Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield and Chemical Composition of the Essential Oil
2.2. Cytotoxic Activity
2.3. Flow Cytometry Analysis
2.4. Antifungal Activity
2.5. Antibacterial Activity
3. Materials and Methods
3.1. Plant Material and Extraction of Essential Oil
3.2. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis
3.3. Cytotoxic Activity
3.4. Flow Cytometry Analysis
3.5. Antifungal Activity
3.6. Antibacterial Activity
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lima, J.S.S.; Castro, J.M.C.; Sabino, L.B.S.; Lima, A.C.S.; Torres, L.B.V. Physicochemical properties of Gabiroba (Campomanesia lineatifolia) and Myrtle (Blepharocalyx salicifolius) native to the mountainous. Rev. Caatinga 2016, 29, 753–757. [Google Scholar] [CrossRef]
- Vivot, E.P.; Sánchez, C.; Cacik, F.; Sequin, C. Actividad antibacteriana en plantas medicinales de la flora de Entre Ríos (Argentina). Cienc. Docencia y Tecnol. 2012, 45, 165–185. [Google Scholar]
- Poncio, S. Bioatividade de Inseticidas Botânicos Sobre Microtheca ochroloma Stal (Coleoptera: Chrysomelidae). Master’s Thesis, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, 2010. [Google Scholar]
- Tropicos—Blepharocalyx salicifolius. Available online: http://tropicos.org/Name/22102059?tab=synonyms (accessed on 17 November 2017).
- Alice, C.B.; Vargas, V.M.F.; Silva, G.A.A.B.; de Siqueira, N.C.S.; Schapoval, E.E.S.; Gleye, J.; Henriques, J.A.P.; Henriques, A.T. Screening of plants used in south Brazilian folk medicine. J. Ethnopharmacol. 1991, 35, 165–171. [Google Scholar] [CrossRef]
- Mors, W.B.; Rizzini, C.T.; Pereira, N.A.; De Filipps, R.A. Medicinal Plants of Brazil; Reference Publications: Detroit, MI, USA, 2000. [Google Scholar]
- Piva, M.G. O Caminho das Plantas Medicinais: Estudo Etnobotânico; Rio de Janeiro: Mondrian, Brazil, 2002. [Google Scholar]
- Ratera, E.L.; Ratera, M.O. Plantas de la Flora Argentina Empleadas en la Medicina Popular; Hemisferio Sur: Buenos Aires, Argentina, 1980. [Google Scholar]
- Calderón, Á.I.; Vázquez, Y.; Solís, P.N.; Caballero-George, C.; Zacchino, S.; Gimenez, A.; Pinzón, R.; Cáceres, A.; Tamayo, G.; Correa, M.; et al. Screening of Latin American Plants for Cytotoxic Activity. Pharm. Biol. 2006, 44, 130–140. [Google Scholar] [CrossRef]
- Charneau, S.; de Mesquita, M.L.; Bastos, I.M.D.; Santana, J.M.; de Paula, J.E.; Grellier, P.; Espindola, L.S. In vitro investigation of Brazilian Cerrado plant extract activity against Plasmodium falciparum, Trypanosoma cruzi and T. brucei gambiense. Nat. Prod. Res. 2016, 30, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Luján, M.C.; Pérez Corral, C. Cribado para evaluar actividad antibacteriana y antimicótica en plantas utilizadas en medicina popular de Argentina. Rev. Cuba. Farm. 2008, 42, 1–10. [Google Scholar]
- Freixa, B.; Vila, R.; Vargas, L.; Lozano, N.; Adzet, T.; Cañigueral, S. Screening for antifungal activity of nineteen Latin American plants. Phyther. Res. 1998, 12, 427–430. [Google Scholar] [CrossRef]
- Vivot Lupi, E.P.; Sánchez Brizuela, C.I.; Jeifetz, F.C.; Sequin Acosta, C.J. Screening of antifungal activity of extracts present in Entre Ríos flora species [Tamizaje de la actividad antifúngica de extractos de especies de la flora de Entre Ríos]. Rev. Cuba. Farm. 2009, 43, 74–84. [Google Scholar]
- Imatomi, M. Estudo Alelopático de Espécies da Família Myrtaceae do Cerrado. Ph.D. Thesis, Universidade Federal de São Carlos, San Carlos, SP, Brazil, 2010. [Google Scholar]
- Noal, C.B.; Monteiro, D.U.; de Brum, T.F.; Emmanouilidis, J.; Zanette, R.A.; Morel, A.F.; de Cassia Stefanon, E.B.; Frosi, M.; la Rue, M.L.D. In vitro effects of Blepharocalyx salicifolius (H.B.K.) O. Berg on the viability of Echinococcus ortleppi protoscoleces. Rev. Inst. Med. Trop. 2017, 59, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Castelo, A.V.M.; Del Menezzi, C.H.S.; Resck, I.S. Yield and spectroscopic analysis (1H, 13C NMR; IR) of essential oils from four plants of the Brazilian Savannah. Cerne 2010, 16, 573–584. [Google Scholar] [CrossRef]
- Castelo, A.V.M.; Menezzi, C.H.S.D.; Resck, I.S. Seasonal Variation in the Yield and the Chemical Composition of Essential Oils from Two Brazilian Native Arbustive Species. J. Appl. Sci. 2012, 12, 753–760. [Google Scholar] [CrossRef]
- Costa, O.B.D.; Del Menezzi, C.H.S.; Benedito, L.E.C.; Resck, I.S.; Vieira, R.F.; Ribeiro Bizzo, H.; Sabioni, S.; Vieira, R.F.; Ribeiro Bizzo, H. Essential oil constituents and yields from leaves of Blepharocalyx salicifolius (Kunt) O. Berg and Myracrodruon urundeuva (Allemão) collected during daytime. Int. J. For. Res. 2014, 2014, 982576. [Google Scholar]
- Dellacassa, E.; Lorenzo, D.; Mondello, L.; Dugo, P. Uruguayan essential oils. Part IX. Composition of leaf oil of Blepharocalyx tweediei (Hook. et Arn.) Berg var. tweediei (Myrtaceae). J. Essent. Oil Res. 1997, 9, 673–676. [Google Scholar] [CrossRef]
- Furlán, R.; Zacchino, S.; Gattuso, M.; Bradessi, P.; Casanova, J.; Vila, R.; Cañigueral, S. Constituents of the essential oil from leaves and seeds of Blepharocalyx tweediei (Hook, et Arn.) Berg and B. gigantea Lillo. J. Essent. Oil Res. 2002, 14, 175–178. [Google Scholar] [CrossRef]
- Garneau, F.X.; Collin, G.J.; Jean, F.I.; Gagnon, H.; Arze, J.B.L. Essential oils from Bolivia. XIII. Myrtaceae: Blepharocalyx salicifolius (Kunth.) O. Berg. J. Essent. Oil Res. 2013, 25, 166–170. [Google Scholar] [CrossRef]
- Godinho, W.M.; Farnezi, M.M.; Pereira, I.M.; Gregório, L.E.; Grael, C.F.F. Volatile constituents from leaves of Blepharocalyx salicifolius (Kunth) O. Berg (Myrtaceae). Bol. Latinoam. y del Caribe Plantas Med. y Aromát. 2014, 13, 249–253. [Google Scholar]
- Limberger, R.P.; Sobral, M.E.G.; Zuanazzi, J.A.S.; Moreno, P.R.H.; Schapoval, E.E.S.; Henriques, A.T. Biological activities and essential oil composition of leaves of Blepharocalyx salicifolius. Pharm. Biol. 2001, 39, 308–311. [Google Scholar] [CrossRef]
- Moreira, J.J.S.; Pereira, C.S.; Ethur, E.M.; Machado, E.C.S.; Morel, A.F.; König, W.A. Volatile constituents composition of Blepharocalyx salicifolius leaf oil. J. Essent. Oil Res. 1999, 11, 45–48. [Google Scholar] [CrossRef]
- Talenti, E.C.; Taher, H.A.; Ubiergo, G.O. Constituents of the essential oil of Blepharocalyx tweediei. J. Nat. Prod. 1984, 47, 905–906. [Google Scholar] [CrossRef] [PubMed]
- Tucker, A.O.; Maciarello, M.J.; Landrum, L.R. Volatile leaf oils of american myrtaceae. I. Blepharocalyx cruckshanksii (Hook. & Arn.) Niedenzu of Chile and B. salicifolius (Humb., Bonpl. & Kunth) Berg of Argentina. J. Essent. Oil Res. 1993, 5, 333–335. [Google Scholar]
- Hernández, J.J.; Ragone, M.I.; Bonazzola, P.; Bandoni, A.L.; Consolini, A.E. Antitussive, antispasmodic, bronchodilating and cardiac inotropic effects of the essential oil from Blepharocalyx salicifolius leaves. J. Ethnopharmacol. 2017, 210, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, P.; Guimaraens, A.; Franco, J.; Dellacassa, E.; Pérez, E. Postharvest biology and technology effectiveness of essential oils for postharvest control of Phyllosticta citricarpa (citrus black spot) on citrus fruit. Postharvest Biol. Technol. 2016, 121, 1–8. [Google Scholar] [CrossRef]
- Qu, Y.; Han, B.; Yu, Y.; Yao, W.; Bose, S.; Karlan, B.Y.; Giuliano, A.E.; Cui, X. Evaluation of MCF-10A as a reliable model for normal human mammary epithelial cells. PLoS ONE 2015, 10, e0131285. [Google Scholar] [CrossRef] [PubMed]
- WHO | Global Cancer Rates Could Increase by 50% to 15 Million by 2020. Available online: http://www.who.int/mediacentre/news/releases/2003/pr27/en/ (accessed on 24 November 2017).
- Gautam, N.; Mantha, A.K.; Mittal, S. Essential oils and their constituents as anticancer agents: A mechanistic view. BioMed Res. Int. 2014, 2014, 154106. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Shukla, S.; Sharma, A. Essential Oils as Antimicrobial Agents. In Natural Products; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3975–3988. [Google Scholar]
- Solórzano-Santos, F.; Miranda-Novales, M.G. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 136–141. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2014, 1–18. [Google Scholar]
- Lee, S.J.; Umano, K.; Shibamoto, T.; Lee, K.G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91, 131–137. [Google Scholar] [CrossRef]
- Zrira, S.S.; Benjilali, B.B.; Fechtal, M.M.; Richard, H.H. Essential oils of twenty-seven eucalyptus species grown in Morocco. J. Essent. Oil Res. 1992, 4, 259–264. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; p. 803. [Google Scholar]
- NIST Standard Reference Data. Available online: http://webbook.nist.gov/chemistry/name-ser.html (accessed on 25 January 2016).
- Nakagawa-Goto, K.; Chen, J.Y.; Cheng, Y.T.; Lee, W.L.; Takeya, M.; Saito, Y.; Lee, K.H.; Shyur, L.F. Novel sesquiterpene lactone analogues as potent anti-breast cancer agents. Mol. Oncol. 2016, 10, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.C.E.; Carreño, A.A.; Ishiwara, D.G.P.; Martínez, E.S.M.; López, J.M.; Hernández, N.P.; García, M.C.G. Decatropis bicolor (Zucc.) Radlk essential oil induces apoptosis of the MDA-MB-231 breast cancer cell line. BMC Complement. Altern. Med. 2016, 16, 1–11. [Google Scholar]
- Mishra, T.; Pal, M.; Meena, S.; Datta, D.; Dixit, P.; Kumar, A.; Meena, B.; Rana, T.S.; Upreti, D.K. Composition and in vitro cytotoxic activities of essential oil of Hedychium spicatum from different geographical regions of western Himalaya by principal components analysis. Nat. Prod. Res. 2016, 30, 1224–1227. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, E.P.; Oliveira, D.M.; Johann, S.; Cisalpino, P.S.; Cota, B.B.; Rabello, A.; Alves, T.M.A.; Zani, C.L. Bioactivity of the compounds isolated from Blepharocalyx salicifolius. Rev. Bras. Farmacogn. 2011, 21, 645–651. [Google Scholar] [CrossRef]
- Bols, N.C.; Dayeh, V.R.; Lee, L.E.J.; Schirmer, K. Chapter 2: Use of fish cell lines in the toxicology and ecotoxicology of fish. Piscine cell lines in environmental toxicology. Biochem. Mol. Biol. Fishes 2005, 6, 43–84. [Google Scholar]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.G.; Nakamura, C.V.; Filho, B.P.D. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memórias Do Instituto Oswaldo Cruz 2002, 97, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Lang, G.; Buchbauer, G. A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. Flavour Fragr. J. 2012, 27, 13–39. [Google Scholar] [CrossRef]
- Costa, D.P.; Filho, E.G.A.; Silva, L.M.A.; Santos, S.C.; Passos, X.S.; Do Rosário, R.; Silva, M.; Seraphin, J.C.; Ferri, P.H. Influence of fruit biotypes on the chemical composition and antifungal activity of the essential oils of Eugenia uniflora leaves. J. Braz. Chem. Soc. 2010, 21, 851–858. [Google Scholar] [CrossRef]
- Johann, S.; Oliveira, F.B.; Siqueira, E.P.; Cisalpino, P.S.; Rosa, C.A.; Alves, T.M.; Zani, C.L.; Cota, B.B. Activity of compounds isolated from Baccharis dracunculifolia D.C. (Asteraceae) against Paracoccidioides brasiliensis. Med. Mycol. 2012, 50, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Passos, X.S.; Castro, A.C.M.; Pires, J.S.; Garcia, A.C.F.; Campos, F.C.; Orionalda, F.L.; Paula, J.R.; Ferreira, H.D.; Santos, S.C.; Ferri, P.H.; et al. Composition and antifungal activity of the essential oils of Caryocar brasiliensis. Pharm. Biol. 2003, 41, 319–324. [Google Scholar] [CrossRef]
- Ahmadi, F.; Sadeghi, S.; Modarresi, M.; Abiri, R.; Mikaeli, A. Chemical composition, in vitro anti-microbial, antifungal and antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran. Food Chem. Toxicol. 2010, 48, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimabadi, A.H.; Mazoochi, A.; Kashi, F.J.; Djafari-Bidgoli, Z.; Batooli, H. Essential oil composition and antioxidant and antimicrobial properties of the aerial parts of Salvia eremophila Boiss. from Iran. Food Chem. Toxicol. 2010, 48, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- El-Massrry, K.F.; El-Ghorab, A.H.; Shaaban, H.A.; Shibamoto, T. Chemical compositions and antioxidant/antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt. J. Agric. Food Chem. 2009, 57, 5265–5270. [Google Scholar] [CrossRef] [PubMed]
- Formisano, C.; Napolitano, F.; Rigano, D.; Arnold, N.A.; Piozzi, F.; Senatore, F. Essential oil composition of Teucrium divaricatum Sieb. ssp. villosum (Celak.) Rech. fil. Growing Wild in Lebanon. J. Med. Food 2010, 13, 1281–1285. [Google Scholar] [PubMed]
- Joshi, S.C.; Verma, A.R.; Mathela, C.S. Antioxidant and antibacterial activities of the leaf essential oils of Himalayan Lauraceae species. Food Chem. Toxicol. 2010, 48, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Kirmizibekmez, H.; Demirci, B.; Yeşilada, E.; Başer, K.H.C.; Demirci, F. Chemical composition and antimicrobial activity of the essential oils of Lavandula stoechas L. ssp. growing wild in Turkey. Nat. Prod. Commun. 2009, 4, 1001–1006. [Google Scholar] [PubMed]
- Özek, G.; Demirci, F.; Özek, T.; Tabanca, N.; Wedge, D.E.; Khan, S.I.; Başer, K.H.C.; Duran, A.; Hamzaoglu, E. Gas chromatographic-mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity. J. Chromatogr. A 2010, 1217, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Vergis, J.; Gokulakrishnan, P.; Agarwal, R.K.; Kumar, A. Essential oils as natural food antimicrobial agents: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Thormar, H. Lipids and Essential Oils as Antimicrobial Agents; John Wiley & Sons, Ltd.: Chichester, UK, 2011. [Google Scholar]
- Griffin, S.G.; Wyllie, S.G.; Markham, J.L. Role of the outer membrane of Escherichia coli AG100 and Pseudomonas aeruginosa NCTC 6749 and Resistance/Susceptibility to Monoterpenes of Similar Chemical Structure. J. Essent. Oil Res. 2001, 13, 380–386. [Google Scholar] [CrossRef]
- Longbottom, C.J.; Carson, C.F.; Hammer, K.A.; Mee, B.J.; Riley, T.V. Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J. Antimicrob. Chemother. 2004, 54, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Van Den Dool, H.; Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- IOFI Working Group on Methods of Analysis. Guidelines for the quantitative gas chromatography of volatile flavouring substances, from the Working Group on Methods of Analysis of the International Organization of the Flavor Industry (IOFI). Flavour Fragr. J. 2011, 26, 297–299. [Google Scholar]
- Ligiero, C.B.P.; dos Reis, L.A.; Parrilha, G.L.; Filho, M.B.; Canela, M.C. Comparação entre métodos de quantificação em cromatografia gasosa: Um experimento para cursos de química. Quim. Nova 2009, 32, 1338–1341. [Google Scholar] [CrossRef]
- Rolón, M.; Vega, C.; Escario, J.A.; Gómez-Barrio, A. Development of resazurin microtiter assay for drug sensibility testing of Trypanosoma cruzi epimastigotes. Parasitol. Res. 2006, 99, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Case, R.J.; Franzblau, S.G.; Wang, Y.; Cho, S.H.; Soejarto, D.D.; Pauli, G.F. Ethnopharmacological evaluation of the informant consensus model on anti-tuberculosis claims among the Manus. J. Ethnopharmacol. 2006, 106, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). M27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, 3rd ed.; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). M38-A2 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard, 2nd ed.; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Koneman, E.W.; Allen, S.D.; Janda, W.M.; Schreckenberger, P.C.; Winn, W.C., Jr. Color Atlas and Textbook of Diagnostic Microbiology, 6th ed.; Lippincott: Philadelphia, PA, USA, 2005. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). M100-S24 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; CLSI: Wayne, PA, USA, 2014. [Google Scholar]
Compound | Arithmetic Retention Index (AI) Reference | Arithmetic Retention Index (AI) Calculated | % |
---|---|---|---|
Monoterpene hydrocarbons | |||
α-pinene | 932 a | 925 | 3.22 |
β-pinene | 974 a | 967 | 0.75 |
(E)-β-ocimene | 1044 a | 1039 | 0.26 |
Oxygenated monoterpenes | |||
linalool | 1095 a | 1092 | 0.14 |
Sesquiterpene hydrocarbons | |||
δ-elemene | 1335 a | 1329 | 0.20 |
α-ylangene | 1373 a | 1365 | 0.13 |
isoledene | 1374 a | 1370 | 0.08 |
β-elemene | 1389 a | 1384 | 1.34 |
α-gurjunene | 1409 a | 1401 | 0.41 |
(E)-caryophyllene | 1417 a | 1411 | 4.49 |
NI | - | 1419 | 0.09 |
NI | - | 1426 | 0.10 |
α-guaiene | 1437 a | 1430 | 0.57 |
β-barbatene | 1440 a | 1435 | 0.12 |
α-humulene | 1452 a | 1445 | 0.47 |
allo-aromadendrene | 1458 a | 1453 | 0.79 |
NI | - | 1467 | 0.23 |
germacrene D | 1480 a | 1473 | 0.59 |
4(14),11-eudesmadiene | 1487 a | 1477 | 0.24 |
NI | - | 1480 | 0.19 |
bicyclogermacrene | 1500 a | 1488 | 17.50 |
germacrene A | 1508 a | 1496 | 0.65 |
γ-cadinene | 1513 a | 1506 | 0.09 |
δ-cadinene | 1522 a | 1515 | 0.40 |
Oxygenated sesquiterpenes | |||
elemol | 1548 a | 1541 | 1.39 |
NI | - | 1543 | 0.40 |
NI | - | 1550 | 0.59 |
palustrol | 1567 a | 1559 | 3.83 |
globulol | 1582 b | 1575 | 14.13 |
viridiflorol | 1592 a | 1583 | 8.83 |
cubeban-11-ol | 1595 a | 1585 | 4.40 |
rosifoliol | 1600 a | 1593 | 4.54 |
NI | - | 1614 | 2.27 |
γ-eudesmol | 1630 a | 1622 | 7.89 |
β-eudesmol | 1649 a | 1641 | 3.05 |
α-eudesmol | 1652 a | 1645 | 6.88 |
Total (%): 91.26 |
Cell Line | B. salicifolius | Selectivity index (SI) |
---|---|---|
MCF-7 | >512 | −0.21 |
MDA-MB-231 | 46.60 ± 8.22 a | 0.83 |
MCF-10A | 314.44 ± 60.12 b | - |
Fungi Strains | B. salicifolius | Amphotericin B |
---|---|---|
Candida krusei | >5000 | 2 |
Candida albicans | >5000 | 2 |
Candida guilliermondii | >5000 | 2 |
Candida parapsilosis | >5000 | 1 |
Candida orthopsilosis | >5000 | 0.5 |
Candida metapsilosis | >5000 | 0.25 |
Cryptococcus neoformans | 2500 a,* | 0.5 |
Paracoccidioides brasiliensis | 156 b,* | 0.5 |
Microsporum canis | 2500 a,* | 2 |
Trichophyton mentagrophytes | 625 c,* | 1 |
Gram Staining Reaction | Bacterial Strains | B. salicifolius | Polymyxin B | Cephalothin |
---|---|---|---|---|
Gram Positive | MRSA | 4125 a,* | - | 2 |
MSSA | 2062 b,* | - | 0.5 | |
Gram Negative | E. coli | 5000 c,* | 1 | - |
P. aeruginosa | >5000 | 1 | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furtado, F.B.; Borges, B.C.; Teixeira, T.L.; Garces, H.G.; Almeida Junior, L.D.d.; Alves, F.C.B.; Silva, C.V.d.; Fernandes Junior, A. Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius. Int. J. Mol. Sci. 2018, 19, 33. https://doi.org/10.3390/ijms19010033
Furtado FB, Borges BC, Teixeira TL, Garces HG, Almeida Junior LDd, Alves FCB, Silva CVd, Fernandes Junior A. Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius. International Journal of Molecular Sciences. 2018; 19(1):33. https://doi.org/10.3390/ijms19010033
Chicago/Turabian StyleFurtado, Fabiana Barcelos, Bruna Cristina Borges, Thaise Lara Teixeira, Hans Garcia Garces, Luiz Domingues de Almeida Junior, Fernanda Cristina Bérgamo Alves, Claudio Vieira da Silva, and Ary Fernandes Junior. 2018. "Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius" International Journal of Molecular Sciences 19, no. 1: 33. https://doi.org/10.3390/ijms19010033
APA StyleFurtado, F. B., Borges, B. C., Teixeira, T. L., Garces, H. G., Almeida Junior, L. D. d., Alves, F. C. B., Silva, C. V. d., & Fernandes Junior, A. (2018). Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius. International Journal of Molecular Sciences, 19(1), 33. https://doi.org/10.3390/ijms19010033