The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction
Abstract
:1. Extracellular Matrix in General
2. Cumulus–Oophorus Extracellular Matrix in Ovarian Follicles: Characterization of Essential Components
2.1. IαI Family Proteins
2.2. TNFAIP6
2.3. PTX3
3. Effect of Specific Inhibitors (AG1478, Lapatinib, Indomethacin and MG132) and Progesterone Receptor Antagonist (RU486) on the Formation of HA-Rich Cumulus Extracellular Matrix
3.1. Inhibition of EGFR Signaling Pathway (with AG1478) Affects Meiotic Maturation, Cumulus Expansion and Hyaluronan and Progesterone Synthesis
3.2. Inhibition of EGFR Tyrosine Kinase (with Lapatinib) Affects Meiotic Maturation, Cumulus Expansion, and Expression of Cumulus-Associated Transcripts
3.3. Addition of Progesterone Receptor Antagonist (RU486) to Culture Medium Affects Meiotic Maturation; It Does Not Affect Formation of Cumulus Extracellular Matrix Relying on the Covalent Transfer of Heavy Chains of IαI Molecules to Hyaluronan
3.4. Addition of General COX Inhibitor (Indomethacin) to Culture Medium does not Affect Meiotic Maturation, nor Formation of Cumulus Extracellular Matrix
3.5. Inhibition of Proteasomal Proteolysis (with MG132) Strongly Affects Meiotic Maturation and Formation of Cumulus Extracellular Matrix
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ECM | Extracellular matrix |
HA | Hyaluronan |
IαI | Inter-alpha-trypsin inhibitor |
TNFAIP6 | Tumor necrosis factor alpha-induced protein 6 |
PTX3 | Pentraxin 3 |
OCC | Oocyte-cumulus complexes |
COX2/PTGS2 | Cyclooxygenase/prostaglandin endoperoxide synthase |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
GVBD | Germinal vesicle breakdown |
M I | Metaphase I |
M II | Metaphase II |
hCG | Human chorion gonadotropin |
PMSG | Pregnant mare gonadotropin |
TFGβ | Transforming growth factor beta |
References
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Naba, A.; Clauser, K.R.; Hoersch, S.; Liu, H.; Carr, S.A.; Hynes, R.O. The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteomics 2012, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hynes, R.O.; Naba, A. Overview of the matrisome—An inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 2012, 4. [Google Scholar] [CrossRef] [PubMed]
- Theocharis, A.D.; Skandalis, S.S.; Tzanakakis, G.N.; Karamanos, N.K. Proteoglycans in health and disease: Novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010, 277, 3904–3923. [Google Scholar] [CrossRef] [PubMed]
- Itano, N.; Sawai, T.; Yoshida, M.; Lenas, P.; Yamada, Y.; Imagawa, M.; Shinomura, T.; Hamaguchi, M.; Yoshida, Y.; Ohnuki, Y.; et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 1999, 274, 25085–25092. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, A.; Brinck, J.; Briskin, M.J.; Spicer, A.P.; Heldin, P. Expression of human hyaluronan synthases in response to external stimuli. Biochem. J. 2000, 348 Pt 1, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.; Jedrzejas, M.J. Hyaluronidases: Their genomics, structures, and mechanisms of action. Chem. Rev. 2006, 106, 818–839. [Google Scholar] [CrossRef] [PubMed]
- Jarvelainen, H.; Sainio, A.; Koulu, M.; Wight, T.N.; Pentinen, R. Extracellular matrix molecules: Potential targets in pharmacotherapy. Pharmacol. Rev. 2009, 61, 198–223. [Google Scholar] [CrossRef] [PubMed]
- Bateman, J.F.; Boot-Handford, R.P.; Lamande, S.R. Genetic diseases of connective tissues: Cellular and extracellular effects of ECM mutations. Nat. Rev. Gen. 2009, 10, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Mao, S.J.; McLean, L.R.; Powers, R.W.; Larsen, W.J. Proteins of the inter-alpha-trypsin inhibitor family stabilize the cumulus extracellular matrix through their direct binding with hyaluronic acid. J. Biol. Chem. 1994, 269, 28282–28287. [Google Scholar] [PubMed]
- Zhuo, L.; Yoneda, M.; Zhao, M.; Yingsung, W.; Yoshida, N.; Kitagawa, Y.; Kawamura, K.; Suzuki, T.; Kimata, K. Defect in SHAP-hyaluronan complex causes severe female infertility. A study by inactivation of the bikunin gene in mice. J. Biol. Chem. 2001, 276, 7693–7696. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, E.; Camaioni, A.; Prochazka, R.; Salustri, A. Covalent transfer of heavy chains of inter-alpha-trypsin inhibitor family proteins to hyaluronan in in vivo and in vitro expanded porcine oocyte-cumulus complexes. Biol. Reprod. 2004, 71, 1838–1843. [Google Scholar] [CrossRef] [PubMed]
- Fulop, C.; Szanto, S.; Mukhopadhyay, D.; Bardos, T.; Kamath, R.V.; Rugg, M.S.; Day, A.J.; Salustri, A.; Hascall, V.C.; Glant, T.T.; et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein 6 deficient mice. Development 2003, 130, 2253–2261. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Kobayashi, H.; Tanaka, Y.; Kanayama, N.; Terao, T. Reproductive failure in mice lacking inter-alpha-trypsin inhibitor (ITI)-ITI target genes in mouse ovary identified by microarray analysis. J. Endocrinol. 2004, 183, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Salustri, A.; Yanagishita, M.; Hascall, V.C. Synthesis and accumulation of hyaluronic acid and proteoglycans in the mouse cell-oocyte complex during follicle-stimulating hormone-induced mucification. J. Biol. Chem. 1989, 264, 13840–13847. [Google Scholar] [PubMed]
- Chen, L.; Wert, S.E.; Hendrix, E.M.; Russell, P.T.; Cannon, M.; Larsen, W.J. Hyaluronic acid synthesis and gap junction endocytosis are necessary for normal expansion of the cumulus mass. Mol. Reprod. Dev. 1990, 26, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Fulop, C.; Salustri, A.; Hascall, V.C. Coding sequence of a hyaluronan synthase homologue expressed during expansion of the mouse cumulus-oocyte complex. Arch. Biochem. Biophys. 1997, 337, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Carrette, O.; Nemade, R.V.; Day, A.J.; Brickner, A.; Larsen, W.J. TSG-6 is concentrated in the extracellular matrix of mouse cumulus oocyte complexes through hyaluronan and inter-alpha-inhibitor binding. Biol. Reprod. 2001, 65, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Nagyová, E.; Procházka, R.; Vanderhyden, B.C. Ooocytectomy does not influence synthesis of hyaluronic acid by pig cumulus cells: Retention of hyaluronic acid after insulin-like growth factor-I treatment in serum free-medium. Biol. Reprod. 1999, 61, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Mao, S.J.; Larsen, W.J. Identification of a factor in foetal bovine serum that stabilizes the cumulus extracellular matrix. A role for a member of the inter-alpha-trypsin inhibitor family. J. Biol. Chem. 1992, 267, 12380–12386. [Google Scholar] [PubMed]
- Chen, L.; Zhang, H.; Powers, R.W.; Russell, P.T.; Larsen, W.J. Covalent linkage between proteins of the inter-a-inhibitor family and hyaluronic acid is mediated by a factor produced by granulosa cells. J. Biol. Chem. 1996, 271, 19409–19414. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, E. Organization of the expanded cumulus-extracellular matrix in preovulatory follicles: A role for inter-alpha-trypsin inhibitor. Endocr. Regul. 2015, 49, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Fulop, C.; Kamath, R.V.; Li, Y.; Otto, J.M.; Salustri, A.; Olsen, B.R.; Glant, T.T.; Hascall, V.C. Coding sequence, exon-intron structure and chromosomal localization of murine TNF-stimulated gene 6 that is specifically expressed by expanding cumulus cell-oocyte complexes. Gene 1997, 202, 95–102. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Hascall, V.C.; Day, A.J.; Salustri, A.; Fulop, C. Two distinct populations of tumor necrosis factor-stimulated gene-6 protein in the extracellular matrix of expanded mouse cumulus cell-oocyte complexes. Arch. Biochem. Biophys. 2001, 394, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, S.; Ochsner, S.; Russell, D.L.; Ujioka, T.; Fujii, S.; Richards, J.S.; Espey, L.L. Expression of tumor necrosis factor -stimulated gene-6 in the rat ovary in response to an ovulatory dose of gonadotropin. Endocrinology 2000, 141, 4114–4119. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, E.; Camaioni, A.; Prochazka, R.; Day, A.J.; Salustri, A. Synthesis of tumor necrosis factor alpha-induced protein 6 in porcine preovulatory follicles: A study with A38 antibody. Biol. Reprod. 2008, 78, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, E.; Nemcova, L.; Prochazka, R. Expression of tumor necrosis factor alpha-induced protein 6 messenger RNA in porcine preovulatory ovarian follicles. J. Reprod. Dev. 2009, 55, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Sayasith, K.; Dore, M.; Sirois, J. Molecular characterization of tumor necrosis alpha-induced protein 6 and its human choret alionic gonadotropin-dependent induction in theca and mural granulosa cells of equine preovulatory follicles. Reproduction 2007, 133, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Varani, S.; Elvin, J.A.; Yan, C.; De Mayo, J.; DeMayo, F.J.; Horton, H.F.; Byrne, M.C.; Matzuk, M.M. Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol. Endocrinol. 2002, 16, 1154–1167. [Google Scholar] [CrossRef] [PubMed]
- Salustri, A.; Garlanda, C.; Hirsch, E.; De Acetis, M.; Taccagno, A.; Bottazzi, B.; Doni, A.; Bastone, A.; Mantovani, G.; Beck Peccoz, P.; et al. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 2004, 131, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Scarchilli, L.; Camaioni, A.; Bottazzi, B.; Negri, V.; Doni, A.; Deban, L.; Bastone, A.; Salvatori, G.; Mantovani, A.; Siracusa, G.; et al. PTX3 interacts with inter-alpha-trypsin inhibitor: Implications for hyaluronan organization and cumulus oophorus expansion. J. Biol. Chem. 2007, 282, 30161–30170. [Google Scholar] [CrossRef] [PubMed]
- Ievoli, E.; Lindstedt, R.; Inforzato, A.; Camaioni, A.; Palone, F.; Day, A.J.; Mantovani, A.; Salvatori, G.; Salustri, A. Implications of the oligomeric state of the N-terminal PTX3 domain in cumulus matrix assembly. Matrix Biol. 2011, 30, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Inforzato, A.; Rivieccio, V.; Morreale, A.P.; Bastone, A.; Salustri, A.; Scarchilli, L.; Verdoliva, A.; Vincenti, S.; Gallo, G.; Chiapparino, C.; et al. Structural characterization of PTX3 disulfide bond network and its multimeric status in cumulus matrix organization. J. Biol. Chem. 2008, 283, 10147–10161. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, E.; Kalous, J.; Nemcova, L. Increased expression of pentraxin 3 after in vivo and in vitro stimulation with gonadotropins in porcine oocyte-cumulus complexes and mural granulosa cells. Domest. Anim. Endocrinol. 2016, 56, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Mizon, C.; Balduyck, M.; Albani, D.; Michalski, C.; Burnouf, T.; Mizon, J. Development of an enzyme-linked immunosorbent assay for human plasma inter-alpha-trypsin inhibitor (ITI) using specific antibodies against each of the H1 and H2 heavy chains. Immunol. Methods 1996, 190, 61–70. [Google Scholar] [CrossRef]
- Salier, J.P.; Rouet, P.; Raguenez, G.; Daveau, M. The inter-a-inhibitor family: From structure to regulation. Biochem. J. 1996, 315, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rouet, P.; Daveau, M.; Salier, J.P. Electrophoretic pattern of the inter-alpha-inhibitor family proteins in human serum characterized by chain-specific antibodies. Biol. Chem. Hoppe-Seyler 1992, 373, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Carrette, O.; Mizon, C.; Sautiere, P.; Sesboue, R.; Mizon, J. Purification and characterization of pig inter-a-inhibitor and its constitutive heavy chains. Biochem. Biophys. Acta 1997, 1338, 21–30. [Google Scholar] [CrossRef]
- Flahaut, C.; Capon, C.; Balduyck, M.; Ricart, G.; Sautiere, P.; Mizon, J. Glycosylation pattern of human inter-alpha-inhibitor heavy chains. Biochem. J. 1998, 333 Pt 3, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Milner, C.M.; Day, A.J. TSG-6: A multifunctional protein associated with inflammation. J. Cell Sci. 2003, 116, 1863–1873. [Google Scholar] [CrossRef] [PubMed]
- Day, A.J.; de la Motte, C.A. Hyaluronan cross-linking: A protective mechanism in inflammation? Trends Immunol. 2005, 28, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Milner, C.M.; Higman, V.A.; Day, A.J. TSG-6: A pluripotent inflammatory mediator? Biochem. Soc. Trans. 2006, 34, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Jessen, T.E.; Odum, L. Role of tumour necrosis factor stimulated gene 6 (TSG-6) in the coupling of inter-alpha-trypsin inhibitor to hyaluronan in human follicular fluid. Reproduction 2003, 125, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.; Hsieh, M.; Park, J.Y.; Su, Y.Q. Role of the epidermal growth factor network in ovarian follicles. Mol. Endocrinol. 2006, 20, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, E.; Camaioni, A.; Scsukova, S.; Mlynarcikova, A.; Prochazka, R.; Nemcova, L.; Salustri, A. Activation of Cumulus Cell SMAD2/3 and Epidermal Growth Factor Receptor Pathways Are Involved in Porcine Oocyte-Cumulus Cell Expansion and Steroidogenesis. Mol. Reprod. Dev. 2011, 78, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Prochazka, R.; Kalab, P.; Nagyova, E. Epidermal growth factor-receptor tyrosine kinase activity regulates expansion of porcine oocyte-cumulus cell complexes in vitro. Biol. Reprod. 2003, 68, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Procházka, R.; Petlach, M.; Nagyová, E.; Nemcová, L. Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: Comparison with gonadotropins. Reproduction 2011, 141, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Kawashima, I.; Yanai, Y.; Nishibori, M.; Richards, J.S.; Shimada, M. Hormone-induced expression of tumor necrosis factor alpha converting enzyme/A disintegrin and metaloprotease-17 impacts porcine cumulus cell oocyte complex expansion and meiotic maturation via ligand activation of the epidermal growth factor receptor. Endocrinology 2007, 148, 6164–6175. [Google Scholar] [CrossRef] [PubMed]
- Wayne, C.M.; Fan, H.Y.; Cheng, X.; Richards, J.S. Follicle-stimulating hormone induces multiple signaling cascades: Evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol. Endocrinol. 2007, 21, 1940–1957. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazi, H.; Cao, X.; Motola, S.; Popliker, M.; Conti, M.; Tsafriri, A. Epidermal growth factor family members: Endogenous mediators of the ovulatory response. Endocrinology 2005, 46, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Reizel, Y.; Elbaz, Y.; Dekel, N. Sustained activity of the EGF receptor is an absolute requisite for LH-induced oocyte maturation and cumulus expansion. Mol. Endocrinol. 2010, 24, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Benton, E.; McCormick, F.; Thomas, H.; Gullick, W.J. Expression of the c-erbB-3/HER-3 and c-erbB-4/HER-4 growth factor receptors and their ligands, neuregulin-1 alpha, neuregulin-1 beta, and betacellulin, in normal endometrium and endometrial cancer. Clin. Cancer Res. 1999, 5, 2877–2883. [Google Scholar] [PubMed]
- Santin, A.D.; Bellone, S.; Gokden, M.; Palmieri, M.; Dunn, D.; Agha, J. Overexpression of HER-2/neu in uterine serous papillary cancer. Clin. Cancer Res. 2002, 8, 1271–1279. [Google Scholar] [PubMed]
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signaling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J.; Arteaga, C.L. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J. Clin. Oncol. 2005, 23, 2445–2459. [Google Scholar] [CrossRef] [PubMed]
- Kelly, H.; Graham, M.; Humes, E. Delivery of a healthy baby after first-trimester maternal exposure to lapatinib. Clin. Breast Cancer 2006, 7, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Rusnak, D.W.; Lackey, K.; Affleck, K.; Wood, E.R.; Alligood, K.J.; Rhodes, N. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther. 2001, 1, 85–94. [Google Scholar] [PubMed]
- Eccles, S. The epidermal growth factor receptor /Erb-B/HER family in normal and malignant breast biology. Int. J. Dev. Biol. 2011, 55, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, E.; Nemcova, L.; Mlynarcikova, A.; Scsukova, S.; Kalous, J. Lapatinib inhibits meiotic maturation of porcine oocyte-cumulus complexes cultured in vitro in gonadotropin -supplemented medium. Fertil. Steril. 2013, 99, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Lydon, J.P.; DeMayo, F.J.; Funk, C.R.; Mani, S.K.; Hughes, A.R.; Montgomery, C.A., Jr.; Shyamala, G.; Conneely, O.M.; O’Malley, B.W. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995, 9, 2266–2278. [Google Scholar] [CrossRef] [PubMed]
- Faivre, E.J.; Daniel, A.R.; Hillard, C.H.J.; Lange, C.A. Progesterone receptor rapid signaling mediates serine 345 phosphorylation and tethering to specificity protein 1 transcription factors. Mol. Endocrinol. 2008, 22, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, E.; Scsukova, S.; Kalous, J.; Mlynarcikova, A. Effect of RU486 and indomethacin on meiotic maturation, formation of extracellular matrix, and progesterone production by porcine oocyte-cumulus complexes. Domest. Anim. Endocrinol. 2014, 48, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Nishibori, M.; Yamashita, Y.; Ito, J.; Mori, T.; Richards, J.S. Down-regulated expression of A disintegrin and metalloproteinase with thrombospondin-like repeats-1 by progesterone receptor antagonist is associated with impaired expansion of porcine cumulus-oocyte complexes. Endocrinology 2004, 145, 4603–4614. [Google Scholar] [CrossRef] [PubMed]
- Roh, S.I.; Batten, B.E.; Friedman, C.I.; Kim, M.H. The effects of progesterone antagonist RU486 on mouse oocyte maturation, ovulation, fertilization, and cleavage. Am. J. Obstet. Gynecol. 1988, 159, 1584–1589. [Google Scholar] [CrossRef]
- Aparicio, I.M.; Garcia-Herreros, M.; O’Shea, L.C.; Hensey, C.; Lonergan, P.; Fair, T. Expression, regulation, and function of progesterone receptors in bovine cumulus oocyte complexes during in vitro maturation. Biol. Reprod. 2011, 84, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Markström, E.; Friberg, P.A.; Johansson, M.; Billig, H. Expression of progesterone receptor (PR) A and B isoforms in mouse granulosa cells: Stage-dependent PR-mediated regulation of apoptosis and cell proliferation. Biol. Reprod. 2003, 68, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Romero, S.; Smitz, J. Epiregulin can effectively mature isolated cumulus-oocyte complexes, but fails as a substitute for the hCG/epidermal growth factor stimulus on cultured follicles. Reproduction 2009, 137, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Sirois, J. Induction of prostaglandin endoperoxide synthase-2 by human chorionic gonadotropin in bovine preovulatory follicles in vivo. Endocrinology 1994, 135, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Nuttinck, F.; Reinaud, P.; Tricoire, H.; Vigneron, C.; Peynot, N.; Mialot, J.P.; Mermillod, P.; Charpigny, G. Cyclooxygenase-2 is expressed by cumulus cells during oocyte maturation in cattle. Mol. Reprod. Dev. 2002, 61, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.J.; Lennard, D.E.; Lee, C.A.; Tiano, H.F.; Morham, S.G.; Wetsel, W.C.; Langenbach, R. Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin E(2) and interleukin-1 beta. Endocrinology 1999, 140, 2685–2695. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Paria, B.C.; Das, S.K.; Dinchuc, J.E.; Langebach, R.; Trzaskos, J.M.; Dey, S.K. Multiple female reproductive failures in cyclooxygenase 2- deficient mice. Cell 1997, 91, 197–208. [Google Scholar] [CrossRef]
- Ochsner, S.A.; Russell, D.L.; Day, A.J.; Breyer, R.M.; Richards, J.S. Decreased expression of tumor necrosis factor-alpha-stimulated gene 6 in cumulus cells of the cyclooxygenase-2 and EP2 null mice. Endocrinology 2003, 144, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Janson, P.O.; Brannstrom, M.; Holmes, P.V.; Sogn, J. Studies on the mechanism of ovulation using the model of the isolated ovary. Ann. N. Y. Acad. Sci. 1988, 541, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.W.; Pursley, J.R.; Smith, G.W. Inhibition of intrafollicular PGE2 synthesis and ovulation following ultrasound-mediated intrafollicular injection of the selective cyclooxygenase-2 inhibitor NS-398 in cattle. J. Anim. Sci. 2004, 82, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D.M.; VandeVoort, C.A. Maturation and fertilization of non-human primate oocytes are compromised by oral administration of a COX-2 inhibitor. Fertil. Steril. 2011, 95, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Eppig, J.J. Prostaglandin E2 stimulates cumulus expansion and hyaluronic acid synthesis by cumuli oophori isolated from mice. Biol. Reprod. 1981, 25, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Ma, W.G.; Smalley, W.; Trzaskos, J.; Breyer, R.M.; Dey, S.K. Diversification cyclooxygenase-2-derived prostaglandins in ovulation and implantation. Biol. Rerpod. 2001, 64, 1557–1565. [Google Scholar] [CrossRef]
- Ben-Ami, I.; Freimann, S.; Armon, L.; Dantes, A.; Strassburger, D.; Friedler, S.; Raziel, A.; Seger, R.; Ron-El, R.; Amsterdam, A. PGE2 up-regulates EGF-like growth factor biosynthesis in human granulosa cells: New insights into the coordination between PGE2 and LH in ovulation. Mol. Hum. Reprod. 2006, 12, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Su, Y.Q.; Ariga, M.; Law, E.; Jin, S.L.; Conti, M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 2004, 303, 682–684. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.; Lee, D.; Panigone, S.; Horner, K.; Chen, R.; Theologis, A.; Lee, D.C.; Threadgill, D.W.; Conti, M. Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol. Cell. Biol. 2007, 27, 1914–1924. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.L.; Stein, R.; Adams, J. New insights into proteasome function: From archaebacteria to drug development. Chem. Biol. 1995, 2, 503–508. [Google Scholar] [CrossRef]
- Coux, O.; Tanaka, K.; Goldberg, A.L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996, 65, 801–847. [Google Scholar] [CrossRef] [PubMed]
- Josefsberg, L.B.; Galiani, D.; Dantes, A.; Amsterdam, A.; Dekel, N. The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes. Biol. Reprod. 2000, 62, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Goldberg, A.L. Proteasome inhibitors: Valuable new tools for cell biologists. Trends Cell Biol. 1998, 8, 397–403. [Google Scholar] [CrossRef]
- Rock, K.L.; Gramm, C.; Rothstein, L.; Clark, K.; Stein, R.; Dick, L.; Hwang, D.; Goldberg, A.L. Inhibitors of the proteasome block the degradation of most cell proteins and the generetaion of peptides presented on MHC class I molecules. Cell 1994, 78, 767–771. [Google Scholar] [CrossRef]
- Huo, L.J.; Fan, H.Y.; Liang, C.G.; Yu, L.Z.; Zhong, Z.S.; Chen, D.Y.; Sun, Q.Y. Regulation of ubiquitin-proteasome pathway on pig oocyte meiotic maturation and fertilization. Biol. Reprod. 2004, 71, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.J.; Fan, H.Y.; Zhong, Z.S.; Chen, D.Y.; Schatten, H.; Sun, Q.Y. Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech. Dev. 2004, 121, 1275–1287. [Google Scholar] [CrossRef] [PubMed]
- Chmelikova, E.; Sedmikova, M.; Rajmon, R.; Petr, J.; Svestkova, D.; Jilek, F. Effect of proteasome inhibitor MG132 on in vitro maturation of pig oocytes. Zygote 2004, 12, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.J.; Nagyova, E.; Manandhar, G.; Prochazka, R.; Sutovsky, M.; Park, C.S.; Sutovsky, P. Proteolytic activity of the 26S proteasome is required for the meiotic resumption, germinal vesicle breakdown, and cumulus expansion of porcine cumulus-oocyte complexes matured in vitro. Biol. Reprod. 2008, 78, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Mailhes, J.B.; Hilliard, C.; Lowery, M.; London, S.N. MG-132, an inhibitor of proteasomes and calpains, induced inhibition of oocyte maturation and aneuploidy in mouse oocytes. Cell Chromosom. 2002, 1, 2–7. [Google Scholar] [CrossRef]
- Rugg, M.S.; Willis, A.C.; Mukhopadhyay, D.; Hascall, V.C.; Fries, E.; Fülöp, C.; Milner, C.M.; Day, A.J. Characterization of complexes formed between TSG-6 and inter-α-inhibitor that act as intermediates in the covalent transfer of heavy chains onto hyaluronan. J. Biol. Chem. 2005, 280, 25674–25686. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, E.; Scsukova, S.; Nemcova, L.; Mlynarcikova, A.; Yi, Y.-J.; Sutovsky, M.; Sutovsky, P. Inhibition of proteasomal proteolysis affects expression of extracellular matrix components and steroidogenesis in porcine oocyte-cumulus complexes. Domest. Anim. Endocrinol. 2012, 42, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Tsafriri, A.; Cao, X.; Ashkenazi, H.; Motola, S.; Popliker, M.; Pomerantz, S.H. Resumption of oocyte meiosis in mammals: On models, meiosis activating sterols, steroids and EGF-like factors. Mol. Cell. Endocrinol. 2005, 234, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Sutovsky, P.; Flechon, J.E.; Flechon, B.; Motlik, J.; Peynot, N.; Chesne, P.; Heyman, Y. Dynamic changes of gap junctions and cytoskeleton during in vitro culture of cattle oocyte cumulus complexes. Biol. Reprod. 1993, 49, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Luciano, A.M.; Lodde, V.; Beretta, M.S.; Colleoni, S.; Lauria, A.; Modina, S. Developmental capability of denuded bovine oocyte in co-culture system with intact cumulus-oocyte complexes; role of cumulus cells, cyclic adenosine-3′,5′-monophosphate, and glutathione. Mol. Reprod. Dev. 2005, 71, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Gutnisky, C.; Dalvit, G.C.; Pintos, L.N.; Thompson, J.G.; Beconi, M.T.; Cetica, P.D. Influence of hyaluronic acid synthesis and cumulus mucification on bovine oocyte in vitro maturation, fertilization and embryo development. Reprod. Fertil. Dev. 2007, 19, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Nuttinck, F.; Marquant-LeGuienne, B.; Clement, L.; Reinaud, P.; Charpigny, G.; Grimard, B. Expression of genes involved in prostaglandin E2 and progesterone production in bovine cumulu-oocyte complex during in vitro maturation and fertilization. Reproduction 2008, 135, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Iwamasa, J.; Shibata, S.; Tanaka, N.; Matsuura, K.; Okamura, H. The relationship between ovarian progesterone and proteolytic enzyme activity during ovulation in the gonadotropin-treated immature rat. Biol. Reprod. 1992, 46, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Jezova, M.; Scsukova, S.; Nagyova, E.; Vranova, J.; Prochazka, R.; Kolena, J. Effect of intraovarian factors on porcine follicular cells: Cumulus expansion, granulosa and cumulus cell progesterone production. Anim. Reprod. Sci. 2001, 65, 115–126. [Google Scholar] [CrossRef]
- Shimada, M.; Terada, T. FSH and LH induce progesterone production and progesterone receptor synthesis in cumulus cells, a requirement for meiotic resumption in porcine oocytes. Mol. Hum. Reprod. 2002, 8, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Granot, Z.; Melamed-Book, N.; Bahat, A.; Orly, J. Turnover of STAR protein: Roles for the proteasome and mitochondrial proteases. Mol. Cell. Endocrinol. 2007, 265–266, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Tajima, K.; Babich, S.; Yoshida, Y.; Dantes, A.; Strauss, J.F., 3rd; Amsterdam, A. The proteasome inhibitor MG132 promotes accumulation of the steroidogenic acute regulatory protein (star) and steroidogenesis. FEBS Lett. 2001, 490, 59–64. [Google Scholar] [CrossRef]
- Ziolkowska, A.; Tortorella, C.; Nussdorfer, G.G.; Rucinski, M.; Majchrzak, M.; Malendowicz, L.K. Accumulation of steroidogenic acute regulatory protein mRNA, and decrease in the secretory and proliferative activity of rat adrenocortical cells in the presence of proteasome inhibitors. Int. J. Mol. Med. 2006, 17, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.J.; Wells, J.; King, S.R.; Stocco, D.M. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem. 1994, 269, 28314–28322. [Google Scholar] [PubMed]
ECM Component | Description | Tissue Location (Oocyte-Cumulus Complexes-OCC) | Species | References |
---|---|---|---|---|
HA | Hyaluronan | OCC | Mice | [15,16,17,18] |
OCC | Pigs | [19] | ||
IαI | Inter-alpha-trypsin inhibitor (also called inter-alpha-trypsin inhibitor (ITI)) | OCC | Mice | [10,18,20,21] |
OCC | Pigs | [12,22] | ||
TNFAIP6 | Tumor necrosis factor alpha-induced protein 6 (also called Tumor necrosis factor stimulated gene-6 (TSG-6)) | OCC | Mice | [13,18,23,24] |
Ovary | Rats | [25] | ||
OCC | Pigs | [26,27] | ||
Ovarian follicles | Equine | [28] | ||
PTX3 | Pentraxin 3 | OCC | Mice | [29,30,31,32,33] |
OCC | Pigs | [34] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagyova, E. The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction. Int. J. Mol. Sci. 2018, 19, 283. https://doi.org/10.3390/ijms19010283
Nagyova E. The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction. International Journal of Molecular Sciences. 2018; 19(1):283. https://doi.org/10.3390/ijms19010283
Chicago/Turabian StyleNagyova, Eva. 2018. "The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction" International Journal of Molecular Sciences 19, no. 1: 283. https://doi.org/10.3390/ijms19010283
APA StyleNagyova, E. (2018). The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction. International Journal of Molecular Sciences, 19(1), 283. https://doi.org/10.3390/ijms19010283