Co-Expression Network Analysis Identifies miRNA–mRNA Networks Potentially Regulating Milk Traits and Blood Metabolites
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Data
2.2. Identification of Consensus Modules and Module Trait Relationship
2.3. miRNA Target Gene Prediction and Enrichment Analysis
2.4. Integration of miRNA–mRNA and Trait Relationship
3. Discussion
3.1. Blue Module miRNAs and Their Potential Roles
3.2. Brown Module miRNAs and Their Potential Roles
3.3. Turquoise Module miRNAs and Their Potential Roles
3.4. Association Between miRNA and mRNA with Expressed Phenotypes
4. Materials and Methods
4.1. Animal Management and Sampling
4.2. RNA Isolation
4.3. mRNA Sequencing and Data Processing
4.4. miRNA Sequencing and Data Processing
4.5. Fatty Acid Analysis
4.6. Construction of Gene Co-Expression Networks
4.7. Module−Trait Relationship
4.8. Predicted Target mRNAs of miRNAs
4.9. Co-Expression Analysis of miRNA–mRNA Expression
4.10. Gene Ontologies, Pathways and Transcription Factors Enrichment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parodi, P.W. Dairy product consumption and the risk of breast cancer. J. Am. Coll. Nutr. 2005, 24, 556–568. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Innis, S.; Ammerican, A.D. Position of the American Dietetic Association and Dietitians of Canada: Dietary fatty acids. J. Am. Diet. Assoc. 2007, 107, 1599–1611. [Google Scholar] [PubMed]
- Kris-Etherton, P.M.; Griel, A.E.; Psota, T.L.; Gebauer, S.K.; Zhang, J.; Etherton, T.D. Dietary stearic acid and risk of cardiovascular disease: Intake, sources, digestion, and absorption. Lipids 2005, 40, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Soyeurt, H.; Dardenne, P.; Dehareng, F.; Lognay, G.; Veselko, D.; Marlier, M.; Bertozzi, C.; Mayeres, P.; Gengler, N. Estimating fatty acid content in cow milk using mid-infrared spectrometry. J. Dairy Sci. 2006, 89, 3690–3695. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, Rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Dewhurst, R.; Shingfield, K.; Lee, M.; Scollan, N. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Technol. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Ammah, A.A.; Benchaar, C.; Bissonnette, N.; Gévry, N.; Ibeagha-Awemu, E.M. Treatment and post-treatment effects of dietary supplementation with safflower oil and linseed oil on milk components and blood metabolites of Canadian Holstein cows. J. Appl. Animal Res. 2018, 46, 898–906. [Google Scholar] [CrossRef]
- Rennó, F.P.; de Freitas Júnior, J.E.; Gandra, J.R.; Maturana Filho, M.; Verdurico, L.C.; Rennó, L.N.; Barletta, R.V.; Vilela, F.G. Effect of unsaturated fatty acid supplementation on digestion, metabolism and nutrient balance in dairy cows during the transition period and early lactation. Rev. Bras. Zootec. 2014, 43, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Hashemzadeh-Cigari, F.; Ghorbani, G.; Khorvash, M.; Riasi, A.; Taghizadeh, A.; Zebeli, Q. Supplementation of herbal plants differently modulated metabolic profile, insulin sensitivity, and oxidative stress in transition dairy cows fed various extruded oil seeds. Prev. Vet. Med. 2015, 118, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Twardock, A.; Bubar, R.; Hall, J.; Davis, C. Blood metabolic profiles: Their use and relation to nutritional status of dairy cows1. J. Dairy Sci. 1978, 61, 1652–1670. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Li, R.; Ammah, A.A.; Dudemaine, P.-L.; Bissonnette, N.; Benchaar, C.; Zhao, X. Transcriptome adaptation of the bovine mammary gland to diets rich in unsaturated fatty acids shows greater impact of linseed oil over safflower oil on gene expression and metabolic pathways. BMC Genom. 2016, 17, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Beaudoin, F.; Ammah, A.; Bissonnette, N.; Benchaar, C.; Zhao, X. Deep sequencing shows microRNA involvement in bovine mammary gland adaptation to diets supplemented with linseed oil or safflower oil. BMC Genom. 2015, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kogelman, L.J.A.; Pant, S.D.; Fredholm, M.; Kadarmideen, H.N. Systems genetics of obesity in an F2 pig model by genome−wide association, genetic network and pathway analyses. Front. Genet. 2014, 5, 214. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.Y.; Kim, Y.A.; Przytycka, T.M. Chapter 5: Network biology approach to complex diseases. PLoS Comput. Biol. 2012, 8, e1002820. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.N.; Karma, A.; MacLellan, W.R.; Deng, M.; Rau, C.D.; Rees, C.M.; Wang, J.; Wisniewski, N.; Eskin, E.; Horvath, S.; et al. “Good enough solutions” and the genetics of complex diseases. Circ. Res. 2012, 111, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tang, H.; Thayanithy, V.; Subramanian, S.; Oberg, A.L.; Cunningham, J.M.; Cerhan, J.R.; Steer, C.J.; Thibodeau, S.N. Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer Res. 2009, 69, 9490–9497. [Google Scholar] [CrossRef] [PubMed]
- Riquelme Medina, I.; Lubovac-Pilav, Z. Gene co-expression network analysis for identifying modules and functionally enriched pathways in type 1 diabetes. PLoS ONE 2016, 11, e0156006. [Google Scholar] [CrossRef] [PubMed]
- Seyfried, N.T.; Dammer, E.B.; Swarup, V.; Nandakumar, D.; Duong, D.M.; Yin, L.; Deng, Q.; Nguyen, T.; Hales, C.M.; Wingo, T.; et al. A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst. 2017, 4, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Kogelman, L.J.A.; Cirera, S.; Zhernakova, D.V.; Fredholm, M.; Franke, L.; Kadarmideen, H.N. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA sequencing in a porcine model. BMC Med. Genom. 2014, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Kogelman, L.J.A.; Zhernakova, D.V.; Westra, H.-J.; Cirera, S.; Fredholm, M.; Franke, L.; Kadarmideen, H.N. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity. Genom. Med. 2015, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Suravajhala, P.; Kogelman, L.J.A.; Kadarmideen, H.N. Multi-omic data integration and analysis using systems genomics approaches: Methods and applications in animal production, health and welfare. Genet. Sel. Evol. 2016, 48, 38. [Google Scholar] [CrossRef] [PubMed]
- Beiki, H.; Nejati-Javaremi, A.; Pakdel, A.; Masoudi-Nejad, A.; Hu, Z.-L.; Reecy, J.M. Large−scale gene co-expression network as a source of functional annotation for cattle genes. BMC Genom. 2016, 17, 846. [Google Scholar] [CrossRef] [PubMed]
- Snelling, W.; Cushman, R.; Keele, J.; Maltecca, C.; Thomas, M.; Fortes, M.; Reverter, A. Breeding and genetics symposium: Networks and pathways to guide genomic selection. J. Anim. Sci. 2013, 91, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Ponsuksili, S.; Du, Y.; Hadlich, F.; Siengdee, P.; Murani, E.; Schwerin, M.; Wimmers, K. Correlated mRNAs and miRNAs from co-expression and regulatory networks affect porcine muscle and finally meat properties. BMC Genom. 2013, 14, 533. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, P.A.; Kogelman, L.J.; Santana, M.H.; Passarelli, D.; Pulz, L.H.; Fantinato-Neto, P.; Silva, P.L.; Leme, P.R.; Strefezzi, R.F.; Coutinho, L.L. Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genom. 2015, 16, 1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, D.N.; Dudemaine, P.-L.; Li, R.; Ibeagha-Awemu, E.M. Co-expression network and pathway analyses reveal important modules of miRNAs regulating milk yield and component traits. Int. J. Mol. Sci. 2017, 18, 1560. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jiang, X. Modeling miRNA-mRNA interactions that cause phenotypic abnormality in breast cancer patients. PLoS ONE 2017, 12, e0182666. [Google Scholar] [CrossRef] [PubMed]
- Cantini, L.; Isella, C.; Petti, C.; Picco, G.; Chiola, S.; Ficarra, E.; Caselle, M.; Medico, E. MicroRNA-mRNA interactions underlying colorectal cancer molecular subtypes. Nat. Commun. 2015, 6, 8878. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Zhang, Y.; Langfelder, P.; Kahn, R.S.; Boks, M.P.; van Eijk, K.; van den Berg, L.H.; Ophoff, R.A. Aging effects on DNA methylation modules in human brain and blood tissue. Genom. Biol. 2012, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Iancu, O.D.; Oberbeck, D.; Darakjian, P.; Metten, P.; McWeeney, S.; Crabbe, J.C.; Hitzemann, R. Selection for drinking in the dark alters brain gene coexpression networks. Alcohol. Clin. Exp. Res. 2013, 37, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Maruyama, T.; Fan, G. The naive state of human pluripotent stem cells: A synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell 2014, 15, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Mischel, P.S.; Horvath, S. When is hub gene selection better than standard meta-analysis? PLoS ONE 2013, 8, e61505. [Google Scholar] [CrossRef] [PubMed]
- Iancu, O.D.; Oberbeck, D.; Darakjian, P.; Kawane, S.; Erk, J.; McWeeney, S.; Hitzemann, R. Differential network analysis reveals genetic effects on catalepsy modules. PLoS ONE 2013, 8, e58951. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.A.; Ding, S.-L.; Sunkin, S.M.; Smith, K.A.; Ng, L.; Szafer, A.; Ebbert, A.; Riley, Z.L.; Aiona, K.; Arnold, J.M. Transcriptional landscape of the prenatal human brain. Nature 2014, 508, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadarmideen, H.N. Genomics to systems biology in animal and veterinary sciences: Progress, lessons and opportunities. Livestock Sci. 2014, 166, 232–248. [Google Scholar] [CrossRef]
- Gao, N.; Li, J.; He, J.; Xiao, G.; Luo, Y.; Zhang, H.; Chen, Z.; Zhang, Z. Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model. BMC Genet. 2015, 16, 120. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Dong, J. Geometric interpretation of gene coexpression network analysis. PLoS Comput. Biol. 2008, 4, e1000117. [Google Scholar] [CrossRef] [PubMed]
- Do, D.N.; Li, R.; Dudemaine, P.-L.; Ibeagha-Awemu, E.M. MicroRNA roles in signalling during lactation: An insight from differential expression, time course and pathway analyses of deep sequence data. Sci. Rep. 2017, 7, 44605. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Dudemaine, P.-L.; Zhao, X.; Lei, C.; Ibeagha-Awemu, E.M. Comparative analysis of the miRNome of bovine milk fat, whey and cells. PLoS ONE 2016, 11, e0154129. [Google Scholar] [CrossRef] [PubMed]
- Salehi, R.; Colazo, M.G.; Oba, M.; Ambrose, D.J. A prepartum diet supplemented with oilseeds high in oleic or linoleic acid reduced GnRH-induced Lh release in dairy cows during second week postpartum. Reprod. Biol. Endocrinol. 2015, 13, 69. [Google Scholar] [CrossRef] [PubMed]
- Drackley, J.K. Adsa foundation scholar award. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Gonthier, C.; Mustafa, A.F.; Ouellet, D.R.; Chouinard, P.Y.; Berthiaume, R.; Petit, H.V. Feeding micronized and extruded flaxseed to dairy cows: Effects on blood parameters and milk fatty acid composition. J. Dairy Sci. 2005, 88, 748–756. [Google Scholar] [CrossRef]
- Petit, H.V.; Dewhurst, R.J.; Scollan, N.D.; Proulx, J.G.; Khalid, M.; Haresign, W.; Twagiramungu, H.; Mann, G.E. Milk production and composition, ovarian function, and prostaglandin secretion of dairy cows fed omega-3 fats. J. Dairy Sci. 2002, 85, 889–899. [Google Scholar] [CrossRef]
- Vafa, T.S.; Naserian, A.A.; Moussavi, A.R.H.; Valizadeh, R.; Mesgaran, M.D. Effect of supplementation of fish and canola oil in the diet on milk fatty acid composition in early lactating Holstein cows. Asian-Australas. J. Anim. Sci. 2012, 25, 311. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Formentini, A.; Chien, M.; Weir, D.B.; Russo, J.J.; Ju, J.; Kornmann, M.; Ju, J. Prognostic values of microRNAs in colorectal cancer. Biomark. Insights 2006, 2, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Volinia, S.; Calin, G.A.; Liu, C.-G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garzon, R.; Garofalo, M.; Martelli, M.P.; Briesewitz, R.; Wang, L.; Fernandez-Cymering, C.; Volinia, S.; Liu, C.G.; Schnittger, S.; Haferlach, T.; et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl. Acad. Sci. USA 2008, 105, 3945–3950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mi, S.; Lu, J.; Sun, M.; Li, Z.; Zhang, H.; Neilly, M.B.; Wang, Y.; Qian, Z.; Jin, J.; Zhang, Y.; et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2007, 104, 19971–19976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.; Gumireddy, K.; Schrier, M.; le Sage, C.; Nagel, R.; Nair, S.; Egan, D.A.; Li, A.; Huang, G.; Klein-Szanto, A.J.; et al. The microRNAs mir-373 and mir-520c promote tumour invasion and metastasis. Nat. Cell Biol. 2008, 10, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Ambrosone, C.B.; DiCioccio, R.A.; Odunsi, K.; Lele, S.B.; Zhao, H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 2008, 29, 1963–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.; Zhao, Y.; Guo, B. MiR-199b-5p targets HER2 in breast cancer cells. J. Cell. Biochem. 2013, 114, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Do, D.N.; Ibeagha-Awemu, E.M. Non-coding RNA roles in ruminant mammary gland development and lactation. In Current Topics in Lactation; InTech: London, UK, 2017; ISBN 978-953-51-3138-0. [Google Scholar]
- Do, D.; Bissonnette, N.; Lacasse, P.; Miglior, F.; Sargolzaei, M.; Zhao, X.; Ibeagha-Awemu, E. Genome-wide association analysis and pathways enrichment for lactation persistency in Canadian Holstein cattle. J. Dairy Sci. 2017, 100, 1955–1970. [Google Scholar] [CrossRef] [PubMed]
- Stegh, A.H. Targeting the p53 signaling pathway in cancer therapy–the promises, challenges and perils. Expert Opin. Ther. Targets 2012, 16, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Surget, S.; Khoury, M.P.; Bourdon, J.-C. Uncovering the role of p53 splice variants in human malignancy: A clinical perspective. OncoTargets Ther. 2014, 7, 57–68. [Google Scholar]
- Jerry, D.J.; Pinkas, J.; Kuperwasser, C.; Dickinson, E.S.; Naber, S.P. Regulation of p53 and its targets during involution of the mammary gland. J. Mammary Gland Biol. Neoplasia 1999, 4, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Greenberg, N.; Stephens, L.C.; Meyn, R.; Medina, D.; Rosen, J.M. Preferential overexpression of a 172arg-->leu mutant p53 in the mammary gland of transgenic mice results in altered lobuloalveolar development. Cell Growth Differ. 1994, 5, 711–721. [Google Scholar] [PubMed]
- Zhou, S.; Buckhaults, P.; Zawel, L.; Bunz, F.; Riggins, G.; Le Dai, J.; Kern, S.E.; Kinzler, K.W.; Vogelstein, B. Targeted deletion of smad4 shows it is required for transforming growth factor β and activin signaling in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 1998, 95, 2412–2416. [Google Scholar] [CrossRef] [PubMed]
- Calva, D.; Dahdaleh, F.S.; Woodfield, G.; Weigel, R.J.; Carr, J.C.; Chinnathambi, S.; Howe, J.R. Discovery of smad4 promoters, transcription factor binding sites and deletions in juvenile polyposis patients. Nucleic Acids Res. 2011, 39, 5369–5378. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.S.; Lourenco, P.; Tonner, E.; Flint, D.; Selbert, S.; Takeda, K.; Akira, S.; Clarke, A.R.; Watson, C.J. The role of STAT3 in apoptosis and mammary gland involution. In Biology of the Mammary Gland; Springer: Berlin, Germany, 2002; pp. 129–138. [Google Scholar]
- Kang, Y.; Hengbo, S.; Jun, L.; Jun, L.; Wangsheng, Z.; Huibin, T.; Huaiping, S. PPARG modulated lipid accumulation in dairy GMEC via regulation of ADRP gene. J. Cell. Biochem. 2015, 116, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, T.J.; Lloyd-Lewis, B.; Resemann, H.K.; Ramos-Montoya, A.; Skepper, J.; Watson, C.J. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat. Cell Biol. 2014, 16, 1057–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Xie, H.; Liu, Y.; Liu, W.; Liu, M.; Tang, H. miR-484 suppresses proliferation and epithelial–mesenchymal transition by targeting ZEB1 and SMAD2 in cervical cancer cells. Cancer Cell Int. 2017, 17, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.X.; Li, X.J.; Zhang, B.; Liang, Y.J.; Zhou, C.X.; Cao, D.X.; He, M.; Chen, G.Q.; He, J.R.; Zhao, Q. Microrna-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett. 2011, 585, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Wicik, Z.; Gajewska, M.; Majewska, A.; Walkiewicz, D.; Osinska, E.; Motyl, T. Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers. J. Anim. Breed Genet. 2016, 133, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Kjeldgaard, M.; Nyborg, J.; Clark, B.F. The GTP binding motif: Variations on a theme. FASEB J. 1996, 10, 1347–1368. [Google Scholar] [CrossRef] [PubMed]
- Munshi, A.; Ramesh, R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 2013, 4, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.S.; Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 2013, 13, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Davis, R.J.; Flavell, R.A. Map kinases in the immune response. Annu. Rev. Immunol. 2002, 20, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; An, X.; Song, Y.; Cao, B.; Yang, H.; Zhang, Z.; Shen, W.; Li, Y. Detection and comparison of microRNAs in the caprine mammary gland tissues of colostrum and common milk stages. BMC Genet. 2017, 18, 38. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-C.; Hung, J.-J. Functional role of post-translational modifications of SP1 in tumorigenesis. J. Biomed. Sci. 2012, 19, 94. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, Y.; Zhao, M.; Li, Q.; Chen, R.; Long, X.; Fang, W.; Liu, Z. miR-16 induction after CDK4 knockdown is mediated by c-Myc suppression and inhibits cell growth as well as sensitizes nasopharyngeal carcinoma cells to chemotherapy. Tumour Biol. 2016, 37, 2425–2433. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Guo, W.L.; Zan, L.S.; Wang, Y.N.; Tang, K.Q. Bta-miR-130a regulates the biosynthesis of bovine milk fat by targeting peroxisome proliferator-activated receptor γ. J. Anim. Sci. 2017, 95, 2898–2906. [Google Scholar] [PubMed]
- Cobanoglu, O.; Zaitoun, I.; Chang, Y.M.; Shook, G.E.; Khatib, H. Effects of the signal transducer and activator of transcription 1 (STAT1) gene on milk production traits in Holstein dairy cattle. J. Dairy Sci. 2006, 89, 4433–4437. [Google Scholar] [CrossRef]
- Greenwood, S.L.; Wright, T.C.; Purdie, N.G.; Doelman, J.; Cant, J.P.; McBride, B.W. Lactation induces upregulation of the ubiquitin-mediated proteolytic pathway in skeletal muscle of dairy cows but does not alter hepatic expression. Can. J. Anim. Sci. 2009, 89, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, Z.; Lonard, D.M.; Dennis, A.P.; Smith, C.L.; O’Malley, B.W. Proteasome−dependent degradation of the human estrogen receptor. Proc. Natl. Acad. Sci. USA 1999, 96, 1858–1862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, M.; Qiu, Z.; Hu, K.; McGee, W.; Chen, X.; Liu, J.; Zhu, L.; Wu, J.Y. miR-130a regulates neurite outgrowth and dendritic spine density by targeting MECP2. Protein Cell 2016, 7, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Weisz, L.; Zalcenstein, A.; Stambolsky, P.; Cohen, Y.; Goldfinger, N.; Oren, M.; Rotter, V. Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res. 2004, 64, 8318. [Google Scholar] [CrossRef] [PubMed]
- Khatib, H.; Huang, W.; Mikheil, D.; Schutzkus, V.; Monson, R.L. Effects of signal transducer and activator of transcription (Stat) genes STAT1 and STAT3 genotypic combinations on fertilization and embryonic survival rates in Holstein cattle. J. Dairy Sci. 2009, 92, 6186–6191. [Google Scholar] [CrossRef] [PubMed]
- González-Calvo, L.; Dervishi, E.; Joy, M.; Sarto, P.; Martin-Hernandez, R.; Serrano, M.; Ordovás, J.M.; Calvo, J.H. Genome−wide expression profiling in muscle and subcutaneous fat of lambs in response to the intake of concentrate supplemented with vitamin E. BMC Genom. 2017, 18, 92. [Google Scholar] [CrossRef] [PubMed]
- Ponsuksili, S.; Murani, E.; Brand, B.; Schwerin, M.; Wimmers, K. Integrating expression profiling and whole−genome association for dissection of fat traits in a porcine model. J. Lipid Res. 2011, 52, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Farr, V.C.; Stelwagen, K.; Cate, L.R.; Molenaar, A.J.; McFadden, T.B.; Davis, S.R. An improved method for the routine biopsy of bovine mammary tissue. J. Dairy Res. 1996, 79, 543–549. [Google Scholar] [CrossRef]
- Vigneault, F.; Ter-Ovanesyan, D.; Alon, S.; Eminaga, S.; Christodoulou, D.C.; Seidman, J.G.; Eisenberg, E.; Church, G.M. High-throughput multiplex sequencing of miRNA. Curr. Protoc. Hum. Genet. 2012, 11. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genom. Biol. 2009, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DEseq2. Genom. Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Zhang, B.; Horvath, S. Defining clusters from a hierarchical cluster tree: The dynamic tree cut package for R. Bioinformatics 2008, 24, 719–720. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. Tutorial for the WGCNA package for R II. Consensus network analysis of liver expression data, female and male mice 2. b Step-by-step network construction and module detection. 2016. Available online: https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/Consensus-NetworkConstruction-man.pdf (accessed on 10 January 2018).
- Langfelder, P.; Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 2007, 1, 54. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, C.-X.; Li, Y.-S.; Lv, J.-Y.; Ma, Y.; Shao, T.-T.; Xu, L.-D.; Wang, Y.-Y.; Du, L.; Zhang, Y.-P. MiRNA–miRNA synergistic network: Construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res. 2010, 39, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xu, C.; Guan, J.; Ping, Y.; Fan, H.; Li, Y.; Zhao, H.; Li, X. Discovering dysfunction of multiple microRNAs cooperation in disease by a conserved microRNA co-expression network. PLoS ONE 2012, 7, e32201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genom. Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative html5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [PubMed]
Trait Acronym | Name | Unit | Control | Linseed Oil Treatment | Safflower Oil Treatment | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SE | Min | Max | Mean ± SE | Min | Max | Mean ± SE | Min | Max | |||
PROT_Y | Protein yield | kg | 1.2 ± 0.06 | 0.99 | 1.52 | 1.24 ± 0.06 | 0.92 | 1.53 | 1.17 ± 0.06 | 0.89 | 1.47 |
FAT_Y | Fat yield | kg | 1.31 ± 0.08 | 1.12 | 1.74 | 1.07 ± 0.11 | 0.61 | 1.98 | 0.97 ± 0.07 | 0.67 | 1.35 |
Milk | Milk yield | kg | 36.94 ± 2.13 | 29.24 | 52.24 | 38.14 ± 2.42 | 26.44 | 53.56 | 36.64 ± 2.86 | 26.16 | 53.34 |
PRT | Protein percentage | % | 3.3 ± 0.1 | 2.9 | 3.65 | 3.31 ± 0.11 | 2.81 | 4.17 | 3.27 ± 0.1 | 2.74 | 3.85 |
LAC | Lactose percentage | % | 4.7 ± 0.05 | 4.47 | 4.88 | 4.74 ± 0.05 | 4.43 | 4.94 | 4.65 ± 0.04 | 4.42 | 4.84 |
FAT | Fat percentage | % | 3.6 ± 0.12 | 3.07 | 4.19 | 2.8 ± 0.19 | 1.87 | 3.7 | 2.77 ± 0.24 | 1.42 | 3.99 |
TAG | Triacylglyceride | nmol/L | 0.05 ± 0 | 0.02 | 0.07 | 0.08 ± 0.01 | 0.04 | 0.11 | 0.08 ± 0.01 | 0.05 | 0.12 |
NEFA | Nonesterified fatty acids | nmol/L | 103.86 ± 23.55 | 48.66 | 312.99 | 156.48 ± 13.29 | 92.75 | 248.53 | 154.47 ± 14.72 | 101.13 | 276.18 |
C4:0 | Butyric acid | mg/100g of fat | 2.81 ± 0.35 | 1.51 | 4.95 | 0.64 ± 0.1 | 0.06 | 0.95 | 0.74 ± 0.08 | 0.03 | 0.94 |
C6:0 | Caproic acid | mg/100g of fat | 2.39 ± 0.18 | 1.31 | 3.58 | 0.97 ± 0.15 | 0.28 | 1.51 | 1.24 ± 0.16 | 0.52 | 2.26 |
C8:0 | Caprylic acid | mg/100g of fat | 1.18 ± 0.07 | 1.05 | 1.66 | 0.72 ± 0.06 | 0.5 | 0.94 | 0.76 ± 0.05 | 0.51 | 1.04 |
C12:0 | Lauric acid | mg/100g of fat | 2.77 ± 0.3 | 1.01 | 4.68 | 1.5 ± 0.24 | 0.56 | 3.03 | 1.44 ± 0.21 | 0.5 | 2.93 |
C14:0 | Myristic acid | mg/100g of fat | 11.43 ± 0.27 | 10.22 | 12.7 | 7.95 ± 0.41 | 5.47 | 9.28 | 6.96 ± 0.51 | 5.01 | 9.86 |
C15:0 | Pentadecylic acid | mg/100g of fat | 1.44 ± 0.07 | 1.13 | 1.86 | 0.98 ± 0.07 | 0.68 | 1.4 | 0.99 ± 0.05 | 0.8 | 1.4 |
C16:0 | Palmitic acid | mg/100g of fat | 26.79 ± 0.28 | 25.46 | 28.55 | 21.17 ± 1.2 | 16.64 | 28.7 | 21.94 ± 0.98 | 17.22 | 26.7 |
C17:0 | Margaric acid | mg/100g of fat | 0.83 ± 0.1 | 0.44 | 1.73 | 0.93 ± 0.12 | 0.36 | 1.49 | 0.73 ± 0.1 | 0.16 | 1.29 |
C18:0 | Stearic acid | mg/100g of fat | 11.13 ± 0.54 | 8.02 | 13.87 | 8.58 ± 0.49 | 5.02 | 10.41 | 7.57 ± 0.37 | 5.5 | 9.02 |
C20:0 | Arachidic acid | mg/100g of fat | 0.22 ± 0.03 | 0.1 | 0.34 | 0.21 ± 0.02 | 0.12 | 0.29 | 0.21 ± 0.02 | 0.1 | 0.35 |
C22:0 | Behenic acid | mg/100g of fat | 0.05 ± 0 | 0.02 | 0.07 | 0.04 ± 0 | 0.02 | 0.05 | 0.04 ± 0 | 0.03 | 0.05 |
C23:0 | Tricosanoic acid | mg/100g of fat | 0.04 ± 0 | 0.02 | 0.05 | 0.03 ± 0 | 0.01 | 0.06 | 0.04 ± 0 | 0.02 | 0.05 |
C24:0 | Lignoceric acid | mg/100g of fat | 0.04 ± 0 | 0.03 | 0.05 | 0.03 ± 0 | 0.01 | 0.04 | 0.03 ± 0 | 0.01 | 0.05 |
C14:1total | Myristoleic acid | mg/100g of fat | 11 ± 1.13 | 0.28 | 1.2 | 10 ± 1.6 | 0.25 | 1.02 | 11 ± 1.79 | 0.46 | 0.98 |
C16:1total | Palmitoleic acid | mg/100g of fat | 1.31 ± 0.06 | 1.1 | 1.71 | 1.65 ± 0.23 | 0.42 | 3.08 | 1.82 ± 0.18 | 1.21 | 2.84 |
C18:1n9c | Oleic acid | mg/100g of fat | 19.06 ± 1.35 | 10.7 | 24 | 25.91 ± 1.12 | 20.08 | 33.2 | 22.57 ± 0.7 | 19.4 | 26 |
C20:2 | Eicosadienoic acid | mg/100g of fat | 0.03 ± 0 | 0.02 | 0.05 | 0.07 ± 0.01 | 0.01 | 0.14 | 0.08 ± 0.01 | 0.04 | 0.13 |
C22:5n3 | Docosapentaenoic acid | mg/100g of fat | 0.06 ± 0.01 | 0.02 | 0.16 | 0.23 ± 0.04 | 0.04 | 0.47 | 0.14 ± 0.03 | 0.03 | 0.32 |
C22:6n3 | Docosahexaenoic acid | mg/100g of fat | 0.14 ± 0 | 0.12 | 0.16 | 0.18 ± 0.01 | 0.13 | 0.23 | 0.18 ± 0.01 | 0.12 | 0.26 |
C18:3n3n | α linolenic acid | mg/100g of fat | 0.27 ± 0.02 | 0.2 | 0.42 | 0.32 ± 0.02 | 0.19 | 0.4 | 0.21 ± 0.03 | 0.1 | 0.49 |
CLA:9,11 | Cis-9, trans-11 CLA | mg/100g of fat | 0.3 ± 0.02 | 0.16 | 0.41 | 0.33 ± 0.02 | 0.22 | 0.39 | 0.31 ± 0.04 | 0.15 | 0.54 |
CLA:10,12 | Trans-10, cis-12 CLA | mg/100g of fat | 0.02 ± 0 | 0.01 | 0.03 | 0.04 ± 0 | 0.03 | 0.07 | 0.04 ± 0 | 0.02 | 0.06 |
MUFA | Sum of Monounsaturated fatty acids | mg/100g of fat | 22.99 ± 1.38 | 15.18 | 28.33 | 30.59 ± 1.17 | 24.53 | 37.83 | 27.55 ± 0.9 | 24.32 | 32.59 |
SFA | Sum of saturated fatty acids | mg/100g of fat | 61.12 ± 0.96 | 57.42 | 66.05 | 43.73 ± 1.49 | 36.32 | 51.9 | 42.7 ± 1.49 | 35.61 | 49.1 |
PUFA | Sum of Polyunsaturated fatty acids | mg/100g of fat | 0.84 ± 0.03 | 0.63 | 0.99 | 1.17 ± 0.07 | 0.82 | 1.52 | 0.96 ± 0.1 | 0.57 | 1.63 |
Module | miRNA | 1 k.ME_ All | p-Value k.ME_ All | 2 k.ME_ Control | p-Value k.ME Control | 3 k.ME_ Linseed | p-Value k.ME_ Linseed | 4 k.ME_ Safflower | p-Value k.ME_ Safflower |
---|---|---|---|---|---|---|---|---|---|
Blue | bta-miR-30d | 0.93 | 1.58 × 10−22 | 0.96 | 5.06 × 10−7 | 0.95 | 1.24 × 10−6 | 0.93 | 1.69 × 10−5 |
Blue | bta-miR-96 | 0.89 | 1.62 × 10−15 | 0.89 | 6.36 × 10−5 | 0.90 | 2.62 × 10−5 | 0.90 | 6.64 × 10−5 |
Blue | bta-miR-191 | 0.87 | 4.00 × 10−20 | 0.93 | 5.88 × 10−6 | 0.97 | 9.66 × 10−8 | 0.87 | 2.89 × 10−4 |
Blue | bta-miR-151-5p | 0.83 | 1.04 × 10−14 | 0.90 | 2.68 × 10−5 | 0.92 | 1.50 × 10−5 | 0.83 | 7.43 × 10−4 |
Blue | bta-miR-409a | 0.80 | 6.90 × 10−12 | 0.85 | 2.47 × 10−4 | 0.80 | 9.23 × 10−4 | 0.89 | 1.10 × 10−4 |
Blue | bta-miR-183 | 0.77 | 4.79 × 10−13 | 0.90 | 4.18 × 10−5 | 0.77 | 1.79 × 10−3 | 0.91 | 5.11 × 10−5 |
Blue | bta-miR-99a-5p | 0.77 | 1.49 × 10−14 | 0.91 | 1.82 × 10−5 | 0.77 | 1.79 × 10−3 | 0.94 | 1.20 × 10−5 |
Blue | bta-let-7b | 0.76 | 1.66 × 10−9 | 0.76 | 2.24 × 10−3 | 0.80 | 8.20 × 10−4 | 0.84 | 6.75 × 10−4 |
Blue | bta-miR-2285k | 0.75 | 2.89 × 10−9 | 0.75 | 2.29 × 10−3 | 0.75 | 2.71 × 10−3 | 0.86 | 2.96 × 10−4 |
Blue | bta-miR-652 | 0.73 | 1.21 × 10−11 | 0.90 | 2.88 × 10−5 | 0.86 | 1.59 × 10−4 | 0.73 | 5.76 × 10−3 |
Blue | bta-let-7a-5p | 0.70 | 9.32 × 10−9 | 0.81 | 7.38 × 10−4 | 0.81 | 6.60 × 10−4 | 0.70 | 8.10 × 10−3 |
Blue | bta-miR-6522 | 0.68 | 3.17 × 10−8 | 0.74 | 2.95 × 10−3 | 0.84 | 2.87 × 10−4 | 0.68 | 1.12 × 10−2 |
Blue | bta-miR-100 | 0.68 | 2.69 × 10−8 | 0.77 | 1.57 × 10−3 | 0.68 | 7.88 × 10−3 | 0.83 | 7.85 × 10−4 |
Blue | bta-miR-374a | 0.66 | 8.19 × 10−8 | 0.77 | 1.72 × 10−3 | 0.66 | 9.28 × 10−3 | 0.80 | 1.46 × 10−3 |
Blue | bta-miR-2284b | 0.66 | 2.57 × 10−7 | 0.66 | 9.38 × 10−3 | 0.76 | 2.06 × 10−3 | 0.76 | 3.07 × 10−3 |
Blue | bta-miR-532 | 0.65 | 1.39 × 10−7 | 0.83 | 4.06 × 10−4 | 0.65 | 1.05 × 10−2 | 0.71 | 7.23 × 10−3 |
Blue | bta-miR-99b | 0.64 | 1.01 × 10−10 | 0.89 | 4.73 × 10−5 | 0.64 | 1.28 × 10−2 | 0.88 | 1.92 × 10−4 |
Blue | bta-miR-23b-3p | 0.62 | 2.65 × 10−7 | 0.77 | 1.59 × 10−3 | 0.62 | 1.66 × 10−2 | 0.78 | 2.15 × 10−3 |
Brown | bta-miR-484 | 0.78 | 1.28 × 10−11 | 0.86 | 1.77 × 10−4 | 0.78 | 1.27 × 10−3 | 0.88 | 1.68 × 10−4 |
Brown | bta-let-7d | 0.76 | 1.24 × 10−13 | 0.89 | 6.15 × 10−5 | 0.93 | 6.37 × 10−6 | 0.76 | 3.08 × 10−3 |
Brown | bta-miR-429 | 0.74 | 8.47 × 10−12 | 0.74 | 3.16 × 10−3 | 0.87 | 1.13 × 10−4 | 0.90 | 7.33 × 10−5 |
Brown | bta-miR-885 | 0.73 | 2.27 × 10−11 | 0.94 | 4.02 × 10−6 | 0.77 | 1.57 × 10−3 | 0.73 | 5.48 × 10−3 |
Brown | bta-miR-26b | 0.72 | 5.57 × 10−9 | 0.74 | 2.98 × 10−3 | 0.87 | 1.32 × 10−4 | 0.72 | 6.31 × 10−3 |
Brown | bta-miR-30c | 0.71 | 4.04 × 10−13 | 0.71 | 4.60 × 10−3 | 0.93 | 5.77 × 10−6 | 0.89 | 1.03 × 10−4 |
Brown | bta-let-7g | 0.70 | 2.80 × 10−8 | 0.82 | 5.04 × 10−4 | 0.70 | 5.68 × 10−3 | 0.76 | 3.39 × 10−3 |
Brown | bta-miR-29b | 0.64 | 7.43 × 10−6 | 0.68 | 7.75 × 10−3 | 0.64 | 1.26 × 10−2 | 0.68 | 1.03 × 10−2 |
Brown | bta-miR-328 | 0.63 | 1.02 × 10−6 | 0.63 | 1.39 × 10−2 | 0.81 | 6.48 × 10−4 | 0.64 | 1.67 × 10−2 |
Brown | bta-miR-32 | 0.63 | 2.25 × 10−7 | 0.63 | 1.43 × 10−2 | 0.78 | 1.51 × 10−3 | 0.78 | 2.35 × 10−3 |
Brown | bta-miR-107 | 0.61 | 4.32 × 10−7 | 0.61 | 1.78 × 10−2 | 0.77 | 1.79 × 10−3 | 0.77 | 2.66 × 10−3 |
Brown | bta-let-7a-3p | 0.60 | 2.14 × 10−8 | 0.83 | 4.16 × 10−4 | 0.82 | 5.65 × 10−4 | 0.60 | 2.51 × 10−2 |
Turquoise | bta-miR-16b | 0.85 | 4.24 × 10−12 | 0.86 | 1.93 × 10−4 | 0.86 | 1.85 × 10−4 | 0.85 | 4.94 × 10−4 |
Turquoise | bta-miR-130a | 0.84 | 1.36 × 10−15 | 0.95 | 1.78 × 10−6 | 0.88 | 6.75 × 10−5 | 0.84 | 6.51 × 10−4 |
Turquoise | bta-miR-142-5p | 0.84 | 2.35 × 10−13 | 0.88 | 7.90 × 10−5 | 0.89 | 4.54 × 10−5 | 0.84 | 6.66 × 10−4 |
Turquoise | bta-miR-218 | 0.81 | 2.47 × 10−14 | 0.85 | 2.40 × 10−4 | 0.81 | 7.09 × 10−4 | 0.95 | 3.45 × 10−6 |
Turquoise | bta-miR-142-3p | 0.80 | 9.04 × 10−13 | 0.89 | 5.46 × 10−5 | 0.88 | 7.17 × 10−5 | 0.80 | 1.40 × 10−3 |
Turquoise | bta-miR-195 | 0.77 | 1.20 × 10−12 | 0.77 | 1.55 × 10−3 | 0.80 | 8.03 × 10−4 | 0.95 | 5.53 × 10−6 |
Turquoise | bta-miR-497 | 0.75 | 5.71 × 10−13 | 0.75 | 2.29 × 10−3 | 0.85 | 2.52 × 10−4 | 0.94 | 7.26 × 10−6 |
Turquoise | bta-miR-16a | 0.74 | 2.61 × 10−11 | 0.82 | 5.21 × 10−4 | 0.74 | 2.91 × 10−3 | 0.92 | 3.83 × 10−5 |
Turquoise | bta-miR-19b | 0.70 | 1.90 × 10−8 | 0.81 | 6.35 × 10−4 | 0.70 | 5.93 × 10−3 | 0.79 | 1.95 × 10−3 |
Turquoise | bta-miR-3613 | 0.68 | 4.50 × 10−7 | 0.76 | 2.12 × 10−3 | 0.68 | 7.00 × 10−3 | 0.72 | 6.31 × 10−3 |
Turquoise | bta-miR-455-3p | 0.67 | 1.02 × 10−6 | 0.67 | 8.79 × 10−3 | 0.70 | 5.94 × 10−3 | 0.76 | 3.60 × 10−3 |
Turquoise | bta-miR-15a | 0.66 | 1.15 × 10−7 | 0.85 | 2.03 × 10−4 | 0.67 | 8.90 × 10−3 | 0.66 | 1.30 × 10−2 |
Turquoise | bta-miR-424-5p | 0.65 | 1.45 × 10−8 | 0.65 | 1.07 × 10−2 | 0.89 | 5.66 × 10−5 | 0.71 | 6.99 × 10−3 |
Turquoise | bta-miR-106b | 0.64 | 4.81 × 10−12 | 0.89 | 5.64 × 10−5 | 0.64 | 1.18 × 10−2 | 0.93 | 2.05 × 10−5 |
Turquoise | bta-miR-155 | 0.64 | 2.68 × 10−7 | 0.83 | 4.77 × 10−4 | 0.69 | 6.30 × 10−3 | 0.64 | 1.68 × 10−2 |
Turquoise | bta-miR-455-5p | 0.63 | 7.14 × 10−7 | 0.67 | 8.50 × 10−3 | 0.63 | 1.35 × 10−2 | 0.81 | 1.14 × 10−3 |
Turquoise | bta-miR-93 | 0.63 | 5.83 × 10−10 | 0.91 | 1.70 × 10−5 | 0.63 | 1.37 × 10−2 | 0.80 | 1.54 × 10−3 |
Turquoise | bta-miR-199a-5p | 0.61 | 5.53 × 10−6 | 0.71 | 4.58 × 10−3 | 0.68 | 7.05 × 10−3 | 0.61 | 2.27 × 10−2 |
Turquoise | bta-miR-99a-3p | 0.60 | 7.73 × 10−7 | 0.66 | 9.23 × 10−3 | 0.60 | 1.94 × 10−2 | 0.83 | 7.22 × 10−4 |
Module | * Term | GO ID | p-Value | ** FDR |
---|---|---|---|---|
Blue | Vesicle docking | GO:0048278 | 8.02 × 10−6 | 1.53 × 10−2 |
Blue | Negative regulation of transcription from RNA Polymerase II promoter | GO: 0000122 | 2.49 × 10−5 | 2.38 × 10−2 |
Blue | Proteasome−mediated ubiquitin-dependent protein catabolic process | GO: 0043161 | 5.12 × 10−5 | 2.44 × 10−2 |
Blue | Protein dephosphorylation | GO: 0006470 | 4.44 × 10−5 | 2.44 × 10−2 |
Blue | Cell cycle arrest | GO: 0007050 | 1.02 × 10−4 | 3.69 × 10−2 |
Blue | RNA splicing | GO: 0008380 | 1.16 × 10−4 | 3.69 × 10−2 |
Brown | GDP binding | GO: 0019003 | 1.16 × 10−9 | 6.63 × 10−7 |
Brown | GTP binding | GO: 0005525 | 2.35 × 10−8 | 6.71 × 10−6 |
Brown | GTPase activity | GO: 0003924 | 9.34 × 10−8 | 1.78 × 10−5 |
Brown | RNA binding | GO: 0003723 | 4.05 × 10−6 | 5.78 × 10−4 |
Brown | Transforming growth factor β receptor signaling pathway | GO: 0007179 | 5.82 × 10−7 | 1.19 × 10−3 |
Brown | Protein serine/threonine kinase activity | GO: 0004674 | 1.72 × 10−5 | 1.40 × 10−3 |
Brown | Transforming growth factor β binding | GO: 0050431 | 1.52 × 10−5 | 1.40 × 10−3 |
Brown | Transforming growth factor β -activated receptor activity | GO: 0005024 | 1.48 × 10−5 | 1.40 × 10−3 |
Brown | Peptidyl-prolyl cis-trans isomerase activity | GO: 0003755 | 6.38 × 10−5 | 4.56 × 10−3 |
Brown | Ubiquitin protein ligase activity | GO: 0061630 | 8.32 × 10−5 | 5.28 × 10−3 |
Brown | Type I transforming growth factor β receptor binding | GO: 0034713 | 1.21 × 10−4 | 6.91 × 10−3 |
Brown | mRNA splicing, via spliceosome | GO: 0000398 | 7.53 × 10−6 | 7.70 × 10−3 |
Brown | Activin binding | GO: 0048185 | 4.78 × 10−4 | 2.48 × 10−2 |
Brown | Protein ubiquitination | GO: 0016567 | 4.28 × 10−5 | 2.92 × 10−2 |
Brown | Ubiquitin-protein transferase activity | GO: 0004842 | 7.29 × 10−4 | 3.47 × 10−2 |
Brown | Cell cycle arrest | GO: 0007050 | 9.44 × 10−5 | 4.83 × 10−2 |
Turquoise | GTP binding | GO: 0005525 | 6.32 × 10−10 | 4.13 × 10−7 |
Turquoise | Macroautophagy | GO: 0016236 | 2.44 × 10−10 | 5.31 × 10−7 |
Turquoise | Proteasome−mediated ubiquitin-dependent protein catabolic process | GO: 0043161 | 2.35 × 10−9 | 2.56 × 10−6 |
Turquoise | Membrane organization | GO: 0061024 | 4.22 × 10−9 | 3.06 × 10−6 |
Turquoise | RNA binding | GO: 0003723 | 4.15 × 10−8 | 9.27 × 10−6 |
Turquoise | GDP binding | GO: 0019003 | 4.26 × 10−8 | 9.27 × 10−6 |
Turquoise | Transcription coactivator activity | GO: 0003713 | 2.73 × 10−7 | 3.82 × 10−5 |
Turquoise | GTPase activity | GO: 0003924 | 2.93 × 10−7 | 3.82 × 10−5 |
Turquoise | Ubiquitin protein ligase activity | GO: 0061630 | 9.30 × 10−7 | 1.01 × 10−4 |
Turquoise | Ubiquitin protein ligase binding | GO: 0031625 | 1.10 × 10−6 | 1.03 × 10−4 |
Turquoise | Protein serine/threonine kinase activity | GO: 0004674 | 1.99 × 10−6 | 1.62 × 10−4 |
Turquoise | Protein K48-linked ubiquitination | GO: 0070936 | 5.71 × 10−7 | 3.10 × 10−4 |
Turquoise | Protein ubiquitination involved in ubiquitin-dependent protein catabolic process | GO: 0042787 | 9.25 × 10−7 | 4.02 × 10−4 |
Turquoise | Regulation of transcription from RNA polymerase II promoter | GO: 0006357 | 1.44 × 10−6 | 5.18 × 10−4 |
Turquoise | Protein deubiquitination | GO: 0016579 | 1.91 × 10−6 | 5.18 × 10−4 |
Turquoise | Nucleotide−excision repair, preincision complex assembly | GO: 0006294 | 1.77 × 10−6 | 5.18 × 10−4 |
Turquoise | Cadherin binding | GO: 0045296 | 1.10 × 10−5 | 7.99 × 10−4 |
Turquoise | Protein ubiquitination | GO: 0016567 | 5.19 × 10−6 | 1.25 × 10−3 |
Turquoise | Protein homodimerization activity | GO: 0042803 | 2.27 × 10−5 | 1.48 × 10−3 |
Turquoise | Protein polyubiquitination | GO: 0000209 | 7.21 × 10−6 | 1.57 × 10−3 |
Turquoise | Ubiquitin-protein transferase activity | GO: 0004842 | 3.22 × 10−5 | 1.91 × 10−3 |
Turquoise | Golgi organization | GO: 0007030 | 9.86 × 10−6 | 1.95 × 10−3 |
Turquoise | Transforming growth factor β receptor signaling pathway | GO: 0007179 | 1.13 × 10−5 | 2.04 × 10−3 |
Turquoise | G2/M transition of mitotic cell cycle | GO: 0000086 | 1.74 × 10−5 | 2.90 × 10−3 |
Turquoise | Negative regulation of apoptotic process | GO: 0043066 | 2.37 × 10−5 | 3.69 × 10−3 |
Turquoise | Positive regulation of apoptotic process | GO: 0043065 | 2.59 × 10−5 | 3.75 × 10−3 |
Turquoise | GABA receptor binding | GO: 0050811 | 7.94 × 10−5 | 4.32 × 10−3 |
Turquoise | Global genome nucleotide−excision repair | GO: 0070911 | 3.83 × 10−5 | 5.12 × 10−3 |
Turquoise | Stress-activated MAPK cascade | GO: 0051403 | 4.00 × 10−5 | 5.12 × 10−3 |
Turquoise | Positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic cell cycle transition | GO: 0051437 | 6.07 × 10−5 | 6.95 × 10−3 |
Turquoise | Protein K11-linked ubiquitination | GO: 0070979 | 5.94 × 10−5 | 6.95 × 10−3 |
Turquoise | Protein phosphorylation | GO: 0006468 | 6.40 × 10−5 | 6.96 × 10−3 |
Turquoise | Anaphase−promoting complex-dependent catabolic process | GO: 0031145 | 1.03 × 10−4 | 1.07 × 10−2 |
Turquoise | Post-translational protein modification | GO: 0043687 | 1.14 × 10−4 | 1.11 × 10−2 |
Turquoise | Virion assembly | GO: 0019068 | 1.18 × 10−4 | 1.11 × 10−2 |
Turquoise | Transforming growth factor β binding | GO: 0050431 | 2.84 × 10−4 | 1.32 × 10−2 |
Turquoise | Cadherin binding involved in cell-cell adhesion | GO: 0098641 | 2.84 × 10−4 | 1.32 × 10−2 |
Turquoise | Ligand-dependent nuclear receptor transcription coactivator activity | GO: 0030374 | 3.41 × 10−4 | 1.48 × 10−2 |
Turquoise | ER to Golgi vesicle−mediated transport | GO: 0006888 | 1.83 × 10−4 | 1.66 × 10−2 |
Turquoise | Protein kinase activity | GO: 0004672 | 4.47 × 10−4 | 1.69 × 10−2 |
Turquoise | R-SMAD binding | GO: 0070412 | 4.30 × 10−4 | 1.69 × 10−2 |
Turquoise | Ubiquitin conjugating enzyme binding | GO: 0031624 | 4.67 × 10−4 | 1.69 × 10−2 |
Turquoise | Ubiquitin-dependent protein catabolic process | GO: 0006511 | 2.03 × 10−4 | 1.70 × 10−2 |
Turquoise | COPII vesicle coating | GO: 0048208 | 1.96 × 10−4 | 1.70 × 10−2 |
Turquoise | Thiol-dependent ubiquitinyl hydrolase activity | GO: 0036459 | 5.21 × 10−4 | 1.79 × 10−2 |
Turquoise | Cellular response to DNA damage stimulus | GO: 0006974 | 2.41 × 10−4 | 1.87 × 10−2 |
Turquoise | Endocytosis | GO: 0006897 | 2.37 × 10−4 | 1.87 × 10−2 |
Turquoise | Negative regulation of sequence−specific DNA binding transcription factor activity | GO: 0043433 | 2.51 × 10−4 | 1.88 × 10−2 |
Turquoise | Regulation of signal transduction by p53 class mediator | GO: 1901796 | 2.80 × 10−4 | 1.94 × 10−2 |
Turquoise | Wnt signaling pathway, planar cell polarity pathway | GO: 0060071 | 2.72 × 10−4 | 1.94 × 10−2 |
Turquoise | Nucleotide−excision repair, DNA duplex unwinding | GO: 0000717 | 2.86 × 10−4 | 1.94 × 10−2 |
Turquoise | Transcription cofactor activity | GO: 0003712 | 6.37 × 10−4 | 2.08 × 10−2 |
Turquoise | Polynucleotide adenylyltransferase activity | GO: 0004652 | 6.74 × 10−4 | 2.09 × 10−2 |
Turquoise | Positive regulation of transcription from RNA polymerase II promoter | GO: 0045944 | 3.39 × 10−4 | 2.24 × 10−2 |
Turquoise | Activin binding | GO: 0048185 | 7.66 × 10−4 | 2.27 × 10−2 |
Turquoise | Androgen receptor signaling pathway | GO: 0030521 | 3.64 × 10−4 | 2.33 × 10−2 |
Turquoise | BMP signaling pathway | GO: 0030509 | 3.98 × 10−4 | 2.47 × 10−2 |
Turquoise | Guanyl-nucleotide exchange factor activity | GO: 0005085 | 9.54 × 10−4 | 2.71 × 10−2 |
Turquoise | Double−stranded DNA binding | GO: 0003690 | 1.10 × 10−3 | 2.98 × 10−2 |
Turquoise | Transcription from RNA polymerase II promoter | GO: 0006366 | 5.41 × 10−4 | 3.27 × 10−2 |
Turquoise | Retrograde transport, endosome to plasma membrane | GO: 1990126 | 6.11 × 10−4 | 3.59 × 10−2 |
Turquoise | Error-free translesion synthesis | GO: 0070987 | 6.32 × 10−4 | 3.62 × 10−2 |
Turquoise | Endosomal transport | GO: 0016197 | 6.73 × 10−4 | 3.66 × 10−2 |
Turquoise | GTP metabolic process | GO: 0046039 | 6.74 × 10−4 | 3.66 × 10−2 |
Turquoise | NIK/NF-γ B signaling | GO: 0038061 | 7.95 × 10−4 | 3.84 × 10−2 |
Turquoise | Negative regulation of transforming growth factor β receptor signaling pathway | GO: 0030512 | 7.75 × 10−4 | 3.84 × 10−2 |
Turquoise | Negative regulation of cell death | GO: 0060548 | 7.78 × 10−4 | 3.84 × 10−2 |
Turquoise | Nucleotide−excision repair, DNA incision, 5′-to lesion | GO: 0006296 | 7.78 × 10−4 | 3.84 × 10−2 |
Turquoise | Negative regulation of actin filament polymerization | GO: 0030837 | 7.66 × 10−4 | 3.84 × 10−2 |
Turquoise | Single−stranded DNA binding | GO: 0003697 | 1.61 × 10−3 | 4.19 × 10−2 |
Turquoise | G1/S transition of mitotic cell cycle | GO: 0000082 | 9.12 × 10−4 | 4.22 × 10−2 |
Turquoise | Negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle | GO: 0051436 | 9.00 × 10−4 | 4.22 × 10−2 |
Turquoise | Cell cycle arrest | GO: 0007050 | 9.92 × 10−4 | 4.40 × 10−2 |
Turquoise | Nucleotide−excision repair, DNA incision | GO: 0033683 | 9.77 × 10−4 | 4.40 × 10−2 |
Turquoise | Positive regulation of I-γB kinase/NF-γB signaling | GO: 0043123 | 1.15 × 10−3 | 4.86 × 10−2 |
Turquoise | Regulation of small GTPase mediated signal transduction | GO: 0051056 | 1.22 × 10−3 | 4.86 × 10−2 |
Turquoise | Regulation of transcription from RNA polymerase II promoter in response to hypoxia | GO: 0061418 | 1.21 × 10−3 | 4.86 × 10−2 |
Turquoise | Wnt signaling pathway | GO: 0016055 | 1.28 × 10−3 | 4.86 × 10−2 |
Turquoise | Autophagy | GO: 0006914 | 1.31 × 10−3 | 4.86 × 10−2 |
Turquoise | Negative regulation of type I interferon production | GO: 0032480 | 1.32 × 10−3 | 4.86 × 10−2 |
Turquoise | Nucleotide−excision repair | GO: 0006289 | 1.32 × 10−3 | 4.86 × 10−2 |
Turquoise | Nucleotide−excision repair, preincision complex stabilization | GO: 0006293 | 1.25 × 10−3 | 4.86 × 10−2 |
Turquoise | Nucleotide−excision repair, DNA incision, 3′-to lesion | GO: 0006295 | 1.25 × 10−3 | 4.86 × 10−2 |
Turquoise | Alternative mRNA splicing, via spliceosome | GO: 0000380 | 1.31 × 10−3 | 4.86 × 10−2 |
Module | * Pathway | p-Value | ** FDR |
---|---|---|---|
Blue | p53 signaling pathway | 7.33 × 10−6 | 9.93 × 10−4 |
Blue | Cell cycle | 5.05 × 10−6 | 9.93 × 10−4 |
Blue | Proteoglycans in cancer | 6.12 × 10−5 | 5.53 × 10−3 |
Blue | HTLV-I infection | 1.77 × 10−4 | 1.20 × 10−2 |
Blue | Epstein–Barr virus infection | 3.27 × 10−4 | 1.78 × 10−2 |
Blue | ErbB signaling pathway | 4.90 × 10−4 | 2.21 × 10−2 |
Blue | MAPK signaling pathway | 6.61 × 10−4 | 2.38 × 10−2 |
Blue | Chronic myeloid leukemia | 8.32 × 10−4 | 2.38 × 10−2 |
Blue | Huntington’s disease | 8.52 × 10−4 | 2.38 × 10−2 |
Blue | Wnt signaling pathway | 9.63 × 10−4 | 2.38 × 10−2 |
Blue | TGF-β signaling pathway | 1.05 × 10−3 | 2.38 × 10−2 |
Blue | Hippo signaling pathway | 1.02 × 10−3 | 2.38 × 10−2 |
Blue | Pathways in cancer | 1.49 × 10−3 | 3.07 × 10−2 |
Blue | Protein processing in endoplasmic reticulum | 1.59 × 10−3 | 3.07 × 10−2 |
Blue | FoxO signaling pathway | 2.64 × 10−3 | 4.78 × 10−2 |
Brown | MAPK signaling pathway | 2.73 × 10−4 | 3.40 × 10−2 |
Brown | TGF-β signaling pathway | 1.83 × 10−4 | 3.40 × 10−2 |
Brown | Endocytosis | 7.46 × 10−4 | 3.40 × 10−2 |
Brown | RNA degradation | 6.58 × 10−4 | 3.40 × 10−2 |
Brown | p53 signaling pathway | 6.43 × 10−4 | 3.40 × 10−2 |
Brown | Ubiquitin mediated proteolysis | 7.30 × 10−4 | 3.40 × 10−2 |
Turquoise | Ubiquitin mediated proteolysis | 2.15 × 10−9 | 5.81 × 10−7 |
Turquoise | Endocytosis | 7.66 × 10−8 | 1.03 × 10−5 |
Turquoise | Protein processing in endoplasmic reticulum | 8.37 × 10−5 | 7.53 × 10−3 |
Turquoise | p53 signaling pathway | 1.69 × 10−4 | 1.14 × 10−2 |
Turquoise | Renal cell carcinoma | 3.39 × 10−4 | 1.83 × 10−2 |
Turquoise | Focal adhesion | 4.32 × 10−4 | 1.94 × 10−2 |
Turquoise | TGF-β signaling pathway | 6.00 × 10−4 | 2.31 × 10−2 |
Turquoise | Regulation of autophagy | 1.22 × 10−3 | 4.10 × 10−2 |
Turquoise | FoxO signaling pathway | 1.83 × 10−3 | 4.48 × 10−2 |
Turquoise | Nucleotide excision repair | 1.58 × 10−3 | 4.48 × 10−2 |
Turquoise | Cell cycle | 1.70 × 10−3 | 4.48 × 10−2 |
Module | Transcription Factor | p-Value | * FDR |
---|---|---|---|
Blue | SMAD4 | 4.27 × 10−10 | 1.28 × 10−7 |
Blue | SP1 | 1.95 × 10−9 | 2.93 × 10−7 |
Blue | EGR1 | 3.50 × 10−8 | 3.50 × 10−6 |
Blue | ZBTB16 | 2.99 × 10−5 | 2.24 × 10−3 |
Blue | STAT3 | 1.52 × 10−4 | 7.59 × 10−3 |
Blue | CBFB | 2.60 × 10−4 | 1.11 × 10−2 |
Blue | TP53 | 3.32 × 10−4 | 1.24 × 10−2 |
Blue | FOXJ1 | 5.05 × 10−4 | 1.52 × 10−2 |
Blue | NFYA | 4.81 × 10−4 | 1.52 × 10−2 |
Blue | NRF1 | 5.86 × 10−4 | 1.57 × 10−2 |
Blue | LEF1 | 6.28 × 10−4 | 1.57 × 10−2 |
Blue | SRF | 1.00 × 10−3 | 2.31 × 10−2 |
Blue | PPARG | 1.33 × 10−3 | 2.85 × 10−2 |
Blue | E2F1 | 2.32 × 10−3 | 4.63 × 10−2 |
Brown | SP1 | 8.01 × 10−11 | 2.41 × 10−8 |
Brown | EGR1 | 1.30 × 10−6 | 1.30 × 10−4 |
Brown | SMAD4 | 1.12 × 10−6 | 1.30 × 10−4 |
Brown | TP53 | 1.90 × 10−5 | 1.43 × 10−3 |
Brown | E2F1 | 2.75 × 10−5 | 1.65 × 10−3 |
Brown | PLAU | 5.86 × 10−5 | 2.94 × 10−3 |
Brown | NRF1 | 1.50 × 10−4 | 6.46 × 10−3 |
Brown | THRB | 1.94 × 10−4 | 7.29 × 10−3 |
Brown | NRF1 | 2.20 × 10−4 | 7.35 × 10−3 |
Brown | ATF4 | 4.00 × 10−4 | 1.21 × 10−2 |
Brown | HIF1A | 6.13 × 10−4 | 1.68 × 10−2 |
Brown | E2F6 | 9.46 × 10−4 | 2.37 × 10−2 |
Brown | CREM | 1.63 × 10−3 | 3.76 × 10−2 |
Brown | STAT3 | 2.02 × 10−3 | 4.34 × 10−2 |
Turquoise | SMAD4 | 1.22 × 10−13 | 3.85 × 10−11 |
Turquoise | SP1 | 3.05 × 10−11 | 4.82 × 10−9 |
Turquoise | E2F1 | 1.40 × 10−5 | 8.86 × 10−4 |
Turquoise | SP4 | 2.76 × 10−5 | 1.46 × 10−3 |
Turquoise | THRB | 6.70 × 10−5 | 3.02 × 10−3 |
Turquoise | NRF1 | 1.77 × 10−4 | 7.01 × 10−3 |
Turquoise | LEF1 | 2.24 × 10−4 | 7.86 × 10−3 |
Turquoise | MEF2A | 5.02 × 10−4 | 1.59 × 10−2 |
Turquoise | CEBPD | 5.97 × 10−4 | 1.66 × 10−2 |
Turquoise | GATA1 | 6.32 × 10−4 | 1.66 × 10−2 |
Turquoise | ATF4 | 7.62 × 10−4 | 1.76 × 10−2 |
Turquoise | ATF2 | 8.38 × 10−4 | 1.76 × 10−2 |
Turquoise | NFYA | 8.29 × 10−4 | 1.76 × 10−2 |
Turquoise | IRF8 | 1.17 × 10−3 | 2.32 × 10−2 |
Turquoise | NFAT2 | 1.39 × 10−3 | 2.45 × 10−2 |
Turquoise | STAT3 | 1.39 × 10−3 | 2.45 × 10−2 |
Turquoise | ELK4 | 2.03 × 10−3 | 3.21 × 10−2 |
Turquoise | TCFAP2A | 1.97 × 10−3 | 3.21 × 10−2 |
Turquoise | PITX1 | 2.37 × 10−3 | 3.56 × 10−2 |
Turquoise | E2F6 | 2.76 × 10−3 | 3.97 × 10−2 |
Turquoise | SPI1 | 2.92 × 10−3 | 4.02 × 10−2 |
Turquoise | GTF2I | 3.26 × 10−3 | 4.02 × 10−2 |
Turquoise | MAX | 3.24 × 10−3 | 4.02 × 10−2 |
Turquoise | TEAD4 | 3.31 × 10−3 | 4.02 × 10−2 |
Turquoise | HNF1A | 3.87 × 10−3 | 4.40 × 10−2 |
Turquoise | HINFP | 4.13 × 10−3 | 4.50 × 10−2 |
Module | miRNA | Gene Symbol | 1 Context ++ Score Percentile | 2 Cor. Mir. Gene | 3 FDR. Cor. Mir. Gene | Trait | 4 Cor. Trait Mir. | 5 FDR. Cor. Trait Mir. | 6 Cor. Gene. Trait | 7 FDR. Cor. Gene. Trait |
---|---|---|---|---|---|---|---|---|---|---|
Blue | bta-let-7a-5p | STX3 | 97 | −0.428 | 0.022 | Protein percentage | 0.484 | 0.010 | −0.438 | 0.023 |
Blue | bta-let-7b | APBB3 | 98 | −0.394 | 0.037 | Protein yield | −0.400 | 0.041 | 0.620 | <0.001 |
Blue | bta-let-7b | C14orf28 | 97 | −0.485 | 0.008 | Milk yield | −0.509 | 0.006 | 0.424 | 0.029 |
Blue | bta-let-7b | MXD1 | 97 | −0.457 | 0.014 | Protein yield | −0.400 | 0.041 | 0.446 | 0.020 |
Blue | bta-let-7b | PPP1R15B | 96 | −0.420 | 0.025 | Protein yield | −0.400 | 0.041 | 0.609 | 0.001 |
Blue | bta-let-7b | QARS | 98 | −0.386 | 0.041 | Milk yield | −0.509 | 0.006 | 0.491 | 0.009 |
Blue | bta-let-7b | SLC20A1 | 96 | −0.391 | 0.039 | Milk yield | −0.509 | 0.006 | 0.502 | 0.007 |
Blue | bta-let-7b | STX3 | 97 | −0.464 | 0.012 | Protein yield | −0.400 | 0.041 | 0.531 | 0.004 |
Blue | bta-let-7b | THTPA | 98 | −0.431 | 0.021 | Protein yield | −0.400 | 0.041 | 0.409 | 0.036 |
Blue | bta-let-7b | TP53 | 97 | −0.413 | 0.028 | Protein yield | −0.400 | 0.041 | 0.459 | 0.016 |
Blue | bta-miR-183 | CTDSP1 | 98 | −0.433 | 0.020 | Protein yield | −0.452 | 0.018 | 0.443 | 0.021 |
Blue | bta-miR-183 | DGCR2 | 99 | −0.516 | 0.005 | Protein yield | −0.452 | 0.018 | 0.442 | 0.021 |
Blue | bta-miR-183 | HLTF | 98 | −0.428 | 0.022 | Protein yield | −0.452 | 0.018 | 0.502 | 0.007 |
Blue | bta-miR-183 | HNRNPA1 | 96 | −0.479 | 0.009 | Milk yield | −0.599 | 0.001 | 0.414 | 0.034 |
Blue | bta-miR-183 | ICA1 | 99 | −0.443 | 0.017 | Protein yield | −0.452 | 0.018 | 0.548 | 0.003 |
Blue | bta-miR-183 | ILF2 | 96 | −0.373 | 0.050 | C17:0 | 0.414 | 0.033 | −0.400 | 0.041 |
Blue | bta-miR-183 | MAFF | 97 | −0.427 | 0.022 | Milk yield | −0.599 | 0.001 | 0.467 | 0.014 |
Blue | bta-miR-183 | MGME1 | 98 | −0.456 | 0.014 | Milk yield | −0.599 | 0.001 | 0.399 | 0.042 |
Blue | bta-miR-183 | MTA1 | 99 | −0.475 | 0.010 | Protein yield | −0.452 | 0.018 | 0.415 | 0.033 |
Blue | bta-miR-183 | PPP2R5C | 95 | −0.446 | 0.017 | Milk yield | −0.599 | 0.001 | 0.433 | 0.025 |
Blue | bta-miR-183 | RHBDD2 | 95 | −0.538 | 0.003 | Protein percentage | 0.547 | 0.003 | −0.411 | 0.035 |
Blue | bta-miR-183 | RHPN2 | 99 | −0.407 | 0.031 | Milk yield | −0.599 | 0.001 | 0.433 | 0.025 |
Blue | bta-miR-183 | SESN1 | 97 | −0.375 | 0.048 | Protein yield | −0.452 | 0.018 | 0.396 | 0.043 |
Blue | bta-miR-183 | SFT2D1 | 97 | −0.500 | 0.006 | C17:0 | 0.414 | 0.033 | −0.425 | 0.028 |
Blue | bta-miR-183 | SPRY2 | 99 | −0.418 | 0.026 | Protein yield | −0.452 | 0.018 | 0.488 | 0.009 |
Blue | bta-miR-183 | SRSF2 | 98 | −0.473 | 0.010 | Protein yield | −0.452 | 0.018 | 0.617 | 0.001 |
Blue | bta-miR-183 | UTP6 | 96 | −0.432 | 0.021 | protein yield | −0.452 | 0.018 | 0.545 | 0.003 |
Blue | bta-miR-183 | ZFAND5 | 99 | −0.427 | 0.022 | protein yield | −0.452 | 0.018 | 0.430 | 0.026 |
Blue | bta-miR-2284b | ACVR1 | 96 | −0.419 | 0.025 | Milk yield | −0.442 | 0.021 | 0.416 | 0.032 |
Blue | bta-miR-2284b | ARL15 | 97 | −0.443 | 0.017 | protein yield | −0.429 | 0.026 | 0.427 | 0.027 |
Blue | bta-miR-2284b | CCNT2 | 96 | −0.398 | 0.035 | protein yield | −0.429 | 0.026 | 0.439 | 0.023 |
Blue | bta-miR-2284b | CLIC2 | 99 | −0.416 | 0.027 | protein yield | −0.429 | 0.026 | 0.610 | 0.001 |
Blue | bta-miR-2284b | ERG | 95 | −0.448 | 0.016 | protein yield | −0.429 | 0.026 | 0.393 | 0.045 |
Blue | bta-miR-2284b | FAM114A1 | 96 | −0.425 | 0.023 | Milk yield | −0.442 | 0.021 | 0.459 | 0.016 |
Blue | bta-miR-2284b | FAM8A1 | 95 | −0.386 | 0.042 | protein yield | −0.429 | 0.026 | 0.414 | 0.033 |
Blue | bta-miR-2284b | FAR1 | 95 | −0.387 | 0.041 | Milk yield | −0.442 | 0.021 | 0.399 | 0.042 |
Blue | bta-miR-2284b | IVNS1ABP | 95 | −0.404 | 0.032 | protein yield | −0.429 | 0.026 | 0.509 | 0.006 |
Blue | bta-miR-2284b | LBR | 96 | −0.510 | 0.005 | protein yield | −0.429 | 0.026 | 0.462 | 0.015 |
Blue | bta-miR-2284b | LIMA1 | 97 | −0.446 | 0.017 | protein yield | −0.429 | 0.026 | 0.403 | 0.039 |
Blue | bta-miR-2284b | NRROS | 96 | −0.406 | 0.031 | Milk yield | −0.442 | 0.021 | 0.480 | 0.011 |
Blue | bta-miR-2284b | POLR2A | 99 | −0.415 | 0.027 | protein yield | −0.429 | 0.026 | 0.667 | 0.000 |
Blue | bta-miR-2284b | RRN3 | 96 | −0.377 | 0.047 | protein yield | −0.429 | 0.026 | 0.501 | 0.007 |
Blue | bta-miR-2284b | SETD2 | 97 | −0.399 | 0.035 | protein yield | −0.429 | 0.026 | 0.438 | 0.023 |
Blue | bta-miR-2284b | SLC38A2 | 95 | −0.417 | 0.026 | Milk yield | −0.442 | 0.021 | 0.526 | 0.004 |
Blue | bta-miR-2284b | THAP2 | 96 | −0.385 | 0.042 | protein yield | −0.429 | 0.026 | 0.445 | 0.020 |
Blue | bta-miR-2284b | UBE4A | 96 | −0.414 | 0.027 | protein yield | −0.429 | 0.026 | 0.490 | 0.009 |
Blue | bta-miR-2284b | ZDHHC17 | 95 | −0.384 | 0.043 | protein yield | −0.429 | 0.026 | 0.426 | 0.028 |
Blue | bta-miR-2284b | ZNF175 | 97 | −0.407 | 0.031 | Milk yield | −0.442 | 0.021 | 0.433 | 0.025 |
Blue | bta-miR-23b-3p | RBM4B | 95 | −0.463 | 0.012 | Milk yield | −0.390 | 0.047 | 0.549 | 0.003 |
Blue | bta-miR-30d | CAMK2D | 95 | −0.384 | 0.042 | protein percentage | 0.459 | 0.016 | −0.433 | 0.025 |
Blue | bta-miR-409a | ALG13 | 99 | −0.490 | 0.008 | Milk yield | −0.553 | 0.002 | 0.462 | 0.015 |
Blue | bta-miR-409a | GALNT5 | 96 | −0.482 | 0.009 | Protein percentage | 0.641 | 0.000 | −0.616 | 0.001 |
Blue | bta-miR-409a | RPL11 | 98 | −0.484 | 0.009 | Fat percentage | 0.387 | 0.049 | −0.447 | 0.020 |
Blue | bta-miR-409a | TMEM159 | 99 | −0.410 | 0.029 | Fat percentage | 0.387 | 0.049 | −0.396 | 0.044 |
Blue | bta-miR-409a | TRA2B | 97 | −0.382 | 0.044 | Milk yield | −0.553 | 0.002 | 0.598 | 0.001 |
Blue | bta-miR-6522 | FAM107B | 95 | −0.384 | 0.043 | Milk yield | −0.441 | 0.022 | 0.554 | 0.002 |
Blue | bta-miR-6522 | ZNF623 | 95 | −0.376 | 0.048 | Milk yield | −0.441 | 0.022 | 0.550 | 0.003 |
Blue | bta-miR-96 | CHST1 | 98 | −0.373 | 0.050 | Milk yield | −0.429 | 0.026 | 0.485 | 0.010 |
Blue | bta-miR-96 | EIF5 | 96 | −0.416 | 0.027 | Milk yield | −0.429 | 0.026 | 0.494 | 0.009 |
Blue | bta-miR-96 | FARP1 | 97 | −0.466 | 0.012 | Milk yield | −0.429 | 0.026 | 0.599 | 0.001 |
Blue | bta-miR-96 | GRHL2 | 95 | −0.398 | 0.035 | Milk yield | −0.429 | 0.026 | 0.481 | 0.011 |
Blue | bta-miR-96 | LONP2 | 97 | −0.439 | 0.019 | Fat percentage | 0.613 | 0.001 | −0.415 | 0.033 |
Blue | bta-miR-96 | PRKAR1A | 97 | −0.375 | 0.049 | Milk yield | −0.429 | 0.026 | 0.442 | 0.022 |
Blue | bta-miR-96 | SPIN1 | 95 | −0.392 | 0.038 | Milk yield | −0.429 | 0.026 | 0.533 | 0.004 |
Blue | bta-miR-96 | SPROT | 97 | −0.410 | 0.029 | Milk yield | −0.429 | 0.026 | 0.535 | 0.004 |
Blue | bta-miR-96 | TP53 | 95 | −0.440 | 0.018 | Milk yield | −0.429 | 0.026 | 0.427 | 0.027 |
Blue | bta-miR-96 | TRIB3 | 97 | −0.397 | 0.035 | Fat percentage | 0.613 | 0.001 | −0.550 | 0.003 |
Blue | bta-miR-96 | ZCCHC3 | 99 | −0.453 | 0.015 | Milk yield | −0.429 | 0.026 | 0.567 | 0.002 |
Brown | bta-miR-484 | CPPED1 | 95 | −0.413 | 0.028 | C22:6n3 | −0.402 | 0.040 | 0.600 | 0.001 |
Brown | bta-miR-484 | DOLPP1 | 96 | −0.393 | 0.037 | C16:0 | 0.394 | 0.045 | −0.396 | 0.043 |
Brown | bta-miR-484 | EIF1AD | 95 | −0.470 | 0.011 | Fat percentage | 0.421 | 0.030 | −0.432 | 0.025 |
Brown | bta-miR-484 | LY6E | 97 | −0.420 | 0.025 | C16:0 | 0.394 | 0.045 | −0.394 | 0.045 |
Brown | bta-miR-484 | NUDT16 | 96 | −0.390 | 0.039 | Fat percentage | 0.421 | 0.030 | −0.456 | 0.017 |
Brown | bta-miR-484 | QDPR | 99 | −0.391 | 0.039 | C16:0 | 0.394 | 0.045 | −0.596 | 0.001 |
Turquoise | bta-miR-130a | SBSPON | 96 | −0.529 | 0.004 | Protein percentage | −0.486 | 0.010 | 0.626 | < 0.001 |
Turquoise | bta-miR-455-5p | HPGD | 99 | −0.384 | 0.043 | Protein yield | 0.491 | 0.009 | −0.492 | 0.009 |
© 2018 by her Majesty the Queen in Right of Canada as represented by the Minister of Agriculture and Agri-Food. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammah, A.A.; Do, D.N.; Bissonnette, N.; Gévry, N.; Ibeagha-Awemu, E.M. Co-Expression Network Analysis Identifies miRNA–mRNA Networks Potentially Regulating Milk Traits and Blood Metabolites. Int. J. Mol. Sci. 2018, 19, 2500. https://doi.org/10.3390/ijms19092500
Ammah AA, Do DN, Bissonnette N, Gévry N, Ibeagha-Awemu EM. Co-Expression Network Analysis Identifies miRNA–mRNA Networks Potentially Regulating Milk Traits and Blood Metabolites. International Journal of Molecular Sciences. 2018; 19(9):2500. https://doi.org/10.3390/ijms19092500
Chicago/Turabian StyleAmmah, Adolf A., Duy N. Do, Nathalie Bissonnette, Nicolas Gévry, and Eveline M. Ibeagha-Awemu. 2018. "Co-Expression Network Analysis Identifies miRNA–mRNA Networks Potentially Regulating Milk Traits and Blood Metabolites" International Journal of Molecular Sciences 19, no. 9: 2500. https://doi.org/10.3390/ijms19092500
APA StyleAmmah, A. A., Do, D. N., Bissonnette, N., Gévry, N., & Ibeagha-Awemu, E. M. (2018). Co-Expression Network Analysis Identifies miRNA–mRNA Networks Potentially Regulating Milk Traits and Blood Metabolites. International Journal of Molecular Sciences, 19(9), 2500. https://doi.org/10.3390/ijms19092500