Rex Retroelements and Teleost Genomes: An Overview
Abstract
:1. Repetitive DNA
2. Rex Elements in Teleosts: Importance and Structure
3. The Impact of Rex Retroelements in Teleost Genomes: An Overview on Identification, Chromosome Mapping, and Karyoevolution.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- López-Flores, I.; Garrido-Ramos, M.A. The repetitive DNA content of eukaryotic genomes. Genome Dyn. 2012, 7, 1–28. [Google Scholar] [PubMed]
- Biscotti, M.A.; Olmo, E.; Heslop-Harrison, J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015, 23, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Craig, N.L.; Chandler, M.; Gellert, M.; Lambowitz, A.M.; Rice, P.A.; Sandmeyer, S.B. Mobile DNA III; American Society for Microbiology (ASM): Washington DC, USA, 2015. [Google Scholar]
- Wicker, T.; Sabot, F.; Hua-Van, A.; Bennetzen, J.L.; Capy, P.; Chalhoub, B.; Flavell, A.; Leroy, P.; Morgante, M.; Panaud, O.; et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007, 8, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Kapitonov, V.V.; Jurka, J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 2008, 9, 411–412. [Google Scholar] [CrossRef] [PubMed]
- Piégu, B.; Bire, S.; Arensburger, P.; Bigot, Y. A survey of transposable element classification systems—A call for a fundamental update to meet the challenge of their diversity and complexity. Mol. Phylogenet. Evol. 2015, 86, 90–109. [Google Scholar] [CrossRef] [PubMed]
- Biscotti, M.A.; Canapa, A.; Forconi, M.; Olmo, E.; Barucca, M. Transcription of tandemly repetitive DNA: functional roles. Chromosome Res. 2015, 23, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Heslop-Harrison, J.S.; Schwarzacher, T. Organisation of the plant genome in chromosomes. Plant J. 2011, 66, 18–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitsky, V.G.; Babenko, V.N.; Vershinin, A.V. The roles of the monomer length and nucleotide context of plant tandem repeats in nucleosome positioning. J. Biomol. Struct. Dyn. 2013, 32, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Willard, H.F. Centromeres: the missing link in the development of human artificial chromosomes. Curr. Opin. Genet. Dev. 1998, 8, 219–225. [Google Scholar] [CrossRef]
- Mravinac, B.; Plohl, M.; Ugarković, D. Preservation and high sequence conservation of satellite DNAs suggest functional constraints. J. Mol. Evol. 2005, 61, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Plohl, M.; Petrović, V.; Luchetti, A.; Ricci, A.; Satović, E.; Passamonti, M.; Mantovani, B. Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity 2010, 104, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Petraccioli, A.; Odierna, G.; Capriglione, T.; Barucca, M.; Forconi, M.; Olmo, E.; Biscotti, M.A. A novel satellite DNA isolated in Pecten jacobaeus shows high sequence similarity among molluscs. Mol. Genet. Genom. 2015, 290, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Vittorazzi, S.E.; Lourenço, L.B.; Recco-Pimentel, S.M. Long-time evolution and highly dynamic satellite DNA in leptodactylid and hylodid frogs. BMC Genet. 2014, 15, 111. [Google Scholar] [CrossRef] [PubMed]
- Biscotti, M.A.; Canapa, A.; Olmo, E.; Barucca, M.; Teo, C.H.; Schwarzacher, T.; Dennerlein, S.; Richter, R.; Heslop-Harrison, J.S. (Pat) Repetitive DNA, molecular cytogenetics and genome organization in the King scallop (Pecten maximus). Gene 2007, 406, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Shine, J.; Czernilofsky, A.P.; Friedrich, R.; Bishop, J.M.; Goodman, H.M. Nucleotide sequence at the 5′ terminus of the avian sarcoma virus genome. Proc. Natl. Acad. Sci. USA 1977, 74, 1473–1477. [Google Scholar] [CrossRef] [PubMed]
- Kramerov, D.A.; Vassetzky, N.S. Origin and evolution of SINEs in eukaryotic genomes. Heredity 2011, 107, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Canapa, A.; Barucca, M.; Biscotti, M.A.; Forconi, M.; Olmo, E. Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenet Genome Res. 2015, 147, 217–239. [Google Scholar] [CrossRef] [PubMed]
- Steinemann, S.; Steinemann, M. Retroelements: tools for sex chromosome evolution. Cytogenet. Genome Res. 2005, 110, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, C.; Krishnaswamy, L.; Peterson, T. Transposable elements as catalysts for chromosome rearrangements. Methods Mol. Biol. 2011, 701, 315–326. [Google Scholar] [PubMed]
- Bejerano, G.; Lowe, C.B.; Ahituv, N.; King, B.; Siepel, A.; Salama, S.R.; Rubin, E.M.; Kent, W.J.; Haussler, D. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 2006, 441, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Matveev, V.; Okada, N. Retroposons of salmonid fishes (Actinopteygii: Salmonoidei) and their evolution. Gene 2009, 434, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, A.; Kobayashi, N.; Suzuki-Hirano, A.; Nishihara, H.; Sasaki, T.; Hirakawa, M.; Sumiyama, K.; Shimogori, T.; Okada, N. A SINE-derived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8. PLoS ONE 2012, 7, e43785. [Google Scholar] [CrossRef] [PubMed]
- Piacentini, L.; Fanti, L.; Specchia, V.; Bozzetti, M.P.; Berloco, M.; Palumbo, G.; Pimpinelli, S. Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma 2014, 123, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Warren, I.; Naville, M.; Chalopin, D.; Levin, P.; Berger, C.; Galiana, D.; Volff, J.N. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res. 2015, 23, 505–531. [Google Scholar] [CrossRef] [PubMed]
- Volff, J.N.; Korting, C.; Schartl, M. Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol. Biol. Evol. 2000, 17, 1673–1684. [Google Scholar] [CrossRef] [PubMed]
- Volff, J.N.; Körting, C.; Froschauer, A.; Sweeney, K.; Schartl, M. Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J. Mol. Evol. 2001, 52, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Biscotti, M.A.; Barucca, M.; Capriglione, T.; Odierna, G.; Olmo, E.; Canapa, A. Molecular and cytogenetic characterization of repetitive DNA in the Antarctic polyplacophoran Nuttallochiton mirandus. Chromosome Res. 2008, 16, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Biscotti, M.A.; Barucca, M.; Canapa, A. New insights into the genome repetitive fraction of the Antarctic bivalve Adamussium colbecki. PLoS ONE 2018, 13, e0194502. [Google Scholar] [CrossRef] [PubMed]
- Meštrović, N.; Mravinac, B.; Pavlek, M.; Vojvoda-Zeljko, T.; Satović, E.; Plohl, M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res. 2015, 23, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Chalopin, D.; Volff, J.N. Analysis of the spotted gar genome suggests absence of causative link between ancestral genome duplication and transposable element diversification in teleost fish. J. Exp. Zool. B Mol. Dev. Evol. 2017, 328, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Sotero-Caio, C.G.; Platt, R.N.; Suh, A.; Ray, D.A. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 2017, 9, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Chalopin, D.; Naville, M.; Plard, F.; Galiana, D.; Volff, J.N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol. Evol. 2015, 7, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Volff, J.N. Genome evolution and biodiversity in teleost fish. Heredity 2005, 94, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Volff, J.N.; Korting, C.; Sweeney, K.; Schartl, M. The non-LTR retrotransposon Rex3 from the Fish Xiphophorus is widespread among teleosts. Mol. Biol. Evol. 1999, 16, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.W.W.F.; Cioffi, M.B.; Bertollo, L.A.C.; Molina, W.F. Transposable elements in fish chromosomes: A study in the marine cobia species. Cytogenet. Genome Res. 2013, 141, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Splendore de Borba, R.; Lourenço da Silva, E.; Parise-Maltempi, P.P. Chromosome mapping of retrotransposable elements Rex1 and Rex3 in Leporinus Spix, 1829 species (Characiformes: Anostomidae) and its relationships among heterochromatic segments and W sex chromosome. Mob. Genet. Elements 2013, 3, e27460. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.M.Z.A.; Pansonato-Alves, J.C.; Utsunomia, R.; Daniel, S.N.; Hashimoto, D.T.; Oliveira, C.; Porto-Foresti, F.; Foresti, F. Chromosomal organization of repetitive DNA sequences in Astyanax bockmanni (Teleostei, Characiformes): Dispersive location, association and co-localization in the genome. Genetica 2013, 141, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.N.; Penitente, M.; Silva, D.M.Z.A.; Hashimoto, D.T.; Ferreira, D.C.; Foresti, F.; Porto-Foresti, F. Organization and Chromosomal Distribution of Histone Genes and Transposable Rex Elements in the Genome of Astyanax bockmanni (Teleostei, Characiformes). Cytogenet. Genome Res. 2015, 146, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Pansonato-Alves, J.C.; Hilsdorf, A.W.S.; Utsunomia, R.; Silva, D.M.Z.A.; Oliveira, C.; Foresti, F. Chromosomal mapping of repetitive DNA and cytochrome c oxidase i sequence analysis reveal differentiation among sympatric samples of Astyanax fasciatus (Characiformes, Characidae). Cytogenet. Genome Res. 2013, 141, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Yano, C.F.; Poltronieri, J.; Bertollo, L.A.C.; Ferreira Artoni, R.; Liehr, T.; Cioffi, M.B. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): Insights into the differentiation of the Z and W chromosomes. PLoS ONE 2014, 9, e100494. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, M.B.; Martins, C.; Bertollo, L.A.C. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol. Biol. 2010, 10, 271. [Google Scholar] [CrossRef] [PubMed]
- Fantinatti, B.E.A.; Mazzuchelli, J.; Valente, G.T.; Cabral-de-Mello, D.C.; Martins, C. Genomic content and new insights on the origin of the B chromosome of the cichlid fish Astatotilapia latifasciata. Genetica 2011, 139, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Valente, G.T.; Mazzuchelli, J.; Ferreira, I.A.; Poletto, A.B. Cytogenetic Mapping of the Retroelements Rex1, Rex3 and Rex6 among Cichlid Fish: New insights on the chromosomal distribution of transposable elements. Cytogenet. Genome Res. 2011, 133, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.H.; Gross, M.C.; Terencio, M.L.; do Carmo, E.J.; Martins, C.; Feldberg, E. Evolutionary dynamics of retrotransposable elements Rex1, Rex3 and Rex6 in neotropical cichlid genomes. BMC Evol. Biol. 2013, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Mazzuchelli, J.; Martins, C. Genomic organization of repetitive DNAs in the cichlid fish Astronotus ocellatus. Genetica 2009, 136, 461–469. [Google Scholar] [CrossRef] [PubMed]
- De Freitas Mourão, A.A.; Daniel, S.N.; Hashimoto, D.T.; Ferreira, C.D.; Porto-Foresti, F. Organization and Distribution of Repetitive DNA Classes in the Cichla kelberi and Cichla piquiti Genome. Cytologia 2017, 82, 193–197. [Google Scholar] [CrossRef]
- Teixeira, W.G.; Ferreira, I.A.; Cabral-de-Mello, D.C.; Mazzuchelli, J.; Valente, G.T.; Pinhal, D.; Poletto, A.B.; Venere, P.C.; Martins, C. Organization of repeated DNA elements in the genome of the cichlid fish Cichla kelberi and its contributions to the knowledge of fish genomes. Cytogenet. Genome Res. 2009, 125, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.K.; Harvey, S.C.; Campos-Ramos, R.; Ayling, L.J.; Bromage, N.R.; Masabanda, J.S.; Penman, D.J. Early origins of the X and Y chromosomes: Lessons from tilapia. Cytogenet Genome Res. 2002, 99, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.C.; Schneider, C.H.; Valente, G.T.; Porto, J.I.R.; Martins, C.; Feldeberg, E. Comparative cytogenetic analysis of the genus Symphysodon (Discus Fishes, Cichlidae): Chromosomal characteristics of retrotransposons and minor ribosomal DNA. Cytogenet. Genome Res. 2010, 127, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Ozouf-Costaz, C.; Brandt, J.; Korting, C.; Pisano, E.; Bonillo, C.; Coutanceau, J.P.; Volff, J.N. Genome dynamics and chromosomal localization of the non-LTR retrotransposons Rex1 and Rex3 in Antarctic fish. Antarct. Sci. 2004, 16, 51–57. [Google Scholar] [CrossRef]
- Supiwong, W.; Liehr, T.; Cioffi, M.B.; Chaveerach, A.; Kosyakova, N.; Pinthong, K.; Tanee, T.; Tanomtong, A. Chromosomal evolution in naked catfishes (Bagridae, Siluriformes): A comparative chromosome mapping study. Zool. Anz. 2014, 253, 316–320. [Google Scholar] [CrossRef]
- Favarato, R.M.; Ribeiro, L.B.; Feldberg, E.; Matoso, D.A. Chromosomal mapping of transposable elements of the rex family in the bristlenose catfish, ancistrus (Siluriformes, Loricariidae), from the amazonian region. J. Hered. 2017, 108, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.C.; Oliveira, C.; Foresti, F. Chromosome mapping of retrotransposable elements Rex1 and Rex3 in three fish species in the subfamily Hypoptopomatinae (Teleostei, Siluriformes, Loricariidae). Cytogenet. Genome Res. 2011, 132, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Pansonato-Alves, J.C.; Serrano, E.A.; Utsumomia, R.; Scacchetti, P.C.; Oliveira, C.; Foresti, F. Mapping five repetitive DNA classes in sympatric species of Hypostomus (Teleostei:Siluriformes: Loricariidae): Analysis of chromosomal variability. Rev. Fish. Biol. Fisher. 2013, 4, 447–489. [Google Scholar]
- Bouneau, L.; Fischer, C.; Ozouf-Costaz, C.; Froschauer, A.; Jaillon, O.; Coutanceau, J.P.; Korting, C.; Weissenbach, J.; Bernot, A.; Volff, J.N. An active non-LTR retrotransposon with tandem structure in the compact genome of pufferfish Tetraodon nigroviridis. Genome Res. 2003, 13, 1686–1695. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Bouneau, L.; Coutanceau, J.P.; Weissenbach, J.; Volff, J.N.; Ozouf-Costaz, C. Global heterochromatic colocalization of transposable elements with minisatellites in the compact genome of the pufferfish Tetraodon nigroviridis. Gene 2004, 336, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Dasilva, C.; Hadji, H.; Ozouf-Costaz, C.; Nicaud, S.; Jaillon, O.; Weissenbach, J.; Crollius, H.R. Remarkable compartmentalization of transposable elements and pseudogenes in the heterochromatin of the Tetraodon nigroviridis genome. Proc. Natl. Acad. Sci. USA 2002, 99, 13636–13641. [Google Scholar] [CrossRef] [PubMed]
- Burke, W.D.; Muller, F.; Eickbush, T.H. R4, a non-LTR retrotransposon specific to the large subunit rRNA genes of nematodes. Nucleic Acid Res. 1995, 23, 4628–4634. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Foresti, F.; Hilsdorf, A.W.S. Genetics of neotropical fish: from chromosomes to populations. Fish Physiol. Biochem. 2009, 35, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Schubert, I.; Oud, J.L. There is an upper limit of chromosome size for normal development of an organism. Cell 1997, 88, 515–520. [Google Scholar] [CrossRef]
- Kidwell, M.G.; Lisch, D. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. 1997, 94, 7704–7711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidwell, M.G. Transposable elements and the evolution of genome size in eukaryotes. Genetica 2002, 115, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Le Rouzic, A.; Capy, P. The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics. 2005, 169, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Ezaz, T.; Deakin, J.E. Repetitive sequence and sex chromosome evolution in vertebrates. Adv. Evol. Biol. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Betancur-R, R.; Wiley, E.O.; Arratia, G.; Acero, A.; Bailly, N.; Miya, M.; Lecointre, G.; Ortí, G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017, 17, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Order, Family and Species | Transposable Element | Reference |
---|---|---|
Anguilliformes | ||
Anguillidae | ||
Anguilla anguilla | Rex3 | [35] |
A. japonica | Rex3 | [35] |
Beloniformes | ||
Adrianichthyidae | ||
Oryzias latipes | Rex1, Rex3 | [26,27] |
Carangiformes | ||
Rachycentridae | ||
Rachycentron canadum | Rex1, Rex3 | [36] |
Centrarchiformes | ||
Sinipercidae | ||
Siniperca chuatsi | Rex3 | [35] |
Characiformes | ||
Anostomidae | ||
Leporinus elongatus | Rex1, Rex3 | [37] |
L. friderici | Rex1, Rex3 | [37] |
L. lacustris | Rex1, Rex3 | [37] |
L. obtusidens | Rex1, Rex3 | [37] |
L. macrocephalus | Rex1, Rex3 | [37] |
L. striatus | Rex1, Rex3 | [37] |
Characidae | ||
Astyanax bockmanni | Rex3 | [38] |
A. bockmanni | Rex1, Rex3, Rex6 | [39] |
A. fasciatus | Rex3 | [40] |
Triportheus trifurcatus | Rex1, Rex3, Rex6 | [41] |
Erythrinidae | ||
Erythrinus erythrinus | Rex3 | [42] |
Cichliformes | ||
Cichlidae | ||
Astatotilapia latifasciata | Rex1, Rex3, Rex6 | [43] |
A. ocellatus | Rex1, Rex3, Rex6 | [44] |
A. ocellatus | Rex1, Rex3, Rex6 | [45] |
A. ocellatus | Rex3, Rex6 | [46] |
Chaetobranchus flavescens | Rex1, Rex3, Rex6 | [44] |
Cichla monoculus | Rex1, Rex3, Rex6 | [45] |
C. piquiti | Rex3, Rex6 | [47] |
C. kelberi | Rex1, Rex3, Rex6 | [48] |
C. kelberi | Rex3, Rex6 | [47] |
Cichlasoma labridens | Rex1 | [26] |
Geophagus proximus | Rex1, Rex3, Rex6 | [45] |
Haplochromis obliquidens | Rex1, Rex3, Rex6 | [44] |
Hemichromis bimaculatus | Rex1, Rex3, Rex6 | [26,44] |
Heros efasciatus | Rex1, Rex3, Rex6 | [44] |
Melanochromis auratus | Rex1, Rex3, Rex6 | [44] |
Oreochromis niloticus | Rex1, Rex3, Rex6 | [26,44,49] |
Pterophyllum scalare | Rex1, Rex3, Rex6 | [45] |
Satanoperca jurupari | Rex1, Rex3, Rex6 | [44] |
Symphysodon aequifascistus | Rex3 | [50] |
S. discus | Rex3 | [50] |
S. discus | Rex1, Rex3, Rex6 | [45] |
S. haraldi | Rex3 | [50] |
Cypriniformes | ||
Cyprinidae | ||
Cyprinus carpio | Rex3 | [35] |
Danio rerio | Rex3 | [35] |
Cyprinodontiformes | ||
Fundulidae | ||
Fundulus sp. | Rex1 | [26] |
Poecilidae | ||
Gambusia affinis | Rex1 | [26] |
Girardinus falcatus | Rex1 | [26] |
G. metallicus | Rex1 | [26] |
Heterandria bimaculata | Rex1 | [26] |
H. formosa | Rex1 | [26] |
Phallichthys amates | Rex1 | [26] |
Poecilia formosa | Rex1 | [26] |
Poeciliopsis gracilis | Rex1 | [26] |
Poecilia latipinna | Rex1 | [26] |
P. mexicana | Rex1 | [26] |
Xiphophorus helleri | Rex1, Rex3 | [26,35] |
X. maculatus | Rex1 | [26] |
X. montezumae | Rex1 | [26] |
X. nezahualcoyotl | Rex1 | [26] |
Esociformes | ||
Esocidae | ||
Esox lucius | Rex1 | [26] |
Perciformes | ||
Artedidraconidae | ||
Artedidraco shackletoni | Rex3 | [51] |
Bathydraconidae | ||
Gymnodraco acuticeps | Rex1, Rex3 | [51] |
G. victori | Rex1, Rex3 | [51] |
Bovichtidae | ||
Bovichtus angustifrons | Rex1, Rex3 | [51] |
Channichthyidae | ||
Chionodraco hamatus | Rex1, Rex3 | [51] |
Neopagetopsis ionah | Rex1, Rex3 | [51] |
Cottidae | ||
Battrachocottus baikalensis | Rex1 | [26] |
Nototheniidae | ||
Dissostichus mawsoni | Rex1, Rex3 | [51] |
Notothenia coriiceps | Rex1, Rex3 | [51] |
Patagonotothen tessellata | Rex1, Rex3 | [51] |
Trematomus newnesi | Rex1, Rex3 | [51] |
T. hansoni | Rex1, Rex3 | [51] |
T. bernacchii | Rex1, Rex3 | [51] |
T. pennellii | Rex1, Rex3 | [51] |
Salmoniformes | ||
Salmoniformes | ||
Oncorhynchus mykiss | Rex1 | [26] |
Siluriformes | ||
Bagridae | ||
Hemibagrus filamentus | Rex1 | [52] |
H. nemurus | Rex1 | [52] |
H. wyckii | Rex1 | [52] |
H. wyckioides | Rex1 | [52] |
Mystus atrifasciatus | Rex1 | [52] |
M. multiradiatus | Rex1 | [52] |
M. mysticetus | Rex1 | [52] |
M. bocourti | Rex1 | [52] |
Pseudomystus siamensis | Rex1 | [52] |
Loricariidae | ||
Ancistrus sp. 1 “Purus” | Rex1, Rex3, Rex6 | [53] |
A. sp. 2 “Catalão” | Rex1, Rex3, Rex6 | [53] |
A. dolichopterus | Rex1, Rex3, Rex6 | [53] |
A. aff. dolichopterus | Rex1, Rex3, Rex6 | [53] |
A. dubius | Rex1, Rex3, Rex6 | [53] |
A. maximus | Rex1, Rex3, Rex6 | [53] |
A. ranunculus | Rex1, Rex3, Rex6 | [53] |
Hisonotus leucofrenatus | Rex1, Rex3 | [54] |
Paratocinclus maculicauda | Rex1, Rex3 | [54] |
Pseudotocinclus tietensis | Rex1, Rex3 | [54] |
Hypostomus ancistroides | Rex1 | [55] |
H. strigaticeps | Rex1 | [55] |
H. nigromaculatus | Rex1 | [55] |
Tetraodontiformes | ||
Tetraodontidae | ||
Takifugu rubripes | Rex1, Rex3 | [26,27] |
Tetraodon nigroviridis | Rex1, Rex3 | [26,56,57,58] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carducci, F.; Barucca, M.; Canapa, A.; Biscotti, M.A. Rex Retroelements and Teleost Genomes: An Overview. Int. J. Mol. Sci. 2018, 19, 3653. https://doi.org/10.3390/ijms19113653
Carducci F, Barucca M, Canapa A, Biscotti MA. Rex Retroelements and Teleost Genomes: An Overview. International Journal of Molecular Sciences. 2018; 19(11):3653. https://doi.org/10.3390/ijms19113653
Chicago/Turabian StyleCarducci, Federica, Marco Barucca, Adriana Canapa, and Maria Assunta Biscotti. 2018. "Rex Retroelements and Teleost Genomes: An Overview" International Journal of Molecular Sciences 19, no. 11: 3653. https://doi.org/10.3390/ijms19113653
APA StyleCarducci, F., Barucca, M., Canapa, A., & Biscotti, M. A. (2018). Rex Retroelements and Teleost Genomes: An Overview. International Journal of Molecular Sciences, 19(11), 3653. https://doi.org/10.3390/ijms19113653