Diagnostic Limitation of Fine-Needle Aspiration (FNA) on Indeterminate Thyroid Nodules Can Be Partially Overcome by Preoperative Molecular Analysis: Assessment of RET/PTC1 Rearrangement in BRAF and RAS Wild-Type Routine Air-Dried FNA Specimens
Abstract
:1. Introduction
2. Results
2.1. Detection of the RET/PTC1 Rearrangement in a Fresh TPC1 Cell Line
2.2. Detection of the RET/PTC1 Rearrangement in Routine Air-Dried TPC1 Cell Line
2.3. Correlation of the RET/PTC1 Rearrangement between Routine Air-Dried FNA and Paired FFPE PTC Tissue Specimens
2.4. Detection of the RET/PTC1 Rearrangement in Resected BRAF and RAS Wild-Type PTC Cases Using FFPE Tissue Specimen
2.5. Comparative Analysis of RT-PCR with the NanoString nCounter Gene Expression Assay for Detecting RET/PTC1 Rearrangement in FFPE PTC Tissue Specimen
3. Discussion
4. Materials and Methods
4.1. Total RNA Extraction and First-Strand Synthesis
4.2. RT-PCR
4.3. NanoString nCounter Gene Expression Assay
4.4. Detection of the RET/PTC1 Rearrangement in Fresh TPC1 Cell Line
4.5. Detection of RET/PTC1 Rearrangement in Routine Air-Dried TPC1 Cell Line
4.6. Correlation of RET/PTC1 Rearrangement between Routine Air-Dried FNA and Paired FFPE PTC Tissue Specimens
4.7. Detection of the RET/PTC1 Rearrangement in Resected BRAF and RAS Wild-Type PTC Cases Using FFPE Tissue Specimen
4.8. Comparison Analysis of RT-PCR with the NanoString nCounter Gene Expression Assay for Detecting RET/PTC1 Rearrangement
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AUS | Atypia of undetermined significance |
Ct | Threshold cycle |
FFPE | Formalin-fixed paraffin-embedded |
FN | Follicular neoplasm; |
FNA | Fine needle aspiration |
FLUS | Follicular lesion of undetermined significance |
FVPTC | Follicular variant of papillary thyroid carcinoma |
FTC | Follicular thyroid carcinoma |
NGS | Next generation sequencing |
RT-PCR | Real-time reverse transcription-polymerase chain reaction |
SFN | Suspicious for follicular neoplasm |
PTC | Papillary thyroid carcinoma |
TPC1 | Thyroid papillary carcinoma 1 |
References
- Vander, J.B.; Gaston, E.A.; Dawber, T.R. The significance of nontoxic thyroid nodules. Final report of a 15-year study of the incidence of thyroid malignancy. Ann. Intern. Med. 1968, 69, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Tunbridge, W.M.; Evered, D.C.; Hall, R.; Appleton, D.; Brewis, M.; Clark, F.; Evans, J.G.; Young, E.; Bird, T.; Smith, P.A. The spectrum of thyroid disease in a community: The whickham survey. Clin. Endocrinol. 1977, 7, 481–493. [Google Scholar] [CrossRef]
- Tan, G.H.; Gharib, H. Thyroid incidentalomas: Management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann. Intern. Med. 1997, 126, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009, 39, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, L. Clinical practice. The thyroid nodule. N. Engl. J. Med. 2004, 351, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Mandel, S.J. A 64-year-old woman with a thyroid nodule. JAMA 2004, 292, 2632–2642. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.I. Thyroid carcinoma. Lancet 2003, 361, 501–511. [Google Scholar] [CrossRef]
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.; Welch, H.G. Current thyroid cancer trends in the United States. JAMA Otolaryngol. Head Neck Surg. 2014, 140, 317–322. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Registration and Statistics in Korea 2015; Korea Central Cancer Registry: Goyang, Korea, 2015.
- Gharib, H.; Goellner, J.R. Fine-needle aspiration biopsy of the thyroid: An appraisal. Ann. Intern. Med. 1993, 118, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Udelsman, R.; Chen, H. The current management of thyroid cancer. Adv. Surg. 1999, 33, 1–27. [Google Scholar] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Goutas, N.; Vlachodimitropoulos, D.; Bouka, M.; Lazaris, A.C.; Nasioulas, G.; Gazouli, M. BRAF and K-RAS mutation in a Greek papillary and medullary thyroid carcinoma cohort. Anticancer Res. 2008, 28, 305–308. [Google Scholar] [PubMed]
- Kim, S.K.; Song, K.H.; Lim, S.D.; Lim, Y.C.; Yoo, Y.B.; Kim, J.S.; Hwang, T.S. Clinical and pathological features and the BRAFV600E mutation in patients with papillary thyroid carcinoma with and without concurrent hashimoto thyroiditis. Thyroid 2009, 19, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006, 295, 2164–2167. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.K.; Little, M.P.; Lubin, J.H.; Brenner, A.V.; Wells, S.A., Jr.; Sigurdson, A.J.; Nikiforov, Y.E. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J. Clin. Endocrinol. Metab. 2014, 99, E276–E285. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Kim, W.Y.; Hwang, T.S.; Lee, S.S.; Kim, H.; Han, H.S.; Lim, S.D.; Kim, W.S.; Yoo, Y.B.; Park, K.S. BRAF and RAS mutations in follicular variants of papillary thyroid carcinoma. Endocr. Pathol. 2013, 24, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Jung, C.K.; Kim, T.E.; Bae, J.S.; Jung, S.L.; Choi, Y.J.; Kang, C.S. Molecular genotyping of follicular variant of papillary thyroid carcinoma correlates with diagnostic category of fine-needle aspiration cytology: Values of RAS mutation testing. Thyroid 2013, 23, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Bongarzone, I.; Butti, M.G.; Coronelli, S.; Borrello, M.G.; Santoro, M.; Mondellini, P.; Pilotti, S.; Fusco, A.; Della Porta, G.; Pierotti, M.A. Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res. 1994, 54, 2979–2985. [Google Scholar] [PubMed]
- Bongarzone, I.; Monzini, N.; Borrello, M.G.; Carcano, C.; Ferraresi, G.; Arighi, E.; Mondellini, P.; Della Porta, G.; Pierotti, M.A. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI α of cyclic AMP-dependent protein kinase A. Mol. Cell. Biol. 1993, 13, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Grieco, M.; Santoro, M.; Berlingieri, M.T.; Melillo, R.M.; Donghi, R.; Bongarzone, I.; Pierotti, M.A.; Della Porta, G.; Fusco, A.; Vecchio, G. PTC is a novel rearranged form of the RET proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990, 60, 557–563. [Google Scholar] [CrossRef]
- Jhiang, S.M.; Smanik, P.A.; Mazzaferri, E.L. Development of a single-step duplex RT-PCR detecting different forms of RET activation, and identification of the third form of in vivo ret activation in human papillary thyroid carcinoma. Cancer Lett. 1994, 78, 69–76. [Google Scholar] [CrossRef]
- Santoro, M.; Dathan, N.A.; Berlingieri, M.T.; Bongarzone, I.; Paulin, C.; Grieco, M.; Pierotti, M.A.; Vecchio, G.; Fusco, A. Molecular characterization of RET/PTC3; a novel rearranged version of the retproto-oncogene in a human thyroid papillary carcinoma. Oncogene 1994, 9, 509–516. [Google Scholar] [PubMed]
- Fenton, C.L.; Lukes, Y.; Nicholson, D.; Dinauer, C.A.; Francis, G.L.; Tuttle, R.M. The RET/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J. Clin. Endocrinol. Metab. 2000, 85, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Rabes, H.M.; Demidchik, E.P.; Sidorow, J.D.; Lengfelder, E.; Beimfohr, C.; Hoelzel, D.; Klugbauer, S. Pattern of radiation-induced ret and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: Biological, phenotypic, and clinical implications. Clin. Cancer Res. 2000, 6, 1093–1103. [Google Scholar] [PubMed]
- Unger, K.; Zitzelsberger, H.; Salvatore, G.; Santoro, M.; Bogdanova, T.; Braselmann, H.; Kastner, P.; Zurnadzhy, L.; Tronko, N.; Hutzler, P.; et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-chernobyl papillary thyroid carcinomas. J. Clin. Endocrinol. Metab. 2004, 89, 4272–4279. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ciampi, R.; Nikiforova, M.N.; Gandhi, M.; Nikiforov, Y.E. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: Effects of the detection methods and genetic heterogeneity. J. Clin. Endocrinol. Metab. 2006, 91, 3603–3610. [Google Scholar] [CrossRef] [PubMed]
- Namba, H.; Yamashita, S.; Pei, H.C.; Ishikawa, N.; Villadolid, M.C.; Tominaga, T.; Kimura, H.; Tsuruta, M.; Yokoyama, N.; Izumi, M.; et al. Lack of PTC gene (RET proto-oncogene rearrangement) in human thyroid tumors. Endocrinol. Jpn. 1991, 38, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E.; Rowland, J.M.; Bove, K.E.; Monforte-Munoz, H.; Fagin, J.A. Distinct pattern of RET oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997, 57, 1690–1694. [Google Scholar] [PubMed]
- Park, K.Y.; Koh, J.M.; Kim, Y.I.; Park, H.J.; Gong, G.; Hong, S.J.; Ahn, I.M. Prevalences of GS α, ras, p53 mutations and RET/PTC rearrangement in differentiated thyroid tumours in a Korean population. Clin. Endocrinol. 1998, 49, 317–323. [Google Scholar] [CrossRef]
- Lee, C.H.; Hsu, L.S.; Chi, C.W.; Chen, G.D.; Yang, A.H.; Chen, J.Y. High frequency of rearrangement of the ret protooncogene (RET/PTC) in chinese papillary thyroid carcinomas. J. Clin. Endocrinol. Metab. 1998, 83, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Rhoden, K.J.; Johnson, C.; Brandao, G.; Howe, J.G.; Smith, B.R.; Tallini, G. Real-time quantitative RT-PCR identifies distinct C-RET, RET/PTC1 and RET/PTC3 expression patterns in papillary thyroid carcinoma. Lab. Investig. 2004, 84, 1557–1570. [Google Scholar] [CrossRef] [PubMed]
- Di Cristofaro, J.; Vasko, V.; Savchenko, V.; Cherenko, S.; Larin, A.; Ringel, M.D.; Saji, M.; Marcy, M.; Henry, J.F.; Carayon, P.; et al. Ret/PTC1 and RET/PTC3 in thyroid tumors from chernobyl liquidators: Comparison with sporadic tumors from ukrainian and french patients. Endocr. Relat. Cancer 2005, 12, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Mayr, B.; Potter, E.; Goretzki, P.; Ruschoff, J.; Dietmaier, W.; Hoang-Vu, C.; Dralle, H.; Brabant, G. Expression of RET/PTC1, -2, -3, -Δ3 and -4 in German papillary thyroid carcinoma. Br. J. Cancer 1998, 77, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E. RET/PTC rearrangement in thyroid tumors. Endocr. Pathol. 2002, 13, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Tallini, G.; Asa, S.L. Ret oncogene activation in papillary thyroid carcinoma. Adv. Anat. Pathol. 2001, 8, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.H.; Hahm, J.R.; Min, Y.K.; Lee, M.S.; Lee, M.K.; Kim, K.W.; Nam, S.J.; Yang, J.H.; Ree, H.J. Detection of RET/PTC oncogene rearrangements in Korean papillary thyroid carcinomas. Thyroid 1999, 9, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Motomura, T.; Nikiforov, Y.E.; Namba, H.; Ashizawa, K.; Nagataki, S.; Yamashita, S.; Fagin, J.A. Ret rearrangements in Japanese pediatric and adult papillary thyroid cancers. Thyroid 1998, 8, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.; Sapio, M.R.; Marotta, V.; Campanile, E.; Moretti, M.I.; Deandrea, M.; Motta, M.; Limone, P.P.; Fenzi, G.; Rossi, G.; et al. Prevalence of RET/PTC rearrangement in benign and malignant thyroid nodules and its clinical application. Endocr. J. 2011, 58, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Marotta, V.; Guerra, A.; Sapio, M.R.; Campanile, E.; Motta, M.; Fenzi, G.; Rossi, G.; Vitale, M. Growing thyroid nodules with benign histology and RET rearrangement. Endocr. J. 2010, 57, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Sapio, M.R.; Guerra, A.; Marotta, V.; Campanile, E.; Formisano, R.; Deandrea, M.; Motta, M.; Limone, P.P.; Fenzi, G.; Rossi, G.; et al. High growth rate of benign thyroid nodules bearing RET/PTC rearrangements. J. Clin. Endocrinol. Metab. 2011, 96, E916–E919. [Google Scholar] [CrossRef] [PubMed]
- Eszlinger, M.; Krogdahl, A.; Munz, S.; Rehfeld, C.; Precht Jensen, E.M.; Ferraz, C.; Bosenberg, E.; Drieschner, N.; Scholz, M.; Hegedus, L.; et al. Impact of molecular screening for point mutations and rearrangements in routine air-dried fine-needle aspiration samples of thyroid nodules. Thyroid 2014, 24, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, C.; Rehfeld, C.; Krogdahl, A.; Precht Jensen, E.M.; Bosenberg, E.; Narz, F.; Hegedus, L.; Paschke, R.; Eszlinger, M. Detection of PAX8/PPARG and RET/PTC rearrangements is feasible in routine air-dried fine needle aspiration smears. Thyroid 2012, 22, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.C.; Carydis, B.; Ezzat, S.; Bedard, Y.C.; Asa, S.L. Analysis of RET/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J. Clin. Endocrinol. Metab. 2001, 86, 2187–2190. [Google Scholar] [CrossRef] [PubMed]
- Musholt, T.J.; Fottner, C.; Weber, M.M.; Eichhorn, W.; Pohlenz, J.; Musholt, P.B.; Springer, E.; Schad, A. Detection of papillary thyroid carcinoma by analysis of BRAF and RET/PTC1 mutations in fine-needle aspiration biopsies of thyroid nodules. World J. Surg. 2010, 34, 2595–2603. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E.; Steward, D.L.; Robinson-Smith, T.M.; Haugen, B.R.; Klopper, J.P.; Zhu, Z.; Fagin, J.A.; Falciglia, M.; Weber, K.; Nikiforova, M.N. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J. Clin. Endocrinol. Metab. 2009, 94, 2092–2098. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, G.; Giannini, R.; Faviana, P.; Caleo, A.; Migliaccio, I.; Fagin, J.A.; Nikiforov, Y.E.; Troncone, G.; Palombini, L.; Basolo, F.; et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2004, 89, 5175–5180. [Google Scholar] [CrossRef] [PubMed]
- An, J.H.; Song, K.H.; Kim, S.K.; Park, K.S.; Yoo, Y.B.; Yang, J.H.; Hwang, T.S.; Kim, D.L. Ras mutations in indeterminate thyroid nodules are predictive of the follicular variant of papillary thyroid carcinoma. Clin. Endocrinol. 2015, 82, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.S.; Kim, W.Y.; Han, H.S.; Lim, S.D.; Kim, W.S.; Yoo, Y.B.; Park, K.S.; Oh, S.Y.; Kim, S.K.; Yang, J.H. Preoperative RAS mutational analysis is of great value in predicting follicular variant of papillary thyroid carcinoma. BioMed Res. Int. 2015, 2015, 697068. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Kim, D.L.; Han, H.S.; Kim, W.S.; Kim, S.J.; Moon, W.J.; Oh, S.Y.; Hwang, T.S. Pyrosequencing analysis for detection of a BRAFV600E mutation in an fnab specimen of thyroid nodules. Diagn. Mol. Pathol. 2008, 17, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Cantara, S.; Capezzone, M.; Marchisotta, S.; Capuano, S.; Busonero, G.; Toti, P.; Di Santo, A.; Caruso, G.; Carli, A.F.; Brilli, L.; et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J. Clin. Endocrinol. Metab. 2010, 95, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Ohori, N.P.; Nikiforova, M.N.; Schoedel, K.E.; LeBeau, S.O.; Hodak, S.P.; Seethala, R.R.; Carty, S.E.; Ogilvie, J.B.; Yip, L.; Nikiforov, Y.E. Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol. 2010, 118, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.M. Digital multiplexed gene expression analysis using the nanostring ncounter system. Curr. Protoc. Mol. Biol. 2011. [Google Scholar] [CrossRef]
Cell Number | RET/PTC1 (Ct) | GAPDH (Ct) |
---|---|---|
1000 | 30.3 | 23.1 |
500 | 31.2 | 24.2 |
250 | 34.1 | 27.1 |
100 | 35.6 | 29.4 |
50 | 36.7 | 30.6 |
Cell Number | RET/PTC1 (Ct) | GAPDH (Ct) |
---|---|---|
1000 | 32.3 | 29.4 |
500 | 33.9 | 31.1 |
250 | 34.2 | 32.8 |
100 | 33.3 | 31.1 |
50 | 34.6 | 33.3 |
Ct of FFPE Specimen | Ct of FNA Specimen | ||||
---|---|---|---|---|---|
Case | RET/PTC1 | GAPDH | Case | RET/PTC1 | GAPDH |
1 | 26.15 | 27.40 | 1 | 35.05 | 35.86 |
2 | 26.15 | 29.23 | 2 | 36.41 | 37.54 |
3 | 26.32 | 28.96 | 3 | 37.03 | 34.79 |
4 | 40 | 34.67 | 4 | 50 | 36.74 |
5 | 24.64 | 28.84 | 5 | 37.66 | 35.86 |
6 | 31.71 | 29.92 | 6 | 34.26 | 35.47 |
7 | 24.71 | 26.98 | 7 | 36.62 | 36.78 |
8 | 50.00 | 28.64 | 8 | 50.00 | 31.69 |
9 | 50.00 | 27.55 | 9 | 50.00 | 30.34 |
10 | 50.00 | 29.31 | 10 | 50.00 | 30.01 |
RET/PTC1 | Primers and Probes Sequences |
---|---|
Forward primer (5′–3′) | CGC GAC CTG CGC AAA |
Reverse primer (5′–3′) | CAA GTT CTT CCG AGG GAA TTC C |
TaqMan Probe (5′–3′) | FAM-CCA GCG TTA CCA TCG AGG ATC CAA AGT-BHQ1 |
GAPDH | |
Forward primer (5′–3′) | GTT CGA CAG TCA GCC GCA TC |
Reverse primer (5′–3′) | GGA ATT TGC CAT GGG TGG A |
TaqMan Probe (5′–3′) | FAM-ACC AGG CGC CCA ATA CGA CCA A-BHQ1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, Y.S.; Hwang, T.S.; Kim, J.Y.; Choi, Y.-L.; Lee, S.E.; Han, H.S.; Kim, W.S.; Kim, S.K.; Park, K.S. Diagnostic Limitation of Fine-Needle Aspiration (FNA) on Indeterminate Thyroid Nodules Can Be Partially Overcome by Preoperative Molecular Analysis: Assessment of RET/PTC1 Rearrangement in BRAF and RAS Wild-Type Routine Air-Dried FNA Specimens. Int. J. Mol. Sci. 2017, 18, 806. https://doi.org/10.3390/ijms18040806
Ko YS, Hwang TS, Kim JY, Choi Y-L, Lee SE, Han HS, Kim WS, Kim SK, Park KS. Diagnostic Limitation of Fine-Needle Aspiration (FNA) on Indeterminate Thyroid Nodules Can Be Partially Overcome by Preoperative Molecular Analysis: Assessment of RET/PTC1 Rearrangement in BRAF and RAS Wild-Type Routine Air-Dried FNA Specimens. International Journal of Molecular Sciences. 2017; 18(4):806. https://doi.org/10.3390/ijms18040806
Chicago/Turabian StyleKo, Young Sin, Tae Sook Hwang, Ja Yeon Kim, Yoon-La Choi, Seung Eun Lee, Hye Seung Han, Wan Seop Kim, Suk Kyeong Kim, and Kyoung Sik Park. 2017. "Diagnostic Limitation of Fine-Needle Aspiration (FNA) on Indeterminate Thyroid Nodules Can Be Partially Overcome by Preoperative Molecular Analysis: Assessment of RET/PTC1 Rearrangement in BRAF and RAS Wild-Type Routine Air-Dried FNA Specimens" International Journal of Molecular Sciences 18, no. 4: 806. https://doi.org/10.3390/ijms18040806
APA StyleKo, Y. S., Hwang, T. S., Kim, J. Y., Choi, Y. -L., Lee, S. E., Han, H. S., Kim, W. S., Kim, S. K., & Park, K. S. (2017). Diagnostic Limitation of Fine-Needle Aspiration (FNA) on Indeterminate Thyroid Nodules Can Be Partially Overcome by Preoperative Molecular Analysis: Assessment of RET/PTC1 Rearrangement in BRAF and RAS Wild-Type Routine Air-Dried FNA Specimens. International Journal of Molecular Sciences, 18(4), 806. https://doi.org/10.3390/ijms18040806