Monoclonal Antibodies for the Treatment of Multiple Myeloma: An Update
Abstract
:1. Introduction
2. CD38
3. SLAM Family Proteins
4. Other Surface Antigens
4.1. ICAM-1 (CD54)
4.2. CD40
4.3. Fas
4.4. FGFR3
5. Antibodies Targeting the Bone Marrow Microenvironment (BMM)
5.1. IGF-1R
5.2. IL-6
5.3. IL-15
5.4. BCMA/BAFF/APRIL Axis
5.5. CXCR4
5.6. CD137
5.7. Antibodies Targeting Bone Loss in MM
5.7.1. RANK/RANKL
5.7.2. Activin
5.7.3. DKK-1
5.7.4. Sclerostin
6. Immune Checkpoint Inhibitors
6.1. PD-1 and PD-L1
6.2. CTLA-4
6.3. KIR
6.4. CD47
7. BiTE® Antibodies
8. Additional mAbs
9. Summary
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Abramson, H.N. The multiple myeloma drug pipeline-2018: A review of small molecules and their therapeutic targets. Clin. Lymphoma Myeloma Leuk. 2018, 18, 611–627. [Google Scholar] [CrossRef] [PubMed]
- Baljevic, M.; Holstein, S.A. Present and future of immunotherapy in the management of multiple myeloma. J. Oncol. Pract. 2018, 14, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Laubach, J.P.; Paba Prada, C.E.; Richardson, P.G.; Longo, D.L. Daratumumab, elotuzumab, and the development of therapeutic monoclonal antibodies in multiple myeloma. Clin. Pharmacol. Ther. 2017, 101, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Laubach, J.P.; Richardson, P.G. CD38-targeted immunochemotherapy in refractory multiple myeloma: A new horizon. Clin. Cancer Res. 2015, 21, 2660–2662. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.; Richardson, P.G.; Malavasi, F. CD38 antibodies in multiple myeloma: Back to the future. Blood 2018, 131, 13–29. [Google Scholar] [CrossRef]
- McKeage, K. Daratumumab: First global approval. Drugs 2016, 76, 275–281. [Google Scholar] [CrossRef]
- Lonial, S.; Weiss, B.M.; Usmani, S.Z.; Singhal, S.; Chari, A.; Bahlis, N.J.; Belch, A.; Krishnan, A.; Vescio, R.A.; Mateos, M.V.; et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): An open-label, randomised, phase 2 trial. Lancet 2016, 387, 1551–1560. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef]
- Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef]
- Botta, C.; Ciliberto, D.; Rossi, M.; Staropoli, N.; Cuce, M.; Galeano, T.; Tagliaferri, P.; Tassone, P. Network meta-analysis of randomized trials in multiple myeloma: Efficacy and safety in relapsed/refractory patients. Blood Adv. 2017, 1, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Kaufman, J.L.; White, D.; Cook, G.; Rizzo, M.; Xu, Y.; Fahrbach, K.; Gaudig, M.; Slavcev, M.; Dearden, L.; et al. A comparison of the efficacy of immunomodulatory-containing regimens in relapsed/refractory multiple myeloma: A network meta-analysis. Clin. Lymphoma Myeloma Leuk. 2018, 18, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, S.; Lin, T.; Xie, J.; Zhao, L.; Liang, Z.; Li, Y.; Jiang, J. Systematic review and meta-analysis of the efficacy and safety of novel monoclonal antibodies for treatment of relapsed/refractory multiple myeloma. Oncotarget 2017, 8, 34001–34017. [Google Scholar] [CrossRef] [PubMed]
- van Beurden-Tan, C.H.Y.; Franken, M.G.; Blommestein, H.M.; Uyl-de Groot, C.A.; Sonneveld, P. Systematic literature review and network meta-analysis of treatment outcomes in relapsed and/or refractory multiple myeloma. J. Clin. Oncol. 2017, 35, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Maiese, E.M.; Ainsworth, C.; Le Moine, J.G.; Ahdesmaki, O.; Bell, J.; Hawe, E. Comparative efficacy of treatments for previously treated multiple myeloma: A systematic literature review and network meta-analysis. Clin. Ther. 2018, 40, 480.e23–494.e23. [Google Scholar] [CrossRef] [PubMed]
- Lokhorst, H.M.; Plesner, T.; Laubach, J.P.; Nahi, H.; Gimsing, P.; Hansson, M.; Minnema, M.C.; Lassen, U.; Krejcik, J.; Palumbo, A.; et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N. Engl. J. Med. 2015, 373, 1207–1219. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; Kaplan, P.; et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N. Engl. J. Med. 2018, 378, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Hofmeister, C.C.; Chari, A.; Cohen, Y.; Spencer, A.; Voorhees, P.M.; Estell, J.; Venner, C.P.; Sandhu, I.; Jenner, M.W.; Williams, C.; et al. Daratumumab monotherapy for patients with intermediate or high-risk smoldering multiple myeloma (SMM): Centaurus, a randomized, open-label, multicenter phase 2 study. Blood 2017, 130, 510. [Google Scholar]
- Rajkumar, S.V.; Voorhees, P.M.; Goldschmidt, H.; Baker, R.I.; Bandekar, R.; Kuppens, S.; Neff, T.; Qi, M.; Dimopoulos, M.A. Randomized, open-label, phase 3 study of subcutaneous daratumumab (DARA SC) versus active monitoring in patients (pts) with high-risk smoldering multiple myeloma (SMM): AQUILA. J. Clin. Oncol. 2018, 36, TPS8062. [Google Scholar] [CrossRef]
- Jiang, H.; Acharya, C.; An, G.; Zhong, M.; Feng, X.; Wang, L.; Dasilva, N.; Song, Z.; Yang, G.; Adrian, F.; et al. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia 2016, 30, 399–408. [Google Scholar] [CrossRef]
- Moreno, L.; Zabaleta, A.; Alignani, D.; Ajona, D.; Lasa, M.; Maiso, P.; Jelinek, T.; Segura, V.; Delgado, J.A.; Rodriguez-Otero, P.; et al. Critical analysis on the mechanism of action (MoA) of the anti-CD38 monoclonal antibody isatuximab in multiple myeloma (MM). Blood 2016, 128, 2105. [Google Scholar]
- Mikhael, J.; Richardson, P.G.; Usmani, S.Z.; Raje, N.S.; Bensinger, W.; Dubin, F.; Liu, Q.; Vitse, O.; Anderson, K.C. Final results of a phase Ib study of isatuximab (ISA) plus pomalidomide (Pom) and dexamethasone (dex) in relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2018, 36, 8038. [Google Scholar] [CrossRef]
- Richardson, P.G.; Mikhael, J.; Usmani, S.Z.; Raje, N.; Bensinger, W.; Campana, F.; Gao, L.; Dubin, F.; Wack, C.; Anderson, K.C. Preliminary results from a phase Ib study of isatuximab in combination with pomalidomide and dexamethasone in relapsed and refractory multiple myeloma. Blood 2016, 128, 2123. [Google Scholar] [CrossRef]
- Martin, T.; Baz, R.; Benson, D.M.; Lendvai, N.; Wolf, J.; Munster, P.; Lesokhin, A.M.; Wack, C.; Charpentier, E.; Campana, F.; et al. A phase 1B study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma. Blood 2017, 129, 3294–3303. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Attal, M.; Campana, F.; Le-Guennec, S.; Hui, A.M.; Risse, M.L.; Corzo, K.; Anderson, K.C. Isatuximab plus pomalidomide/dexamethasone versus pomalidomide/dexamethasone in relapsed/refractory multiple myeloma: ICARIA phase III study design. Future Oncol. 2018, 14, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Terpos, E.; Dimopoulos, M.A.; Ukropec, J.; Smith, E.; Houkes, N.; Schecter, J.M.; Kastritis, E. Pomalidomide and dexamethasone (pom-dex) with or without daratumumab (DARA) in patients (pts) with relapsed or refractory multiple myeloma (RRMM): A multicenter, randomized, phase 3 study (APOLLO). J. Clin. Oncol. 2018, 36, 8059. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Mateos, M.-V.; Bahlis, N.J.; Grosicki, S.; Spencer, A.; Bandekar, R.; Masterson, T.J.; Clemens, P.L.; Heuck, C.J.; Qi, M.; et al. Randomized, open-label, non-inferiority, phase 3 study of subcutaneous (SC) versus intravenous (IV) daratumumab (DARA) administration in patients with relapsed or refractory multiple myeloma (RRMM): COLUMBA. J. Clin. Oncol. 2018, 36, 8058. [Google Scholar] [CrossRef]
- Lentzsch, S.; Weisel, K.C.; Mateos, M.-V.; Hungria, V.; Munder, M.; Nooka, A.K.; Mark, T.; Quach, H.; Scott, E.C.; Lee, J.-J.; et al. Daratumumab, bortezomib and dexamethasone (DVd) vs. bortezomib and dexamethasone (Vd) in relapsed or refractory multiple myeloma (RRMM): Efficacy and safety update (CASTOR). J. Clin. Oncol. 2017, 36, 8008. [Google Scholar]
- Bahlis, N.J.; Moreau, P.; Nahi, H.; Plesner, T.; Goldschmidt, H.; Suzuki, K.; Orlowski, R.Z.; Rabin, N.; Leiba, M.; Oriol, A.; et al. Daratumumab, lenalidomide, and dexamethasone (DRd) vs lenalidomide and dexamethasone (Rd) in relapsed or refractory multiple myeloma (RRMM): Efficacy and safety update (POLLUX). J. Clin. Oncol. 2017, 35, 8025. [Google Scholar] [CrossRef]
- Boyle, E.M.; Petillon, M.-O.; Herbaux, C.; Mimouni, J.; Leleu, X.; Karlin, L.; Doyen, C.; Wetterwald, M.; Roussel, M.; Hulin, C.; et al. Daratumumab in combination with dexamethasone in resistant or refractory multiple myeloma: Primary results of the IFM2014-04 trial. Blood 2016, 128, 2138. [Google Scholar]
- Luetkens, T.; Yousef, S.; Shorter, C.; Tantravahi, S.K.; Steinbach, M.N.; Weidner, J.; Sborov, D.W.; Atanackovic, D. “In vivo vaccination” effect in clinical responders to anti-myeloma monoclonal antibody isatuximab. Blood 2017, 130, 1830. [Google Scholar]
- Raab, M.S.; Chatterjee, M.; Goldschmidt, H.; Agis, H.; Blau, I.W.; Einsele, H.; Engelhardt, M.; Ferstl, B.; Gramatzki, M.; Röllig, C.; et al. Phase I/IIa study of the human anti-CD38 antibody MOR202 (MOR03087) in relapsed or refractory multiple myeloma. Blood 2015, 126, 3035. [Google Scholar]
- Raab, M.S.; Chatterjee, M.; Goldschmidt, H.; Engelhardt, M.; Ferstl, B.; Gramatzki, M.; Röllig, C.; Weisel, K.; Kloepfer, P.; Weinelt, D.; et al. MOR202 alone and in combination with pomalidomide or lenalidomide in relapsed or refractory multiple myeloma: Data from clinically relevant cohorts from a phase I/IIa study. J. Clin. Oncol. 2016, 34, 8012. [Google Scholar] [CrossRef]
- Smithson, G.; Zalevsky, J.; Korver, W.; Roepcke, S.; Dahl, M.; Zhao, L.; Yuan, J.; McLean, L.; Elias, K. TAK-079 is a high affinity monoclonal antibody that effectively mediates CD38+ cell depletion. J. Immunol. 2017, 198, 224. [Google Scholar]
- Radhakrishnan, S.V.; Bhardwaj, N.; Luetkens, T.; Atanackovic, D. Novel anti-myeloma immunotherapies targeting the SLAM family of receptors. Oncoimmunology 2017, 6, e1308618. [Google Scholar] [CrossRef] [PubMed]
- Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.V.; Magen, H.; et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Dytfeld, D.; Grosicki, S.; Moreau, P.; Takezako, N.; Hori, M.; Leleu, X.; LeBlanc, R.; Suzuki, K.; Raab, M.S.; et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N. Engl. J. Med. 2018, 379, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- Afifi, S.; Michael, A.; Lesokhin, A. Immunotherapy: A new approach to treating multiple myeloma. Ann. Pharmacother. 2016, 50, 555–568. [Google Scholar] [CrossRef]
- Jung, S.H.; Lee, H.J.; Vo, M.C.; Kim, H.J.; Lee, J.J. Immunotherapy for the treatment of multiple myeloma. Crit. Rev. Oncol. Hematol. 2017, 111, 87–93. [Google Scholar] [CrossRef]
- Chung, C. Role of Immunotherapy in targeting the bone marrow microenvironment in multiple myeloma: An evolving therapeutic strategy. Pharmacotherapy 2017, 37, 129–143. [Google Scholar] [CrossRef]
- Taniwaki, M.; Yoshida, M.; Matsumoto, Y.; Shimura, K.; Kuroda, J.; Kaneko, H. Elotuzumab for the treatment of relapsed or refractory multiple myeloma, with special reference to its modes of action and SLAMF7 signaling. Mediterr. J. Hematol. Infect. Dis. 2018, 10, e2018014. [Google Scholar] [CrossRef] [PubMed]
- Varga, C.; Maglio, M.; Ghobrial, I.M.; Richardson, P.G. Current use of monoclonal antibodies in the treatment of multiple myeloma. Br. J. Haematol. 2018, 181, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Gish, K.; Kim, H.; Powers, R.; Fox, M.; Hickson, J.; McGonigal, T.; Chao, D.; Sho, M.; Singh, H.; Tarcsa, E.; et al. Preclinical evaluation of Abbv-838, a first-in-class anti-CS1 antibody-drug conjugate for the treatment of multiple myeloma. Haematologica 2016, 101, 253. [Google Scholar]
- Doronina, S.O.; Toki, B.E.; Torgov, M.Y.; Mendelsohn, B.A.; Cerveny, C.G.; Chace, D.F.; DeBlanc, R.L.; Gearing, R.P.; Bovee, T.D.; Siegall, C.B.; et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 2003, 21, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Wuchter, P.; Bertsch, U.; Salwender, H.-J.; Munder, M.; Haenel, M.; Benner, A.; Becker, N.; Fenk, R.; Duerig, J.; Blau, I.W.; et al. Evaluation of stem cell mobilization in patients with multiple myeloma after lenalidomide-based induction chemotherapy within the GMMG-HD6 trial. Blood 2016, 128, 3373. [Google Scholar]
- Jakubowiak, A.; Offidani, M.; Pegourie, B.; De La Rubia, J.; Garderet, L.; Laribi, K.; Bosi, A.; Marasca, R.; Laubach, J.; Mohrbacher, A.; et al. Randomized phase 2 study: Elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. Blood 2016, 127, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- Lonial, S.; Boise, L.H.; Kaufman, J. How I treat high-risk myeloma. Blood 2015, 126, 1536–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usmani, S.Z.; Hoering, A.; Sexton, R.; Ailawadhi, S.; Shah, J.J.; Fredette, S.; Durie, B.G.; Zonder, J.A.; Dhodapkar, M.V.; Rajkumar, S.V.; et al. SWOG 1211: A randomized phase I/II study of optimal induction therapy for newly diagnosed high-risk multiple myeloma (HRMM). J. Clin. Oncol. 2014, 32, 8624. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Lonial, S.; White, D.; Moreau, P.; Palumbo, A.; San-Miguel, J.; Shpilberg, O.; Anderson, K.; Grosicki, S.; Spicka, I.; et al. Elotuzumab plus lenalidomide/dexamethasone for relapsed or refractory multiple myeloma: ELOQUENT-2 follow-up and post-hoc analyses on progression-free survival and tumour growth. Br. J. Haematol. 2017, 178, 896–905. [Google Scholar] [CrossRef] [Green Version]
- Yee, A.J.; Laubach, J.; Campagnaro, E.L.; Lipe, B.; Nadeem, O.; Craig Cole, C.; O’Donnell, E.; Schlossman, R.I.; Bianchi, G.; Branagan, A.R.; et al. A phase II study of elotuzumab in combination with pomalidomide, bortezomib, and dexamethasone in relapsed and refractory multiple myeloma. J. Clin. Oncol. 2018, 36, 8012. [Google Scholar] [CrossRef]
- Berenson, J.; Manges, R.; Badarinath, S.; Cartmell, A.; McIntyre, K.; Lyons, R.; Harb, W.; Mohamed, H.; Nourbakhsh, A.; Rifkin, R. A phase 2 safety study of accelerated elotuzumab infusion, over less than 1 hour, in combination with lenalidomide and dexamethasone, in patients with multiple myeloma. Am. J. Hematol. 2017, 92, 440–466. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.S.; Olson, D.; Gordon, K.; Sandall, S.; Quick, M.; Finn, M.; Westendorf, L.; Linares, G.; Leiske, C.; Nesterova, A.; et al. SGN-CD48A: A novel humanized anti-CD48 antibody-drug conjugate for the treatment of multiple myeloma. Blood 2016, 128, 4470. [Google Scholar]
- Lewis, T.; Olson, D.J.; Gordon, K.A.; Sandall, S.L.; Miyamoto, J.; Westendorf, L.; Linares, G.; Leiske, C.; Kostner, H.; Stone, I.; et al. SGN-CD352A: A novel humanized anti-CD352 antibody-drug conjugate for the treatment of multiple myeloma. Cancer Res. 2016, 76, 1195. [Google Scholar] [CrossRef]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaia, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, J.; Qian, J.; Qiu, P.; Hanabuchi, S.; Lu, Y.; Wang, Z.; Liu, Z.; Li, H.; He, J.; et al. PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia 2013, 27, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Cai, Z.; Wang, S.; Zhang, X.; Qian, J.; Hong, S.; Li, H.; Wang, M.; Yang, J.; Yi, Q. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 2009, 114, 3625–3628. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, M.S.; Vettore, A.L.; Yamamoto, M.; Chauffaille Mde, L.; Zago, M.A.; Colleoni, G.W. Expression of eight genes of nuclear factor-kappa B pathway in multiple myeloma using bone marrow aspirates obtained at diagnosis. Histol. Histopathol. 2009, 24, 991–997. [Google Scholar]
- Schmidmaier, R.; Morsdorf, K.; Baumann, P.; Emmerich, B.; Meinhardt, G. Evidence for cell adhesion-mediated drug resistance of multiple myeloma cells in vivo. Int. J. Biol. Markers 2006, 21, 218–222. [Google Scholar] [CrossRef]
- Reina, M.; Espel, E. Role of LFA-1 and ICAM-1 in cancer. Cancers 2017, 9, 153. [Google Scholar] [CrossRef]
- Veitonmaki, N.; Hansson, M.; Zhan, F.; Sundberg, A.; Lofstedt, T.; Ljungars, A.; Li, Z.C.; Martinsson-Niskanen, T.; Zeng, M.; Yang, Y.; et al. A human ICAM-1 antibody isolated by a function-first approach has potent macrophage-dependent antimyeloma activity in vivo. Cancer Cell 2013, 23, 502–515. [Google Scholar] [CrossRef]
- Hansson, M.; Gimsing, P.; Badros, A.Z.; Martinsson Niskanen, T.; Nahi, H.; Offner, F.; Salomo, M.; Sonesson, E.; Mau-Sorensen, M.; Stenberg, Y.; et al. A phase 1 dose-escalation study of antibody BI-505 in relapsed/refractory multiple myeloma. Clin. Cancer Res. 2015, 21, 2730–2736. [Google Scholar] [CrossRef] [PubMed]
- Wichert, S.; Juliusson, G.; Johansson, A.; Sonesson, E.; Teige, I.; Wickenberg, A.T.; Frendeus, B.; Korsgren, M.; Hansson, M. A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma. PLoS ONE 2017, 12, e0171205. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Vonderheide, R.H. Anti-CD40 agonist antibodies: Preclinical and clinical experience. Update Cancer Ther. 2007, 2, 61–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, Y.T.; Li, X.; Tong, X.; Santos, D.; Otsuki, T.; Catley, L.; Tournilhac, O.; Podar, K.; Hideshima, T.; Schlossman, R.; et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res. 2005, 65, 5898–5906. [Google Scholar] [CrossRef]
- Bensinger, W.; Maziarz, R.T.; Jagannath, S.; Spencer, A.; Durrant, S.; Becker, P.S.; Ewald, B.; Bilic, S.; Rediske, J.; Baeck, J.; et al. A phase 1 study of lucatumumab, a fully human anti-CD40 antagonist monoclonal antibody administered intravenously to patients with relapsed or refractory multiple myeloma. Br. J. Haematol. 2012, 159, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Khubchandani, S.; Czuczman, M.S.; Hernandez-Ilizaliturri, F.J. Dacetuzumab, a humanized mAb against CD40 for the treatment of hematological malignancies. Curr. Opin. Investig. Drugs 2009, 10, 579–587. [Google Scholar] [PubMed]
- Vonderheide, R.H.; Glennie, M.J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 2013, 19, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Catley, L.P.; Mitsiades, C.S.; Burger, R.; Podar, K.; Shringpaure, R.; Hideshima, T.; Chauhan, D.; Hamasaki, M.; Ishitsuka, K.; et al. Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: Clinical implications. Cancer Res. 2004, 64, 2846–2852. [Google Scholar] [CrossRef]
- Agura, E.; Niesvizky, R.; Matous, J.; Munshi, N.; Hussein, M.; Parameswaran, R.V.; Tarantolo, S.; Whiting, N.C.; Drachman, J.G.; Zonder, J.A. Dacetuzumab (SGN-40), lenalidomide, and weekly dexamethasone in relapsed or refractory multiple myeloma: Multiple responses observed in a phase Ib study. Blood 2009, 114, 2870. [Google Scholar]
- Lonial, S.; Durie, B.; Palumbo, A.; San-Miguel, J. Monoclonal antibodies in the treatment of multiple myeloma: Current status and future perspectives. Leukemia 2016, 30, 526–535. [Google Scholar] [CrossRef]
- Walczak, H.; Krammer, P.H. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell Res. 2000, 256, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M.; Nakagama, H. FGF receptors: Cancer biology and therapeutics. Med. Res. Rev. 2014, 34, 280–300. [Google Scholar] [CrossRef] [PubMed]
- Chell, V.; Balmanno, K.; Little, A.S.; Wilson, M.; Andrews, S.; Blockley, L.; Hampson, M.; Gavine, P.R.; Cook, S.J. Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene 2013, 32, 3059–3070. [Google Scholar] [CrossRef] [PubMed]
- Keats, J.J.; Reiman, T.; Maxwell, C.A.; Taylor, B.J.; Larratt, L.M.; Mant, M.J.; Belch, A.R.; Pilarski, L.M. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003, 101, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A.V.; Lu, D.; Gupta, P.; Jin, D.; Xin, Y.; Brady, A.; Stephan, J.P.; Li, H.; Tien, J.; Qing, J.; et al. Preclinical pharmacokinetics of MFGR1877A, a human monoclonal antibody to FGFR3, and prediction of its efficacious clinical dose for the treatment of t(4;14)-positive multiple myeloma. Cancer Chemother. Pharmacol. 2012, 69, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Kawano, Y.; Moschetta, M.; Manier, S.; Glavey, S.; Gorgun, G.T.; Roccaro, A.M.; Anderson, K.C.; Ghobrial, I.M. Targeting the bone marrow microenvironment in multiple myeloma. Immunol. Rev. 2015, 263, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Manni, S.; Carrino, M.; Semenzato, G.; Piazza, F. Old and young actors playing novel roles in the drama of multiple myeloma bone marrow microenvironment dependent drug resistance. Int. J. Mol. Sci. 2018, 19, 1512. [Google Scholar] [CrossRef]
- Furstenberger, G.; Senn, H.J. Insulin-like growth factors and cancer. Lancet Oncol. 2002, 3, 298–302. [Google Scholar] [CrossRef]
- Abboud, S.L.; Bethel, C.R.; Aron, D.C. Secretion of insulinlike growth factor I and insulinlike growth factor-binding proteins by murine bone marrow stromal cells. J. Clin. Investig. 1991, 88, 470–475. [Google Scholar] [CrossRef]
- van de Donk, N.W.; Lokhorst, H.M.; Bloem, A.C. Growth factors and antiapoptotic signaling pathways in multiple myeloma. Leukemia 2005, 19, 2177–2185. [Google Scholar] [CrossRef] [Green Version]
- Abroun, S.; Ishikawa, H.; Tsuyama, N.; Liu, S.; Li, F.J.; Otsuyama, K.; Zheng, X.; Obata, M.; Kawano, M.M. Receptor synergy of interleukin-6 (IL-6) and insulin-like growth factor-I in myeloma cells that highly express IL-6 receptor α [corrected]. Blood 2004, 103, 2291–2298. [Google Scholar] [CrossRef] [PubMed]
- Ferlin, M.; Noraz, N.; Hertogh, C.; Brochier, J.; Taylor, N.; Klein, B. Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway. Br. J. Haematol. 2000, 111, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Chng, W.J.; Gualberto, A.; Fonseca, R. IGF-1R is overexpressed in poor-prognostic subtypes of multiple myeloma. Leukemia 2006, 20, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Bataille, R.; Robillard, N.; Avet-Loiseau, H.; Harousseau, J.L.; Moreau, P. CD221 (IGF-1R) is aberrantly expressed in multiple myeloma, in relation to disease severity. Haematologica 2005, 90, 706–707. [Google Scholar] [PubMed]
- Georgii-Hemming, P.; Wiklund, H.J.; Ljunggren, O.; Nilsson, K. Insulin-like growth factor I is a growth and survival factor in human multiple myeloma cell lines. Blood 1996, 88, 2250–2258. [Google Scholar] [PubMed]
- Zha, J.; Lackner, M.R. Targeting the insulin-like growth factor receptor-1R pathway for cancer therapy. Clin. Cancer Res. 2010, 16, 2512–2517. [Google Scholar] [CrossRef] [PubMed]
- Descamps, G.; Gomez-Bougie, P.; Venot, C.; Moreau, P.; Bataille, R.; Amiot, M. A humanised anti-IGF-1R monoclonal antibody (AVE1642) enhances bortezomib-induced apoptosis in myeloma cells lacking CD45. Br. J. Cancer 2009, 100, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Cavallo, F.; Leleu, X.; Hulin, C.; Amiot, M.; Descamps, G.; Facon, T.; Boccadoro, M.; Mignard, D.; Harousseau, J.L. Phase I study of the anti insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibody, AVE1642, as single agent and in combination with bortezomib in patients with relapsed multiple myeloma. Leukemia 2011, 25, 872–874. [Google Scholar] [CrossRef] [Green Version]
- Scartozzi, M.; Bianconi, M.; Maccaroni, E.; Giampieri, R.; Berardi, R.; Cascinu, S. Dalotuzumab, a recombinant humanized mAb targeted against IGFR1 for the treatment of cancer. Curr. Opin. Mol. Ther. 2010, 12, 361–371. [Google Scholar]
- King, E.R.; Wong, K.K. Insulin-like growth factor: Current concepts and new developments in cancer therapy. Recent Pat. Anticancer Drug Discov. 2012, 7, 14–30. [Google Scholar] [CrossRef]
- Zagouri, F.; Terpos, E.; Kastritis, E.; Dimopoulos, M.A. Emerging antibodies for the treatment of multiple myeloma. Expert Opin. Emerg. Drugs 2016, 21, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Adachi, Y.; Yoshio-Hoshino, N.; Nishimoto, N. The blockade of IL-6 signaling in rational drug design. Curr. Pharm. Des. 2008, 14, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.; Zhang, X.G.; Lu, Z.Y.; Bataille, R. Interleukin-6 in human multiple myeloma. Blood 1995, 85, 863–872. [Google Scholar] [PubMed]
- Hardin, J.; MacLeod, S.; Grigorieva, I.; Chang, R.; Barlogie, B.; Xiao, H.; Epstein, J. Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood 1994, 84, 3063–3070. [Google Scholar] [PubMed]
- Lu, Z.Y.; Brailly, H.; Wijdenes, J.; Bataille, R.; Rossi, J.F.; Klein, B. Measurement of whole body interleukin-6 (IL-6) production: Prediction of the efficacy of anti-IL-6 treatments. Blood 1995, 86, 3123–3131. [Google Scholar] [PubMed]
- Lust, J.A.; Lacy, M.Q.; Zeldenrust, S.R.; Witzig, T.E.; Moon-Tasson, L.L.; Dinarello, C.A.; Donovan, K.A. Reduction in C-reactive protein indicates successful targeting of the IL-1/IL-6 axis resulting in improved survival in early stage multiple myeloma. Am. J. Hematol. 2016, 91, 571–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrahmoune, H.; Herbeth, B.; Lamont, J.V.; Lambert, D.; Blankenberg, S.; Tiret, L.; FitzGerald, P.S.; Siest, G.; Visvikis-Siest, S. Association of classical and related inflammatory markers with high-sensitivity C-reactive protein in healthy individuals: Results from the Stanislas cohort. Clin. Chem. Lab. Med. 2007, 45, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Markham, A.; Patel, T. Siltuximab: First global approval. Drugs 2014, 74, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, P.M.; Chen, Q.; Small, G.W.; Kuhn, D.J.; Hunsucker, S.A.; Nemeth, J.A.; Orlowski, R.Z. Targeted inhibition of interleukin-6 with CNTO 328 sensitizes pre-clinical models of multiple myeloma to dexamethasone-mediated cell death. Br. J. Haematol. 2009, 145, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Van Zaanen, H.C.; Lokhorst, H.M.; Aarden, L.A.; Rensink, H.J.; Warnaar, S.O.; Van Oers, M.H. Blocking interleukin-6 activity with chimeric anti-IL6 monoclonal antibodies in multiple myeloma: Effects on soluble IL6 receptor and soluble gp130. Leuk. Lymphoma 1998, 31, 551–558. [Google Scholar] [CrossRef]
- Orlowski, R.Z.; Gercheva, L.; Williams, C.; Sutherland, H.; Robak, T.; Masszi, T.; Goranova-Marinova, V.; Dimopoulos, M.A.; Cavenagh, J.D.; Spicka, I.; et al. A phase 2, randomized, double-blind, placebo-controlled study of siltuximab (anti-IL-6 mAb) and bortezomib versus bortezomib alone in patients with relapsed or refractory multiple myeloma. Am. J. Hematol. 2015, 90, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, P.M.; Manges, R.F.; Sonneveld, P.; Jagannath, S.; Somlo, G.; Krishnan, A.; Lentzsch, S.; Frank, R.C.; Zweegman, S.; Wijermans, P.W.; et al. A phase 2 multicentre study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. Br. J. Haematol. 2013, 161, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Ogura, M.; Abe, Y.; Suzuki, T.; Tobinai, K.; Ando, K.; Taniwaki, M.; Maruyama, D.; Kojima, M.; Kuroda, J.; et al. Phase 1 study in Japan of siltuximab, an anti-IL-6 monoclonal antibody, in relapsed/refractory multiple myeloma. Int. J. Hematol. 2015, 101, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.O.; Schluns, K.S. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol. Lett. 2017, 190, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jones, M.; Liu, B.; Zhu, X.; Johnson, C.B.; Edwards, A.C.; Kong, L.; Jeng, E.K.; Han, K.; Marcus, W.D.; et al. Efficacy and mechanism-of-action of a novel superagonist interleukin-15: Interleukin-15 receptor αSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res. 2013, 73, 3075–3086. [Google Scholar] [CrossRef] [PubMed]
- Rhode, P.R.; Egan, J.O.; Xu, W.; Hong, H.; Webb, G.M.; Chen, X.; Liu, B.; Zhu, X.; Wen, J.; You, L.; et al. Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol. Res. 2016, 4, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Romee, R.; Cooley, S.; Berrien-Elliott, M.M.; Westervelt, P.; Verneris, M.R.; Wagner, J.E.; Weisdorf, D.J.; Blazar, B.R.; Ustun, C.; DeFor, T.E.; et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 2018, 131, 2515–2527. [Google Scholar] [CrossRef] [PubMed]
- Nakayamada, S.; Tanaka, Y. BAFF- and APRIL-targeted therapy in systemic autoimmune diseases. Inflamm. Regener. 2016, 36, 6. [Google Scholar] [CrossRef] [PubMed]
- Planelles, L.; Medema, J.P.; Hahne, M.; Hardenberg, G. The expanding role of APRIL in cancer and immunity. Curr. Mol. Med. 2008, 8, 829–844. [Google Scholar] [CrossRef] [PubMed]
- Moreaux, J.; Cremer, F.W.; Reme, T.; Raab, M.; Mahtouk, K.; Kaukel, P.; Pantesco, V.; De Vos, J.; Jourdan, E.; Jauch, A.; et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005, 106, 1021–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, A.J.; Darce, J.R.; Arendt, B.K.; Harder, B.; Henderson, K.; Kindsvogel, W.; Gross, J.A.; Greipp, P.R.; Jelinek, D.F. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: A mechanism for growth and survival. Blood 2004, 103, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Acharya, C.; An, G.; Moschetta, M.; Zhong, M.Y.; Feng, X.; Cea, M.; Cagnetta, A.; Wen, K.; van Eenennaam, H.; et al. APRIL and BCMA promote human multiple myeloma growth, chemoresistance, and immunosuppression in the bone marrow microenvironment. Blood 2016, 127, 3225–3236. [Google Scholar] [CrossRef] [PubMed]
- Fragioudaki, M.; Boula, A.; Tsirakis, G.; Psarakis, F.; Spanoudakis, M.; Papadakis, I.S.; Pappa, C.A.; Alexandrakis, M.G. B cell-activating factor: Its clinical significance in multiple myeloma patients. Ann. Hematol. 2012, 91, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Fragioudaki, M.; Tsirakis, G.; Pappa, C.A.; Aristeidou, I.; Tsioutis, C.; Alegakis, A.; Kyriakou, D.S.; Stathopoulos, E.N.; Alexandrakis, M.G. Serum BAFF levels are related to angiogenesis and prognosis in patients with multiple myeloma. Leuk. Res. 2012, 36, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Hengeveld, P.J.; Kersten, M.J. B-cell activating factor in the pathophysiology of multiple myeloma: A target for therapy? Blood Cancer J. 2015, 5, e282. [Google Scholar] [CrossRef] [PubMed]
- Mackay, F.; Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 2009, 9, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Neri, P.; Kumar, S.; Fulciniti, M.T.; Vallet, S.; Chhetri, S.; Mukherjee, S.; Tai, Y.; Chauhan, D.; Tassone, P.; Venuta, S.; et al. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin. Cancer Res. 2007, 13, 5903–5909. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Li, X.F.; Breitkreutz, I.; Song, W.; Neri, P.; Catley, L.; Podar, K.; Hideshima, T.; Chauhan, D.; Raje, N.; et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006, 66, 6675–6682. [Google Scholar] [CrossRef]
- Moreaux, J.; Legouffe, E.; Jourdan, E.; Quittet, P.; Reme, T.; Lugagne, C.; Moine, P.; Rossi, J.F.; Klein, B.; Tarte, K. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004, 103, 3148–3157. [Google Scholar] [CrossRef] [Green Version]
- Rossi, J.F.; Moreaux, J.; Hose, D.; Requirand, G.; Rose, M.; Rouille, V.; Nestorov, I.; Mordenti, G.; Goldschmidt, H.; Ythier, A.; et al. Atacicept in relapsed/refractory multiple myeloma or active Waldenstrom’s macroglobulinemia: A phase I study. Br. J. Cancer 2009, 101, 1051–1058. [Google Scholar] [CrossRef]
- Raje, N.S.; Moreau, P.; Terpos, E.; Benboubker, L.; Grzasko, N.; Holstein, S.A.; Oriol, A.; Huang, S.Y.; Beksac, M.; Kuliczkowski, K.; et al. Phase 2 study of tabalumab, a human anti-B-cell activating factor antibody, with bortezomib and dexamethasone in patients with previously treated multiple myeloma. Br. J. Haematol. 2017, 176, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Dulos, J.; Lilian, D.; Snippert, M.; Guadagnoli, M.; Bertens, A.; David, L.H.; Yu-Tzu, T.; Anderson, K.C.; Medema, J.P.; Cameron, K.; et al. Bion-1301: A novel fully blocking APRIL antibody for the treatment of multiple myeloma. Blood 2016, 128, 2112. [Google Scholar]
- Cho, S.F.; Anderson, K.C.; Tai, Y.T. Targeting B Cell Maturation Antigen (BCMA) in multiple myeloma: Potential uses of BCMA-based immunotherapy. Front. Immunol. 2018, 9, 1821. [Google Scholar] [CrossRef] [PubMed]
- Friedman, K.M.; Garrett, T.E.; Evans, J.W.; Horton, H.M.; Latimer, H.J.; Seidel, S.L.; Horvath, C.J.; Morgan, R.A. Effective targeting of multiple B-cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T Cells. Hum. Gene Ther. 2018, 29, 585–601. [Google Scholar] [CrossRef] [PubMed]
- Danhof, S.; Hudecek, M.; Smith, E.L. CARs and other T cell therapies for MM: The clinical experience. Best Pract. Res. Clin. Haematol. 2018, 31, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Anderson, K.C. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy 2015, 7, 1187–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, Y.T.; Mayes, P.A.; Acharya, C.; Zhong, M.Y.; Cea, M.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.; Fieles, W.; et al. Novel afucosylated anti-B cell maturation antigen-monomethyl auristatin F antibody-drug conjugate (GSK2857916) induces potent and selective anti-multiple myeloma activity. Blood 2014, 123, 3128–3138. [Google Scholar] [CrossRef]
- Robak, P.; Robak, T. Management of multiple myeloma with second-generation antibody-drug conjugates. Biodrugs 2016, 30, 87–93. [Google Scholar] [CrossRef]
- Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N., III; Richardson, P.G.; Anderson, L.; Sutherland, H.; Yong, K.; et al. Deep and durable responses in patients (pts) with relapsed/refractory multiple myeloma (MM) treated with monotherapy GSK2857916, an antibody drug conjugate against B-cell maturation antigen (BCMA): Preliminary results from part 2 of study BMA117159. Blood 2017, 130, 741. [Google Scholar]
- Ooi, L.L.; Dunstan, C.R. CXCL12/CXCR4 axis in tissue targeting and bone destruction in cancer and multiple myeloma. J. Bone Miner. Res. 2009, 24, 1147–1149. [Google Scholar] [CrossRef]
- Roccaro, A.M.; Mishima, Y.; Sacco, A.; Moschetta, M.; Tai, Y.T.; Shi, J.; Zhang, Y.; Reagan, M.R.; Huynh, D.; Kawano, Y.; et al. CXCR4 regulates extra-medullary myeloma through epithelial-mesenchymal-transition-like transcriptional activation. Cell Rep. 2015, 12, 622–635. [Google Scholar] [CrossRef] [PubMed]
- Ghobrial, I.M.; Perez, R.; Baz, R.; Richardson, P.G.; Anderson, K.C.; Sabbatini, P.; Dilea, C.; Cardarelli, P.M.; Wade, M.; Xing, G.; et al. Phase Ib study of the novel anti-CXCR4 antibody ulocuplumab (BMS-936564) in combination with lenalidomide plus low-dose dexamethasone, or with bortezomib plus dexamethasone in subjects with relapsed or refractory multiple myeloma. Blood 2014, 124, 3483. [Google Scholar]
- Chester, C.; Sanmamed, M.F.; Wang, J.; Melero, I. Immunotherapy targeting 4-1BB: Mechanistic rationale, clinical results, and future strategies. Blood 2018, 131, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Gullo, C.; Koh, L.K.; Pang, W.L.; Ho, K.T.; Tan, S.H.; Schwarz, H. Inhibition of proliferation and induction of apoptosis in multiple myeloma cell lines by CD137 ligand signaling. PLoS ONE 2010, 5, e10845. [Google Scholar] [CrossRef]
- Yonezawa, A.; Dutt, S.; Chester, C.; Kim, J.; Kohrt, H.E. Boosting cancer immunotherapy with anti-CD137 antibody therapy. Clin. Cancer Res. 2015, 21, 3113–3120. [Google Scholar] [CrossRef] [PubMed]
- Segal, N.H.; Logan, T.F.; Hodi, F.S.; McDermott, D.; Melero, I.; Hamid, O.; Schmidt, H.; Robert, C.; Chiarion-Sileni, V.; Ascierto, P.A.; et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin. Cancer Res. 2017, 23, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Bolzoni, M.; Toscani, D.; Storti, P.; Marchica, V.; Costa, F.; Giuliani, N. Possible targets to treat myeloma-related osteoclastogenesis. Expert Rev. Hematol. 2018, 11, 325–336. [Google Scholar] [CrossRef]
- Podar, K.; Jager, D. Targeting the immune niche within the bone marrow microenvironment: The rise of immunotherapy in multiple myeloma. Curr. Cancer Drug Targets 2017, 17, 782–805. [Google Scholar] [CrossRef]
- Terpos, E.; Christoulas, D.; Gavriatopoulou, M. Biology and treatment of myeloma related bone disease. Metabolism 2018, 80, 80–90. [Google Scholar] [CrossRef]
- Terpos, E.; Szydlo, R.; Apperley, J.F.; Hatjiharissi, E.; Politou, M.; Meletis, J.; Viniou, N.; Yataganas, X.; Goldman, J.M.; Rahemtulla, A. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: Proposal for a novel prognostic index. Blood 2003, 102, 1064–1069. [Google Scholar] [CrossRef]
- Udagawa, N.; Takahashi, N.; Yasuda, H.; Mizuno, A.; Itoh, K.; Ueno, Y.; Shinki, T.; Gillespie, M.T.; Martin, T.J.; Higashio, K.; et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 2000, 141, 3478–3484. [Google Scholar] [CrossRef]
- Burkiewicz, J.S.; Scarpace, S.L.; Bruce, S.P. Denosumab in osteoporosis and oncology. Ann. Pharmacother. 2009, 43, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Terpos, E.; Willenbacher, W.; Shimizu, K.; Garcia-Sanz, R.; Durie, B.; Legiec, W.; Krejci, M.; Laribi, K.; Zhu, L.; et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: An international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. 2018, 19, 370–381. [Google Scholar] [CrossRef]
- Anderson, K.; Ismaila, N.; Flynn, P.J.; Halabi, S.; Jagannath, S.; Ogaily, M.S.; Omel, J.; Raje, N.; Roodman, G.D.; Yee, G.C.; et al. Role of bone-modifying agents in multiple myeloma: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.A. Denosumab for bone lesions in multiple myeloma—What is its value? Haematologica 2018, 103, 753–754. [Google Scholar] [CrossRef] [PubMed]
- Vale, W.; Rivier, J.; Vaughan, J.; McClintock, R.; Corrigan, A.; Woo, W.; Karr, D.; Spiess, J. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 1986, 321, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Chantry, A.D.; Heath, D.; Mulivor, A.W.; Pearsall, S.; Baud’huin, M.; Coulton, L.; Evans, H.; Abdul, N.; Werner, E.D.; Bouxsein, M.L.; et al. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. J. Bone Miner. Res. 2010, 25, 2633–2646. [Google Scholar] [CrossRef] [Green Version]
- Terpos, E.; Kastritis, E.; Christoulas, D.; Gkotzamanidou, M.; Eleutherakis-Papaiakovou, E.; Kanellias, N.; Papatheodorou, A.; Dimopoulos, M.A. Circulating activin-A is elevated in patients with advanced multiple myeloma and correlates with extensive bone involvement and inferior survival; no alterations post-lenalidomide and dexamethasone therapy. Ann. Oncol. 2012, 23, 2681–2686. [Google Scholar] [CrossRef] [Green Version]
- Vallet, S.; Mukherjee, S.; Vaghela, N.; Hideshima, T.; Fulciniti, M.; Pozzi, S.; Santo, L.; Cirstea, D.; Patel, K.; Sohani, A.R.; et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc. Natl. Acad. Sci. USA 2010, 107, 5124–5129. [Google Scholar] [CrossRef] [Green Version]
- Abdulkadyrov, K.M.; Salogub, G.N.; Khuazheva, N.K.; Sherman, M.L.; Laadem, A.; Barger, R.; Knight, R.; Srinivasan, S.; Terpos, E. Sotatercept in patients with osteolytic lesions of multiple myeloma. Br. J. Haematol. 2014, 165, 814–823. [Google Scholar] [CrossRef] [Green Version]
- Yee, A.J.; Laubach, J.P.; Nooka, A.K.; O’Donnell, E.K.; Weller, E.A.; Couture, N.R.; Wallace, E.E.; Burke, J.N.; Harrington, C.C.; Puccio-Pick, M.; et al. Phase 1 dose-escalation study of sotatercept (ACE-011) in combination with lenalidomide and dexamethasone in patients with relapsed and/or refractory multiple myeloma. Blood 2015, 126, 4241. [Google Scholar]
- Westendorf, J.J.; Kahler, R.A.; Schroeder, T.M. Wnt signaling in osteoblasts and bone diseases. Gene 2004, 341, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Rachner, T.D.; Gobel, A.; Benad-Mehner, P.; Hofbauer, L.C.; Rauner, M. Dickkopf-1 as a mediator and novel target in malignant bone disease. Cancer Lett. 2014, 346, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Yi, Q. DKK1 as a novel target for myeloma immunotherapy. Oncoimmunology 2012, 1, 756–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Politou, M.C.; Heath, D.J.; Rahemtulla, A.; Szydlo, R.; Anagnostopoulos, A.; Dimopoulos, M.A.; Croucher, P.I.; Terpos, E. Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int. J. Cancer 2006, 119, 1728–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, M.; Mieth, M.; Liebisch, P.; Oberlander, R.; Rademacher, J.; Jakob, C.; Kleeberg, L.; Fleissner, C.; Braendle, E.; Peters, M.; et al. Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur. J. Haematol. 2008, 80, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Heider, U.; Kaiser, M.; Mieth, M.; Lamottke, B.; Rademacher, J.; Jakob, C.; Braendle, E.; Stover, D.; Sezer, O. Serum concentrations of DKK-1 decrease in patients with multiple myeloma responding to anti-myeloma treatment. Eur. J. Haematol. 2009, 82, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Yaccoby, S.; Ling, W.; Zhan, F.; Walker, R.; Barlogie, B.; Shaughnessy, J.D., Jr. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007, 109, 2106–2111. [Google Scholar] [CrossRef] [Green Version]
- Heath, D.J.; Chantry, A.D.; Buckle, C.H.; Coulton, L.; Shaughnessy, J.D., Jr.; Evans, H.R.; Snowden, J.A.; Stover, D.R.; Vanderkerken, K.; Croucher, P.I. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J. Bone Miner. Res. 2009, 24, 425–436. [Google Scholar] [CrossRef]
- Fulciniti, M.; Tassone, P.; Hideshima, T.; Vallet, S.; Nanjappa, P.; Ettenberg, S.A.; Shen, Z.; Patel, N.; Tai, Y.T.; Chauhan, D.; et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 2009, 114, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Eda, H.; Santo, L.; Wein, M.N.; Hu, D.Z.; Cirstea, D.D.; Nemani, N.; Tai, Y.T.; Raines, S.E.; Kuhstoss, S.A.; Munshi, N.C.; et al. Regulation of sclerostin expression in multiple myeloma by Dkk-1: A potential therapeutic strategy for myeloma bone disease. J. Bone Miner. Res. 2016, 31, 1225–1234. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Christoulas, D.; Katodritou, E.; Bratengeier, C.; Gkotzamanidou, M.; Michalis, E.; Delimpasi, S.; Pouli, A.; Meletis, J.; Kastritis, E.; et al. Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: Reduction post-bortezomib monotherapy. Int. J. Cancer 2012, 131, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Colucci, S.; Brunetti, G.; Oranger, A.; Mori, G.; Sardone, F.; Specchia, G.; Rinaldi, E.; Curci, P.; Liso, V.; Passeri, G.; et al. Myeloma cells suppress osteoblasts through sclerostin secretion. Blood Cancer J. 2011, 1, e27. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, G.; Oranger, A.; Mori, G.; Specchia, G.; Rinaldi, E.; Curci, P.; Zallone, A.; Rizzi, R.; Grano, M.; Colucci, S. Sclerostin is overexpressed by plasma cells from multiple myeloma patients. Ann. N. Y. Acad. Sci. 2011, 1237, 19–23. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.M.; Reagan, M.R.; Youlten, S.E.; Mohanty, S.T.; Seckinger, A.; Terry, R.L.; Pettitt, J.A.; Simic, M.K.; Cheng, T.L.; Morse, A.; et al. Inhibiting the osteocyte specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood 2017, 129, 3452–3464. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keir, M.E.; Liang, S.C.; Guleria, I.; Latchman, Y.E.; Qipo, A.; Albacker, L.A.; Koulmanda, M.; Freeman, G.J.; Sayegh, M.H.; Sharpe, A.H. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 2006, 203, 883–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, M.; Schouten, R.D.; De Gooijer, C.J.; Baas, P. Pembrolizumab for the treatment of non-small cell lung cancer. Expert Rev. Anticancer Ther. 2017, 17, 399–409. [Google Scholar] [CrossRef]
- Glimelius, I.; Diepstra, A. Novel treatment concepts in Hodgkin lymphoma. J. Intern. Med. 2017, 281, 247–260. [Google Scholar] [CrossRef]
- Jazirehi, A.R.; Lim, A.; Dinh, T. PD-1 inhibition and treatment of advanced melanoma-role of pembrolizumab. Am. J. Cancer Res. 2016, 6, 2117–2128. [Google Scholar] [PubMed]
- Fuereder, T. Immunotherapy for head and neck squamous cell carcinoma. Memo 2016, 9, 66–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragon-Ching, J.B.; Trump, D.L. Targeted therapies in the treatment of urothelial cancers. Urol. Oncol. 2017, 35, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Ellis, P.M.; Vella, E.T.; Ung, Y.C. Immune checkpoint inhibitors for patients with advanced non-small-cell lung cancer: A systematic review. Clin. Lung Cancer 2017, 18, 444–459. [Google Scholar] [CrossRef] [PubMed]
- Le, A.D.; Alzghari, S.K.; Jean, G.W.; La-Beck, N.M. Update on targeted therapies for advanced non-small cell lung cancer: Nivolumab in context. Ther. Clin. Risk Manag. 2017, 13, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, H.; Chen, B. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J. Cancer 2017, 8, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef]
- Syed, Y.Y. Durvalumab: First global approval. Drugs 2017, 77, 1369–1376. [Google Scholar] [CrossRef]
- Terheyden, P.; Becker, J.C. New developments in the biology and the treatment of metastatic Merkel cell carcinoma. Curr. Opin. Oncol. 2017, 29, 221–226. [Google Scholar] [CrossRef]
- Rosenblatt, J.; Avigan, D. Targeting the PD-1/PD-L1 axis in multiple myeloma: A dream or a reality? Blood 2017, 129, 275–279. [Google Scholar] [CrossRef]
- Bianchi, G.; Richardson, P.G.; Anderson, K.C. Promising therapies in multiple myeloma. Blood 2015, 126, 300–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usmani, S.Z.; Fredrik Schjesvold, F.; Albert Oriol Rocafiguera, A.O.; Karlin, L.; Rifkin, R.M.; Yimer, H.A.; LeBlanc, R.; Takezako, N.; McCroskey, R.D.; Suzuki, K.; et al. A phase 3 randomized study of pembrolizumab (pembro) plus lenalidomide (len) and low-dose dexamethasone (Rd) versus Rd for newly diagnosed and treatment- naive multiple myeloma (MM): KEYNOTE-185. J. Clin. Oncol. 2018, 38, 8010. [Google Scholar] [CrossRef]
- Krauss, A.C.; Mulkey, F.; Shen, Y.-L.; Rosenberg, A.; Miller, B.; Carioti, T.; Scott, K.; Gormley, N.; Theoret, M.R.; Sridhara, R.; et al. FDA analysis of pembrolizumab trials in multiple myeloma: Immune related adverse events (irAEs) and response. J. Clin. Oncol. 2018, 36, 8008. [Google Scholar] [CrossRef]
- Palumbo, A.; Mateos, M.-V.; San Miguel, J.; Shah, J.; Thompson, S.; Marinello, P.M.; Jagannath, S. KEYNOTE-185: A randomized, open-label phase 3 study of pembrolizumab in combination with lenalidomide and low-dose dexamethasone in newly diagnosed and treatment-naive multiple myeloma (MM). J. Clin. Oncol. 2016, 34, 8069. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Blacklock, H.; Schjesvold, F.; Rocafiguera, A.O.; Simpson, D.; George, A.; Goldschmidt, H.; Sherbenou, D.W.; Avivi, I.; Iida, S.; et al. A phase 3 randomized study of pembrolizumab (Pembro) plus pomalidomide (Pom) and dexamethasone (Dex) for relapsed/refractory multiple myeloma (RRMM): KEYNOTE-183. J. Clin. Oncol. 2018, 36, 8021. [Google Scholar] [CrossRef]
- Shah, J.J.; Jagannath, S.; Mateos, V.-M.; Palumbo, A.; Kher, U.; Marinello, P.M.; Miguel, J.S. KEYNOTE-183: A randomized, open-label phase 3 study of pembrolizumab in combination with pomalidomide and low-dose dexamethasone in refractory or relapsed and refractory multiple myeloma (rrMM). J. Clin. Oncol. 2016, 34, 8070. [Google Scholar] [CrossRef]
- Ocio, E.M.; Shah, J.; Jagannath, S.; Mateos, M.-V.; Palumbo, A.; Kher, U.; Marinello, P.; San Miguel, J. Pembrolizumab in combination with pomalidomide and low-dose dexamethasone in refractory or relapsed and refractory multiple myeloma (rrMM): Randomized, phase 3 KEYNOTE-183 study. Ann. Oncol. 2016, 27 (Suppl. 6), 313–327. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Siegel, D.; Shah, J.J.; Reece, D.; Avigan, D.; Orlowski, R.; Ge, Y.; Balakumaran, A.; Marinello, P.; San Miguel, J. Pembrolizumab (MK-3475) in combination with lenalidomide and low-dose dexamethasone for relapsed/refractory multiple myeloma (RRMM)/KEYNOTE-023. J. Immunother. Cancer 2015, 3, 160. [Google Scholar] [CrossRef]
- San Miguel, J.; Mateos, M.-V.; Shah, J.J.; Ocio, E.M.; Rodriguez-Otero, P.; Reece, D.; Munshi, N.C.; Avigan, D.; Ge, Y.; Balakumaran, A.; et al. Pembrolizumab in combination with lenalidomide and low-dose dexamethasone for relapsed/refractory multiple myeloma (RRMM): Keynote-023. Blood 2015, 126, 505. [Google Scholar]
- Ocio, E.M.; Mateos, M.-V.; Orlowski, R.Z.; Siegel, D.; Reece, D.E.; Moreau, P.; Rodriguez-Otero, P.; Munshi, N.C.; Avigan, D.; Ghori, R.; et al. Pembrolizumab (Pembro) plus lenalidomide (Len) and low-dose dexamethasone (Dex) for relapsed/refractory multiple myeloma (RRMM): Efficacy and biomarker analyses. J. Clin. Oncol. 2017, 35, 8015. [Google Scholar] [CrossRef]
- Cho, H.J.; Cole, C.; Martin, T.G.; Zonder, J.A.; Fay, J.W.; Vij, R.; Byon, J.C.H.; Stewart, A.K.; Dhodapkar, M.V. A phase Ib study of atezolizumab (atezo) alone or in combination with lenalidomide or pomalidomide and/or daratumumab in patients (pts) with multiple myeloma (MM). J. Clin. Oncol. 2017, 35, 8053. [Google Scholar] [CrossRef]
- Calvo, E.; Moreno, V.; Felip, E.; Curigliano, G.; Morgensztern, D.; Greger, J.; Bae, K.; Mayer, C.L.; Marino, J.; Attiyeh, E.F.; et al. Interim results of a phase 1/2 study of JNJ-63723283, an anti- PD-1 monoclonal antibody, in patients with advanced cancers. J. Clin. Oncol. 2018, 36, 58. [Google Scholar] [CrossRef]
- Romagne, F.; Andre, P.; Spee, P.; Zahn, S.; Anfossi, N.; Gauthier, L.; Capanni, M.; Ruggeri, L.; Benson, D.M., Jr.; Blaser, B.W.; et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 2009, 114, 2667–2677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, D.M., Jr.; Cohen, A.D.; Jagannath, S.; Munshi, N.C.; Spitzer, G.; Hofmeister, C.C.; Efebera, Y.A.; Andre, P.; Zerbib, R.; Caligiuri, M.A. A phase I trial of the anti-KIR antibody IPH2101 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin. Cancer Res. 2015, 21, 4055–4061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsten, M.; Korde, N.; Kotecha, R.; Reger, R.; Bor, S.; Kazandjian, D.; Landgren, O.; Childs, R.W. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin. Cancer Res. 2016, 22, 5211–5222. [Google Scholar] [CrossRef]
- Xiang, Y.-R.; Liu, L. “Eating” cancer cells by blocking CD47 signaling: Cancer therapy by targeting the innate immune checkpoint. Cancer Transl. Med. 2017, 3, 200–208. [Google Scholar]
- Kim, D.; Wang, J.; Willingham, S.B.; Martin, R.; Wernig, G.; Weissman, I.L. Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia 2012, 26, 2538–2545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russ, A.; Hua, A.B.; Montfort, W.R.; Rahman, B.; Riaz, I.B.; Khalid, M.U.; Carew, J.S.; Nawrocki, S.T.; Persky, D.; Anwer, F. Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018, 32, 480–489. [Google Scholar] [CrossRef]
- Muz, B.; Kusdono, H.D.; King, J.; Kohnen, D.; Fiala, M.A.; Vij, R.; Capoccia, B.; Manning, P.T.; Salama, N.N.; Azab, A.K. Targeting CD47 as a novel therapeutic strategy in multiple myeloma. Blood 2017, 130, 3099. [Google Scholar]
- Linderoth, E.; Helke, S.; Lee, V.; Mutukura, T.; Truong, T.; Wong, M.; Lin, G.H.Y.; Johnson, L.D.S.; Pang, X.; Winston, J.; et al. The anti-myeloma activity of TTI-621 (SIRPαFc), a CD47-blocking immunotherapeutic, is enhanced when combined with a proteasome inhibitor. Cancer Res. 2017, 77, 2653. [Google Scholar] [CrossRef]
- Lonial, S.; Richardson, P.G.; Reece, D.E.; Mohamed, H.; Shelat, S.; San Miguel, J. CheckMate 602: An open-label, randomized, phase 3 trial of combinations of nivolumab, elotuzumab, pomalidomide and dexamethasone in relapsed/refractory multiple myeloma. J. Clin. Oncol. 2017, 35, 8052. [Google Scholar] [CrossRef]
- Siegel, D.S.D.; van de Donk, N.; Sonneveld, P.; Hofmeister, C.C.; Bahlis, N.J.; Niesvizky, R.; Sternas, L.; Peluso, T.; Shah, S.; Slaughter, A.; et al. A phase 1b study of durvalumab (MEDI4736) alone or in combination with pomalidomide (POM) with or without low dose- dexamethasone (LoDEX) in patients (pts) with relapsed and refractory multiple myeloma (RRMM). J. Clin. Oncol. 2016, 34, 8072. [Google Scholar] [CrossRef]
- Benson, D.M., Jr.; Hofmeister, C.C.; Padmanabhan, S.; Suvannasankha, A.; Jagannath, S.; Abonour, R.; Bakan, C.; Andre, P.; Efebera, Y.; Tiollier, J.; et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 2012, 120, 4324–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanford, M. Blinatumomab: First global approval. Drugs 2015, 75, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Baeuerle, P.A.; Reinhardt, C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009, 69, 4941–4944. [Google Scholar] [CrossRef] [PubMed]
- Hipp, S.; Tai, Y.T.; Blanset, D.; Deegen, P.; Wahl, J.; Thomas, O.; Rattel, B.; Adam, P.J.; Anderson, K.C.; Friedrich, M. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia 2017, 31, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Seckinger, A.; Delgado, J.A.; Moser, S.; Moreno, L.; Neuber, B.; Grab, A.; Lipp, S.; Merino, J.; Prosper, F.; Emde, M.; et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell 2017, 31, 396–410. [Google Scholar] [CrossRef]
- Atamaniuk, J.; Gleiss, A.; Porpaczy, E.; Kainz, B.; Grunt, T.W.; Raderer, M.; Hilgarth, B.; Drach, J.; Ludwig, H.; Gisslinger, H.; et al. Overexpression of G protein-coupled receptor 5D in the bone marrow is associated with poor prognosis in patients with multiple myeloma. Eur. J. Clin. Investig. 2012, 42, 953–960. [Google Scholar] [CrossRef]
- Li, J.; Stagg, N.J.; Johnston, J.; Harris, M.J.; Menzies, S.A.; DiCara, D.; Clark, V.; Hristopoulos, M.; Cook, R.; Slaga, D.; et al. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell 2017, 31, 383–395. [Google Scholar] [CrossRef]
- Chen, D.; Zou, J.; Zong, Y.; Meng, H.; An, G.; Yang, L. Anti-human CD138 monoclonal antibodies and their bispecific formats: Generation and characterization. Immunopharmacol. Immunotoxicol. 2016, 38, 175–183. [Google Scholar] [CrossRef]
- Zou, J.; Chen, D.; Zong, Y.; Ye, S.; Tang, J.; Meng, H.; An, G.; Zhang, X.; Yang, L. Immunotherapy based on bispecific T-cell engager with hIgG1 Fc sequence as a new therapeutic strategy in multiple myeloma. Cancer Sci. 2015, 106, 512–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, M.Y.; Cicic, D.; Bergonio, G.; Berger, M. Trial in progress: Phase I study of actinium-225 (225Ac)-lintuzumab in patients with refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2017, 17 (Suppl. 2), S329–S330. [Google Scholar] [CrossRef]
- Starlets, D.; Gore, Y.; Binsky, I.; Haran, M.; Harpaz, N.; Shvidel, L.; Becker-Herman, S.; Berrebi, A.; Shachar, I. Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 2006, 107, 4807–4816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, R.; Mattes, M.J.; Cardillo, T.M.; Hansen, H.J.; Chang, C.H.; Burton, J.; Govindan, S.; Goldenberg, D.M. CD74: A new candidate target for the immunotherapy of B-cell neoplasms. Clin. Cancer Res. 2007, 13, 5556s–5563s. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.L.; Niesvizky, R.; Stadtmauer, E.A.; Chanan-Khan, A.; Siegel, D.; Horne, H.; Wegener, W.A.; Goldenberg, D.M. Phase I, multicentre, dose-escalation trial of monotherapy with milatuzumab (humanized anti-CD74 monoclonal antibody) in relapsed or refractory multiple myeloma. Br. J. Haematol. 2013, 163, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Sapra, P.; Stein, R.; Pickett, J.; Qu, Z.; Govindan, S.V.; Cardillo, T.M.; Hansen, H.J.; Horak, I.D.; Griffiths, G.L.; Goldenberg, D.M. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin. Cancer Res. 2005, 11, 5257–5264. [Google Scholar] [CrossRef]
- Rawstron, A.C.; Owen, R.G.; Davies, F.E.; Johnson, R.J.; Jones, R.A.; Richards, S.J.; Evans, P.A.; Child, J.A.; Smith, G.M.; Jack, A.S.; et al. Circulating plasma cells in multiple myeloma: Characterization and correlation with disease stage. Br. J. Haematol. 1997, 97, 46–55. [Google Scholar] [CrossRef]
- Harada, H.; Kawano, M.M.; Huang, N.; Harada, Y.; Iwato, K.; Tanabe, O.; Tanaka, H.; Sakai, A.; Asaoku, H.; Kuramoto, A. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 1993, 81, 2658–2663. [Google Scholar]
- Berdeja, J.G.; Hernandez-Ilizaliturri, F.; Chanan-Khan, A.; Patel, M.; Kelly, K.R.; Running, K.L.; Murphy, M.; Guild, R.; Carrigan, C.; Ladd, S.; et al. Phase I study of lorvotuzumab mertansine (LM, IMGN901) in combination with lenalidomide (len) and dexamethasone (dex) in patients with CD56-positive relapsed or relapsed/refractory multiple myeloma (MM). Blood 2012, 120, 728. [Google Scholar] [CrossRef]
- Jelinek, T.; Hajek, R. Monoclonal antibodies—A new era in the treatment of multiple myeloma. Blood Rev. 2016, 30, 101–110. [Google Scholar] [CrossRef]
- Dhodapkar, M.V.; Abe, E.; Theus, A.; Lacy, M.; Langford, J.K.; Barlogie, B.; Sanderson, R.D. Syndecan-1 is a multifunctional regulator of myeloma pathobiology: Control of tumor cell survival, growth, and bone cell differentiation. Blood 1998, 91, 2679–2688. [Google Scholar]
- Elenius, K.; Salmivirta, M.; Inki, P.; Mali, M.; Jalkanen, M. Binding of human syndecan to extracellular matrix proteins. J. Biol. Chem. 1990, 265, 17837–17843. [Google Scholar]
- Sanderson, R.D.; Lalor, P.; Bernfield, M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul. 1989, 1, 27–35. [Google Scholar] [CrossRef]
- Wijdenes, J.; Vooijs, W.C.; Clement, C.; Post, J.; Morard, F.; Vita, N.; Laurent, P.; Sun, R.X.; Klein, B.; Dore, J.M. A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br. J. Haematol. 1996, 94, 318–323. [Google Scholar] [CrossRef]
- Lopus, M.; Oroudjev, E.; Wilson, L.; Wilhelm, S.; Widdison, W.; Chari, R.; Jordan, M.A. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol. Cancer Ther. 2010, 9, 2689–2699. [Google Scholar] [CrossRef]
- Schonfeld, K.; Zuber, C.; Pinkas, J.; Hader, T.; Bernoster, K.; Uherek, C. Indatuximab ravtansine (BT062) combination treatment in multiple myeloma: Pre-clinical studies. J. Hematol. Oncol. 2017, 10, 13. [Google Scholar] [CrossRef]
- Kelly, K.R.; Chanan-Khan, A.; Heffner, L.T.; Somlo, G.; Siegel, D.S.; Zimmerman, T.; Karnad, A.; Munshi, N.C.; Jagannath, S.; Greenberg, A.L.; et al. Indatuximab ravtansine (BT062) in combination with lenalidomide and low-dose dexamethasone in patients with relapsed and/or refractory multiple myeloma: Clinical activity in patients already exposed to lenalidomide and bortezomib. Blood 2014, 124, 4736. [Google Scholar]
- Kelly, K.R.; Siegel, D.S.; Chanan-Khan, A.A.; Somlo, G.; Heffner, L.T.; Jagannath, S.; Zimmerman, T.; Munshi, N.C.; Madan, S.; Mohrbacher, A.; et al. Indatuximab ravtansine (BT062) in combination with low-dose dexamethasone and lenalidomide or pomalidomide: Clinical activity in patients with relapsed/refractory multiple myeloma. Blood 2016, 128, 4486. [Google Scholar]
- Rosenbaum, L. Tragedy, perseverance, and chance—The story of CAR-T therapy. N. Engl. J. Med. 2017, 377, 1313–1315. [Google Scholar] [CrossRef]
Trial ID [References] | Treatment | Phase | Enrollment | Trial Title |
---|---|---|---|---|
NCT03695744 | Dara + Bort + Dex | II | 63 | AMN006—Phase 2 Study of Daratumumab in Combination with Bortezomib and Dexamethasone in Newly Diagnosed Transplant Ineligible Multiple Myeloma Patients |
NCT03158688 | Dara + Carf + Dex | III | 466 | A Randomized, Open-label, Phase 3 Study Comparing Carfilzomib, Dexamethasone, and Daratumumab to Carfilzomib and Dexamethasone for the Treatment of Patients with Relapsed or Refractory Multiple Myeloma (CANDOR) |
NCT03180736 [26] | Dara + Pom + Dex | III | 302 | A Phase 3 Study Comparing Pomalidomide and Dexamethasone with or without Daratumumab in Subjects with Relapsed or Refractory Multiple Myeloma Who Have Received at Least One Prior Line of Therapy with Both Lenalidomide and a Proteasome Inhibitor. |
NCT02541383 | Dara + Bort + Thal + Dex | III | 1085 | Study of Daratumumab in Combination with Bortezomib (VELCADE), Thalidomide, and Dexamethasone (VTD) in the First Line Treatment of Transplant Eligible Subjects with Newly Diagnosed Multiple Myeloma |
NCT03277105 [27] | Dara | III | 480 | A Phase 3 Randomized, Multicenter Study of Subcutaneous vs. Intravenous Administration of Daratumumab in Subjects with Relapsed or Refractory Multiple Myeloma |
NCT02136134 [10,28] | Dara + Bort + Dex | III | 499 | Phase 3 Study Comparing Daratumumab, Bortezomib and Dexamethasone (DVd) vs. Bortezomib and Dexamethasone (Vd) in Subjects with Relapsed or Refractory Multiple Myeloma (CASTOR) |
NCT02076009 [29] | Dara + Len + Dex | III | 569 | Phase 3 Study Comparing Daratumumab, Lenalidomide, and Dexamethasone (DRd) vs. Lenalidomide and Dexamethasone (Rd) in Subjects with Relapsed or Refractory Multiple Myeloma (POLLUX) |
NCT03217812 | Dara + Bort + Mel + Pred | III | 210 | A Phase 3, Multicenter, Randomized, Controlled, Open-label Study of VELCADE (Bortezomib) Melphalan-Prednisone (VMP) Compared to Daratumumab in Combination with VMP (D-VMP), in Subjects with Previously Untreated Multiple Myeloma Who Are Ineligible for High-Dose Therapy (Asia Pacific Region) |
NCT02195479 [17] | Dara + Mel + Bort + Pred/Dex | III | 706 | A Phase 3, Randomized, Controlled, Open-label Study of VELCADE (Bortezomib) Melphalan-Prednisone (VMP) Compared to Daratumumab in Combination with VMP (D-VMP), in Subjects with Previously Untreated Multiple Myeloma Who Are Ineligible for High-Dose Therapy (ACYONE) |
NCT03475628 | Dara | II | 57 | A Prospective, Multicenter, Non-comparative, Open-label, Phase II Study to Evaluate the Effects of Daratumumab Monotherapy on Bone Parameters in Patients with Relapsed and/or Refractory Multiple Myeloma Who Have Received at Least 2 Prior Lines of Therapy, Including Lenalidomide and a Proteasome Inhibitor |
NCT02626481 [30] | Dara + Dex | II | 64 | A Multicenter Open Label Phase II Study of Daratumumab in Combination with Dexamethasone in Multiple Myeloma Resistant or Refractory to Bortezomib and Lenalidomide and Pomalidomide—an IFM 2014-04 Study |
NCT02316106 [18] | Dara | II | 126 | A Randomized Phase 2 Trial to Evaluate Three Daratumumab Dose Schedules in Smoldering Multiple Myeloma (CENTAURUS) |
NCT03301220 [19] | Dara | III | 360 | A Phase 3 Randomized Multicenter Study of Subcutaneous Daratumumab Versus Active Monitoring in Subjects with High Risk Smoldering Multiple Myeloma (AQUILA) |
Trial ID [References] | Treatment | Phase | Enrollment | Trial Title |
---|---|---|---|---|
NCT02960555 [25] | Isatux | II | 61 | Phase II Single Arm Trial of Isatuximab (SAR650984) in Patients with High Risk Smoldering Multiple Myeloma (ICARIA) |
NCT02812706 [25] | Isatux | I/II | 42 | A Phase I/II Study of Isatuximab (Anti-CD38 mAb) Administered as a Single Agent in Japanese Patients with Relapsed and Refractory Multiple Myeloma (Islands) |
NCT02514668 [25,31] | Isatux | I | 64 | An Open-label, Dose-escalation and Multi-center Study to Evaluate the Safety, Pharmacokinetics and Efficacy of SAR650984 (Isatuximab) in Patients with Relapsed/Refractory Multiple Myeloma |
NCT03194867 | Isatux + Cemip | I/II | 105 | Phase 1/2 Study to Evaluate Safety, Pharmacokinetics and Efficacy of Isatuximab in Combination with Cemiplimab in Patients with Relapsed/Refractory Multiple Myeloma |
NCT03275285 | Isatux + Carf + Dex | III | 300 | Randomized, Open Label, Multicenter Study Assessing the Clinical Benefit of Isatuximab Combined with Carfilzomib (Kyprolis®) And Dexamethasone versus Carfilzomib with Dexamethasone in Patients with Relapse and/or Refractory Multiple Myeloma Previously Treated with 1 to 3 Prior Lines (IKEMA) |
NCT02990338 [25] | Isatux + Pom + Dex | III | 300 | A Phase 3 Randomized, Open-label, Multicenter Study Comparing Isatuximab (SAR650984) in Combination with Pomalidomide and Low-Dose Dexamethasone versus Pomalidomide and Low-Dose Dexamethasone in Patients with Refractory or Relapsed and Refractory Multiple Myeloma (ICARIA-MM) |
NCT02513186 | Isatux + Len + Bort + Dex + Cp | I | 44 | A Dose Escalation, Safety, Pharmacokinetic, Pharmacodynamic and Preliminary Efficacy Study of SAR650984 (Isatuximab) Administered Intravenously in Combination with Bortezomib—Based Regimens in Adult Patients with Newly Diagnosed Multiple Myeloma Non-Eligible for Transplantation CyBorDSAR) |
NCT03617731 | Isatux + Bort + Dex + Len | III | 662 | A Randomized Phase III Trial Assessing the Benefit of the Addition of Isatuximab to Lenalidomide/Bortezomib/Dexamethasone (RVd) Induction and Lenalidomide Maintenance in Patients with Newly Diagnosed Multiple Myeloma (GMMG HD7) |
NCT01749969 [24] | Isatux + Len + Dex | I | 60 | A Phase 1b Study of SAR650984 (Anti-CD38 mAb) in Combination with Lenalidomide and Dexamethasone for the Treatment of Relapsed or Refractory Multiple Myeloma |
NCT03104842 | Isatux + Len + Dex + Carf | II | 153 | Clinical Phase II, Multicenter, Open-label Study Evaluating Induction, Consolidation and Maintenance with Isatuximab (SAR650984), Carfilzomib, Lenalidomide and Dexamethasone (I-KRd) in Primary Diagnosed High-risk Multiple Myeloma Patients |
NCT02283775 [22,23] | Isatux + Pom + Dex | I | 89 | A Phase 1b Study of SAR650984 (Isatuximab) in Combination with Pomalidomide and Dexamethasone for the Treatment of Relapsed/Refractory Multiple Myeloma (PomdeSAR) |
NCT03319667 | Isatux + Bort + Len + Dex | III | 440 | A Phase 3 Randomized, Open-label, Multicenter Study Assessing the Clinical Benefit of Isatuximab (SAR650984) in Combination with Bortezomib (Velcade®), Lenalidomide (Revlimid®) and Dexamethasone versus Bortezomib, Lenalidomide and Dexamethasone in Patients with Newly Diagnosed Multiple Myeloma (NDMM) Not Eligible for Transplant (IMROZ) |
Trial ID [References] | Treatment | Phase | Enrollment | Trial Title |
---|---|---|---|---|
NCT01891643/NCT01335399 | Elo + Dex + Len | III | 750 | A Phase 3, Randomized, Open Label Trial of Lenalidomide/Dexamethasone with or without Elotuzumab in Subjects with Previously Untreated Multiple Myeloma |
NCT02495922 [45] | Elo + Len + Bort + Dex | III | 564 | A Randomized Phase III Trial on the Effect of Elotuzumab in VRD Induction /Consolidation and Lenalidomide Maintenance in Patients with Newly Diagnosed Myeloma |
NCT01478048 [46] | Elo + Bort + Dex | II | 185 | A Phase 2, Randomized Study of Bortezomib/Dexamethasone with or without Elotuzumab in Subjects with Relapsed/Refractory Multiple Myeloma |
NCT03361306 | Elo + Len + Carf + Dex | II | 40 | LCI-HEM-MYE-CRD-002: A Phase II Study of Carfilzomib-Revlimid-Dexamethasone-Elotuzumab in Relapsed/Refractory Multiple Myeloma |
NCT01668719 [47,48] | Bort + Len + Dex ± Elo | I/II | 122 | A Randomized Phase I/II Study of Optimal Induction Therapy of Bortezomib, Dexamethasone and Lenalidomide with or without Elotuzumab (NSC-764479) for Newly Diagnosed High Risk Multiple Myeloma (HRMM) |
NCT01239797 [36,49] | Len + Dex ± Elo | III | 761 | Phase 3, Randomized, Open Label Trial of Lenalidomide/Dexamethasone with or without Elotuzumab in Relapsed or Refractory Multiple Myeloma (MM)—(ELOQUENT-2) |
NCT02654132 [37] | Elo + Pom + Dex | II | 157 | An Open Label, Randomized Phase 2 Trial of Pomalidomide/Dexamethasone with or Without Elotuzumab in Relapsed and Refractory Multiple Myeloma (ELOQUENT-3) |
NCT03168100 | Elo + Bort + Len + Dex | II | 115 | A Single-Arm, Open-label Study of Anti-SLAMF7 mAb Therapy After Autologous Stem Cell Transplant in Patients with Multiple Myeloma |
NCT03393273 | Elo | II | 35 | Induction and Consolidation with Elotuzumab before and after Peripheral Stem Cell Autologous Graft in Elderly Patients with Multiple Myeloma |
NCT02718833 [50] | Elo + Pom + Bort + Dex | II | 46 | Phase II Study of Elotuzumab in Combination with Pomalidomide, Bortezomib, and Dexamethasone in Relapsed and Refractory Multiple Myeloma |
NCT02159365 [51] | Elo + Len + Dex | II | 81 | A Phase 2 Single Arm Study of Safety of Elotuzumab Administered Over Approximately 60 Minutes in Combination with Lenalidomide and Dexamethasone for Newly Diagnosed or Relapsed/Refractory Multiple Myeloma Patients |
Trial ID [References] | Treatment | Phase | Enrollment | Trial Title |
---|---|---|---|---|
PD-1 Inhibitors | ||||
NCT02603887 | Pembro | I | 20 | Pilot Single Arm, Single Center, Open Label Trial of Pembrolizumab in Patients with Intermediate and High Risk Smoldering Multiple Myeloma |
NCT02906332 | Pembro + Len + Dex | II | 16 | A Phase II Trial of the Anti -PD-1 Monoclonal Antibody Pembrolizumab (MK-3475) + Lenalidomide + Dexamethasone as Post Autologous Transplant Consolidation in Patients with High-risk Multiple Myeloma |
NCT03221634 | Pembro + Dara | II | 57 | A Phase 2 Study of Pembrolizumab in Combination with Daratumumab (Anti CD38) in Participants with Relapsed Refractory Multiple Myeloma (rrMM) |
NCT03506360 | Pembro + Ixazo + Dex | II | 41 | Phase 2 Trial of Pembrolizumab, Ixazomib, and Dexamethasone for Relapsed Multiple Myeloma |
NCT02880228 | Pembro + Len + Dex | II | 41 | Phase 2 Trial of Pembrolizumab, Lenalidomide, and Dexamethasone for Initial Therapy of Newly Diagnosed Multiple Myeloma Eligible for Stem Cell Transplantation |
NCT02636010 | Pembro | II | 20 | Phase II, Multicenter, Open Label, Clinical Trial of the Anti-PD1 Monoclonal Antibody Pembrolizumab (MK3475) as Consolidation Therapy in Multiple Myeloma Patients with Residual Disease After Treatment |
NCT03267888 | Pembro + Rad | I | 24 | Pilot Study of Pembrolizumab and Single-Fraction, Low-Dose, Radiation Therapy in Patients with Relapsed or Refractory Multiple Myeloma |
NCT02331368 | Pembro + Len + Mel + ASCT | II | 32 | Phase 2 Multi-center Study of Anti-Programmed-Death-1 [Anti-PD-1] During Lymphopenic State After High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplant [HDT/ASCT] for Multiple Myeloma |
NCT03292263 | Nivol + Mel + ASCT | I/II | 30 | Autologous Stem Cell Transplantation with Nivolumab in Patients with Multiple Myeloma |
NCT03333746 | Nivol + Len | II | 18 | Phase II Study of Lenalidomide in Combination with Nivolumab In Patients with Relapsed/Refractory Multiple Myeloma |
NCT02726581 [201] | Nivol + Elo + Pom + Dex | III | 348 | An Open-Label, Randomized Phase 3 Trial of Combinations of Nivolumab, Pomalidomide and Dexamethasone in Relapsed and Refractory Multiple Myeloma |
NCT02612779 | Nivol + Elo + Pom + Dex | II | 95 | A Phase 2, Multiple Cohort Study of Elotuzumab in Combination with Pomalidomide and Low-Dose Dexamethasone (EPd), and in Combination with Nivolumab (EN), in Patients with Multiple Myeloma or Refractory to Prior Treatment with Lenalidomide |
NCT03184194 | Nivol + Dara + Cp | II | 60 | A Phase 2 Study of Nivolumab Combined with Daratumumab with or Without Low-dose Cyclophosphamide in Relapsed/Refractory Multiple Myeloma |
NCT03605719 | Nivol + Carf + Pom + Dex + Reo | I | 62 | PD1 Blockade and Oncolytic Virus in Relapsed Multiple Myeloma |
NCT03634800 | Nivol + Rad | II | 30 | Radiotherapy with Immunotherapy for Systemic Effect in Myeloma (RISE-M) |
NCT03194867 | Cemip + Isatux | I/II | 105 | Phase 1/2 Study to Evaluate Safety, Pharmacokinetics and Efficacy of Isatuximab in Combination with Cemiplimab in Patients with Relapsed/Refractory Multiple Myeloma |
PD-L1 Inhibitors | ||||
NCT02807454 | Durva+ Dara + Pom + Dex | II | 37 | A Phase 2, Multicenter, Open-label, Study to Determine the Safety and Efficacy for the Combination of Durvalumab (DURVA) and Daratumumab (DARA) (D2) in Subjects with Relapsed and Refractory Multiple Myeloma (RRMM) |
NCT02616640 [202] | Durva + Pom + Dex | I | 114 | A Phase IB Multicenter, Open-label Study To Determine The Recommended Dose And Regimen Of Durvalumab (MEDI4736) Either As Monotherapy or In Combination With Pomalidomide (POM) With Or Without Low-Dose Dexamethasone (DEX) In Subjects With Relapsed And Refractory Multiple Myeloma (RRMM) |
NCT02784483 (suspended) | Atez | I | 20 | Pilot Study of Anti-Programmed Death Ligand-1 (Anti-PD-L1, Atezolizumab In Asymptomatic Myeloma |
NCT03312530 | Atez + Combi + Venet | I/II | 72 | A Phase Ib/II Study of Cobimetinib Administered as Single Agent and in Combination with Venetoclax, With or Without Atezolizumab, in Patients With Relapsed and Refractory Multiple Myeloma |
CTLA-4 Inhibitor | ||||
NCT02681302 | Ipil + Nivol | I/II | 42 | Phase Ib-IIA Study of Combined Check Point Inhibition After Autologous Hematopoietic Stem Cell Transplantation in Patients at High Risk for Post-transplant Recurrence |
KIR Inhibitors | ||||
NCT01222286 | IPH2101 | II | 30 | Multicenter Phase II Study on the Anti-tumor Activity, Safety and Pharmacology of Two Dose Regimens of IPH2101, a Fully Human Monoclonal Anti-KIR Antibody, in Patients with Smoldering Multiple Myeloma (KIRMONO) |
NCT00999830 | IPH2101 | II | 27 | Randomized Phase II Study Evaluating the Anti-tumor Activity, Safety and Pharmacology of Two Dose Regimens of IPH2101, a Human Monoclonal Anti-KIR Antibody, in Patients with Multiple Myeloma in Stable Partial Response After a First Line Therapy |
NCT00552396 [203] | IPH2101 | I | 32 | An Open-label, Dose-escalation Safety and Tolerability Trial Assessing Multiple Dose Administrations of Anti-KIR (1-7F9) Human Monoclonal Antibody in Subjects with Multiple Myeloma |
NCT01217203 [194] | IPH2101 | I | 15 | Multicenter Phase I Study on the Safety, Anti-tumor Activity and Pharmacology of IPH2101, a Human Monoclonal Anti-KIR, Combined with Lenalidomide in Patients with Multiple Myeloma Experiencing a First or Second Relapse |
NCT02252263 | Liri + Elo + Urel | I | 44 | A Phase I Open Label Dose Escalation and Randomized Cohort Expansion Study of the Safety and Tolerability of Elotuzumab (BMS-901608) Administered in Combination with Either Lirilumab (BMS-986015) or Urelumab (BMS-663513) in Subjects with Multiple Myeloma |
CD47 Inhibitors | ||||
NCT03530683 | TTI-622 + (Bort or Carf) + Dex | I | 156 | A Phase 1a/1b Dose Escalation and Expansion Trial of TTI-622 in Patients with Advanced Relapsed or Refractory Lymphoma or Myeloma |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramson, H.N. Monoclonal Antibodies for the Treatment of Multiple Myeloma: An Update. Int. J. Mol. Sci. 2018, 19, 3924. https://doi.org/10.3390/ijms19123924
Abramson HN. Monoclonal Antibodies for the Treatment of Multiple Myeloma: An Update. International Journal of Molecular Sciences. 2018; 19(12):3924. https://doi.org/10.3390/ijms19123924
Chicago/Turabian StyleAbramson, Hanley N. 2018. "Monoclonal Antibodies for the Treatment of Multiple Myeloma: An Update" International Journal of Molecular Sciences 19, no. 12: 3924. https://doi.org/10.3390/ijms19123924
APA StyleAbramson, H. N. (2018). Monoclonal Antibodies for the Treatment of Multiple Myeloma: An Update. International Journal of Molecular Sciences, 19(12), 3924. https://doi.org/10.3390/ijms19123924