cross-linked nitrile hydratase as reusable biocatalyst for conversion of nitriles to amides. J. Mol. Catal. B 2014, 101, 115–121. [Google Scholar] [CrossRef]
- Atkins, P.W.; Walters, V.; de Paula, J. Physical Chemistry; Macmillan Higher Education: Gordonsville, VA, USA, 2006. [Google Scholar]
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley India Pvt. Limited: New Delhi, India, 2006. [Google Scholar]
- Bodnar, M.; Hartmann, J.F.; Borbely, J. Preparation and characterization of chitosan-based nanoparticles. Biomacromolecules 2005, 6, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Valderruten, N.; Valverde, J.; Zuluaga, F.; Ruiz-Durántez, E. Synthesis and characterization of chitosan hydrogels cross-linked with dicarboxylic acids. React. Funct. Polym. 2014, 84, 21–28. [Google Scholar] [CrossRef]
- Toffey, A.; Samaranayake, G.; Frazier, C.E.; Glasser, W.G. Chitin derivatives. I. Kinetics of the heat-induced conversion of chitosan to chitin. J. Appl. Polym. Sci. 1996, 60, 75–85. [Google Scholar] [CrossRef]
- Aryaei, A.; Jayatissa, A.H.; Jayasuriya, A.C. Nano and micro mechanical properties of uncross-linked and cross-linked chitosan films. J. Mech. Behav. Biomed. Mater. 2012, 5, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Rivero, S.; Damonte, L.; García, M.; Pinotti, A. An insight into the role of glycerol in chitosan films. Food Biophys. 2016, 11, 117–127. [Google Scholar] [CrossRef]
- Domjan, A.; Bajdik, J.; Pintye-Hodi, K. Understanding of the plasticizing effects of glycerol and peg 400 on chitosan films using solid-state nmr spectroscopy. Macromolecules 2009, 42, 4667–4673. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; de la Caba, K. Functional properties of chitosan-based films. Carbohydr. Polym. 2013, 93, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Mi, F.-L.; Huang, C.-T.; Liang, H.-F.; Chen, M.-C.; Chiu, Y.-L.; Chen, C.-H.; Sung, H.-W. Physicochemical, antimicrobial, and cytotoxic characteristics of a chitosan film cross-linked by a naturally occurring cross-linking agent, aglycone geniposidic acid. J. Agric. Food Chem. 2006, 54, 3290–3296. [Google Scholar] [CrossRef] [PubMed]
- Heidarian, P.; Behzad, T.; Karimi, K. Isolation and characterization of bagasse cellulose nanofibrils by optimized sulfur-free chemical delignification. Wood Sci. Technol. 2016, 50, 1–18. [Google Scholar] [CrossRef]
- Vollhardt, K.P.C.; Schore, N.E. Organic Chemistry: Structure and Function; WH Freeman: New York, NY, USA, 2011. [Google Scholar]
Run | Factor 1: Temperature (°C) | Factor 2: Time (min) | Response 1: TS (MPa) | Response 2: CLD (%) | EB (%) | YM (MPa) |
---|---|---|---|---|---|---|
1 | 35 | 0 | 78.14 | 0 | 3.79 | 4798 |
2 | 80 | 10 | 76.07 | 14.4 | 4.06 | 5014 |
3 | 100 | 10 | 79.61 | 18.5 | 4.78 | 5038 |
4 | 75 | 65 | 100.18 | 27.7 | 4.22 | 5115 |
5 | 90 | 65 | 95.76 | 30.9 | 3.81 | 5194 |
6 | 90 a | 65 | 93.14 | 30.9 | 3.76 | 5189 |
7 | 90 | 65 | 96.69 | 30.9 | 3.93 | 5208 |
8 | 104 | 65 | 92.27 | 34.8 | 3.39 | 5237 |
9 | 80 | 120 | 80.97 | 40.5 | 3.00 | 5356 |
10 | 90 | 143 | 62.84 | 48.6 | 1.73 | 5569 |
11 | 100 | 120 | 52.52 | 51.6 | 1.42 | 5775 |
Chitosan Film | Solvent | CNFs (gr/gr CS) | Glycerol (gr/gr CS) | Curing | TS (MPa) | EB (%) | YM (MPa) |
---|---|---|---|---|---|---|---|
CSAc | Ac | 0 | 0 | No | 48.45 | 8.11 | 3183 |
CSAd | Ad | 0 | 0 | No | 78.14 | 3.79 | 4798 |
CScAd | Ad | 0 | 0 | Yes | 103.25 | 4.37 | 5434 |
pCSAc | Ac | 0 | 0.2 | No | 25.69 | 31.03 | 381 |
pCSAd | Ad | 0 | 0.2 | No | 68.32 | 18.61 | 1736 |
pCScAd | Ad | 0 | 0.2 | Yes | 81.57 | 13.98 | 2297 |
p3CSAc | Ac | 0.03 | 0.2 | No | 38.18 | 24.73 | 728 |
p3CScAd | Ad | 0.03 | 0.2 | Yes | 113.41 | 12.55 | 3004 |
p5CSAc | Ac | 0.05 | 0.2 | No | 45.66 | 21.40 | 983 |
p5CScAd | Ad | 0.05 | 0.2 | Yes | 127.84 | 11.93 | 4715 |
p7CSAc | Ac | 0.07 | 0.2 | No | 40.03 | 17.89 | 1027 |
p7CScAd | Ad | 0.07 | 0.2 | Yes | 109.37 | 8.51 | 4082 |
Materials | TS (MPa) | EB (%) | YM (MPa) |
---|---|---|---|
p5CScAd | 127 | 11.93 | 4715 |
CSAc1 | 55–62 | 4.58 | - |
CSAc2 | 79 | 8.58 | 1590 |
5CSAc | 99 | 3.98 | 2971 |
p15CSAc | 52.7 | 10.3 | 1368 |
CS-GA | 25 | 19.8 | - |
Alginate | 18–49 | 6.5-13 | 122–480 |
Gelatin | 47–85 | 3-8 | 1978–2245 |
LDPE | 8–31 | 125–675 | 200–500 |
PP | 31–43 | 100–600 | 1140–1550 |
PS | 14–70 | 1.0–2.3 | 2280–3280 |
PVC | 10–55 | 200–450 | 3–21 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falamarzpour, P.; Behzad, T.; Zamani, A. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid. Int. J. Mol. Sci. 2017, 18, 396. https://doi.org/10.3390/ijms18020396
Falamarzpour P, Behzad T, Zamani A. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid. International Journal of Molecular Sciences. 2017; 18(2):396. https://doi.org/10.3390/ijms18020396
Chicago/Turabian StyleFalamarzpour, Pouria, Tayebeh Behzad, and Akram Zamani. 2017. "Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid" International Journal of Molecular Sciences 18, no. 2: 396. https://doi.org/10.3390/ijms18020396
APA StyleFalamarzpour, P., Behzad, T., & Zamani, A. (2017). Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid. International Journal of Molecular Sciences, 18(2), 396. https://doi.org/10.3390/ijms18020396