Cadmium Exposure and Risk of Breast Cancer by Histological and Tumor Receptor Subtype in White Caucasian Women: A Hospital-Based Case-Control Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Questionnaire
4.3. Urine Sample Collection
4.4. Cadmium Concentration Measurements
4.5. Measurements of ER, PR, HER2 and Creatinine
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nordberg, G.F.; Nogawa, K.; Nordberg, M.; Friedmann, J.M. Cadmium. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Friberg, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 667–716. [Google Scholar]
- Järup, L.; Akesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Divekar, S.D.; Storchan, G.B.; Parodi, D.A.; Martin, M.B. Metals and breast cancer. J. Mammary Gland. Biol. Neoplasia 2013, 18, 63–73. [Google Scholar] [CrossRef]
- Garcia-Morales, P.; Saceda, M.; Kenney, N.; Kim, N.; Salomon, D.S.; Gottardis, M.M.; Solomon, H.B.; Sholler, P.F.; Jordan, V.C.; Martin, M.B. Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J. Biol. Chem. 1994, 269, 16896–16901. [Google Scholar] [PubMed]
- Choe, S.Y.; Kim, S.J.; Kim, H.G.; Lee, J.H.; Choi, Y.; Lee, H.; Kim, Y. Evaluation of estrogenicity of major heavy metals. Sci. Total Environ. 2003, 312, 15–21. [Google Scholar] [CrossRef]
- Martinez-Campa, C.; Alonso-Gonzalez, C.; Mediavilla, M.D.; Cos, S.; Gonzalez, A.; Ramos, S.; Sanchez-Barcelo, E.J. Melatonin inhibits both ER alpha activation and breast cancer cell proliferation induced by a metalloestrogen, cadmium. J. Pineal Res. 2006, 40, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Siewit, L.C.; Gengler, B.; Vegas, E.; Puckett, R.; Louie, M.C. Cadmium promotes breast cancer cell proliferation by potentiating the interaction between ER alpha and c-Jun. Mol. Endocrinol. 2010, 24, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Stoica, A.; Katzenellenbogen, B.S.; Martin, M.B. Activation of estrogen receptor-alpha by the heavy metal cadmium. Mol. Endocrinol. 2000, 14, 545–553. [Google Scholar] [CrossRef]
- Brama, M.; Gnessi, L.; Basciani, S.; Cerulli, N.; Politi, L.; Spera, G.; Mariani, S.; Cherubini, S.; Scotto d’Abusco, A.; Scandurra, R.; et al. Cadmium induces mitogenic signaling in breast cancer cell by an ER- alpha-dependent mechanism. Mol. Cell Endocrinol. 2007, 264, 102–108. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Shaikh, Z.A. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium. Toxicol. Appl. Pharmacol. 2008, 228, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Zang, Y.; Odwin-Dacosta, S.; Yager, J.D. Effects of cadmium on estrogen receptor mediated signaling and estrogen induced DNA synthesis in T47D human breast cancer cells. Toxicol. Lett. 2009, 184, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.D.; Kenney, N.; Stoica, A.; Hilakivi-Clarke, L.; Singh, B.; Chepko, G.; Clarke, R.; Sholler, P.F.; Lirio, A.A.; Foss, C.; et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat. Med. 2003, 9, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Kluxen, F.M.; Hofer, N.; Kretzschmar, G.; Degen, G.H.; Diel, P. Cadmium modulates expression of aryl hydrocarbon receptor associated genes in rat uterus by interaction with the estrogen receptor. Arch. Toxicol. 2012, 86, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Hofer, N.; Diel, P.; Wittsiepe, J.; Wilhelm, M.; Degen, G.H. Dose- and route-dependent hormonal activity of the metalloestrogen cadmium in the rat uterus. Toxicol. Lett. 2009, 191, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.; Lopez-Espinosa, M.J.; Molina-Molina, J.-M.; Fernaґndez, M.; Olea, N.; Kortenkamp, A. Lack of activity of cadmium in in vitro estrogenicity assays. Toxicol. Appl. Pharmacol. 2006, 216, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Benbrahim-Tallaa, L.; Tokar, E.J.; Diwan, B.A.; Dill, A.L.; Coppin, J.F.; Waalkes, M.P. Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype. Environ. Health Perspect. 2009, 117, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- McElroy, J.A.; Shafer, M.M.; Trentham-Dietz, A.; Hampton, J.M.; Newcomb, P.A. Cadmium exposure and breast cancer risk. J. Natl. Cancer Inst. 2006, 98, 869–872. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, C.M.; Chen, J.J.; Kovach, J.S. Environmental cadmium and breast cancer risk. Aging 2010, 2, 804–814. [Google Scholar] [CrossRef] [Green Version]
- Nagata, C.; Nagao, Y.; Nakamura, K.; Wada, K.; Tamai, Y.; Tsuji, M.; Yamamoto, S.; Kashiki, Y. Cadmium exposure and the risk of breast cancer in Japanese women. Breast Cancer Res. Treat. 2013, 138, 235–239. [Google Scholar] [CrossRef]
- Wei, X.L.; He, J.R.; Cen, Y.L.; Su, Y.; Chen, L.J.; Lin, Y.; Wu, B.H.; Su, F.X.; Tang, L.Y.; Ren, Z.F. Modified effect of urinary cadmium on breast cancer risk by selenium. Clin. Chim. Acta 2015, 438, 80–85. [Google Scholar] [CrossRef]
- Adams, S.V.; Shafer, M.M.; Bonner, M.R.; LaCroix, A.Z.; Manson, J.E.; Meliker, J.R.; Neuhouser, M.L.; Newcomb, P.A. Urinary cadmium and risk of invasive breast cancer in the Women’s Health Initiative. Am. J. Epidemiol. 2016, 183, 815–823. [Google Scholar] [CrossRef]
- Eriksen, K.T.; McElroy, J.A.; Harrington, J.M.; Levine, K.E.; Pedersen, C.; Sørensen, M.; Tjønneland, A.; Meliker, J.R.; Raaschou-Nielsen, O. Urinary cadmium and breast cancer: A prospective Danish cohort study. J. Natl. Cancer Inst. 2017, 109, djw204. [Google Scholar] [CrossRef] [PubMed]
- Strumylaite, L.; Kregzdyte, R.; Bogusevicius, A.; Poskiene, L.; Baranauskiene, D.; Pranys, D. Association between cadmium and breast cancer risk according to estrogen receptor and human epidermal growth factor receptor 2: Epidemiological evidence. Breast Cancer Res. Treat. 2014, 145, 225–232. [Google Scholar] [CrossRef]
- Ellis, I.O.; Cornelisse, C.J.; Schnitt, S.J.; Sasco, A.J.; Sastre-Garau, X.; Kaaks, R.; Bussolati, G.; Pisani, P.; Tavassoli, F.A.; Goldgar, D.E.; et al. Invasive breast carcinoma. In Tumors of the Breast and Female Genital Organs; Tavassoli, F.A., Devilee, P., Eds.; IARC Press: Lyon, France, 2003; pp. 23–26. [Google Scholar]
- Li, C.I.; Uribe, D.J.; Daling, J.R. Clinical characteristics of different histologic types of breast cancer. Br. J. Cancer 2005, 93, 1046–1052. [Google Scholar] [CrossRef]
- Larsson, S.C.; Orsini, N.; Wolk, A. Urinary cadmium concentration and risk of breast cancer: A systematic review and dose-response meta-analysis. Am. J. Epidemiol. 2015, 182, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, F.; Lei, Y. Dietary intake and urinary level of cadmium and breast cancer risk: A meta-analysis. Cancer Epidemiol. 2016, 42, 101–107. [Google Scholar] [CrossRef] [PubMed]
- The Women’s Health Initiative Study Group. Design of the Women’s Health Initiative clinical trial and observational study. Control Clin. Trials 1998, 19, 61–109. [Google Scholar] [CrossRef]
- Grabauskas, V.; Klumbiene, J.; Petkeviciene, J.; Sakyte, E.; Kriaucioniene, V.; Veryga, A.; Prattala, R. Health Behavior among Lithuanian Adult Population, 2008; Kaunas University of Medicine: Kaunas, Lithuania, 2009; pp. 30–60. [Google Scholar]
- Strumylaite, L.; Kregzdyte, R.; Rugyte, D.C.; Bogusevicius, A.; Mechonosina, K. Assessment of a questionnaire for breast cancer case-control studies. Asian Pac. J. Cancer Prev. 2013, 14, 2777–2782. [Google Scholar] [CrossRef]
- Schlemmer, G. Analysis of biological chemical materials by graphite furnace–AAS. In Instrumentalized Analytical Chemistry and Computer Technology; GIT: Asfeld, France, 1989; pp. 561–568. [Google Scholar]
- Strumylaite, L.; Bogusevicius, A.; Abdrachmanovas, O.; Baranauskiene, D.; Kregzdyte, R.; Pranys, D.; Poskiene, L. Cadmium concentration in biological media of breast cancer patients. Breast Cancer Res. Treat. 2011, 125, 511–517. [Google Scholar] [CrossRef] [PubMed]
- DAKO. Reference in immunohistochemistry. In Breast Cancer Diagnosis, Therapy and Prognosis, 3rd ed.; DAKo A/S: Glostrup, Denmark, 1996. [Google Scholar]
- Hammond, M.E.H.; Hayes, D.F.; Wolff, A.C.; Mangu, P.B.; Temin, S. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. JOP 2010, 6, 195–197. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hammond, M.E.H.; Schwartz, J.N.; Hagerty, K.L.; Allred, D.C.; Cote, R.J.; McShane, L.M.; Patrick, L.M.D.; Fitzgibbons, W.M.; Pegram, M.D.; et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer. Arch. Pathol. Lab. Med. 2007, 131, 18–43. [Google Scholar] [CrossRef]
- Elinder, C.G. Normal values for cadmium in human tissues, blood, and urine in different countries. In Cadmium and Health: A Toxicological and Epidemiological Appraisal. Exposure, Dose, and Metabolism; Friberg, L., Elinder, C.G., Kjellstrom, T., Nordberg, G.F., Eds.; CRC Press: Boca Raton, FL, USA, 1985; pp. 81–102. [Google Scholar]
- Cypress Diagnostics Creatinine. Kinetic Test. Jaffe. Without Deproteinization; Code HB008; Cypress Diagnostics: Hulshout, Belgium, 2005. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 10. StataCorp LP: College Station, TX, USA, 2007. Available online: https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/ (accessed on 21 June 2019).
Variable | Cases (n = 509) | Controls (n = 1170) | p-Value for Difference |
---|---|---|---|
Age (years) (mean, SD) | 58.08 (12.32) | 57.42 (12.49) | 0.31 |
Education (n, %) | |||
Specialized secondary or lower | 304 (59.7) | 816 (69.7) | |
Some university or higher | 205 (40.3) | 354 (30.3) | <0.001 |
Marital status (n, %) | |||
Single | 30 (5.9) | 55 (4.7) | |
Married or living as married | 308 (60.5) | 712 (60.9) | |
Separated or widowed | 171 (33.6) | 403 (34.4) | 0.58 |
Family history of breast cancer (n, %) | 33 (6.5) | 58 (5.0) | 0.2 |
Age at menarche (years) (mean, SD) | 14.03 (1.72) | 14.01 (1.69) | 0.82 |
Age at first birth (years) (n, %) | |||
<20 | 70 (13.8) | 190 (16.2) | |
20–29 | 353 (69.3) | 830 (70.9) | |
≥30 | 35 (6.9) | 65 (5.6) | |
Never gave birth | 51 (10.0) | 85 (7.3) | 0.12 |
Number of births (mean, SD) | 1.77 (1.09) | 1.92 (1.08) | 0.01 |
Menopausal status (n, %) | |||
Premenopausal | 156 (30.7) | 347 (29.7) | |
Postmenopausal | 353 (69.3) | 823 (70.3) | 0.68 |
Estrogen-active (fertile) period (years) (mean, SD) a | 34.35 (5.97) | 33.21 (6.34) | <0.001 |
Hormone therapy during menopause (n, %) | |||
Never | 285 (80.7) | 725 (88.1) | |
Estrogens and/or estrogens-progestin | 47 (13.3) | 71 (8.6) | |
Other hormones (thyroxin and etc.) | 21 (6.0) | 27 (3.3) | 0.004 |
Alcohol use (n, %) | |||
Never/Ex-user | 72 (14.2) | 263 (22.5) | |
Current | 437 (85.8) | 907 (77.5) | <0.001 |
Smoking (n, %) | |||
Never | 386 (75.8) | 930 (79.5) | |
Ex-smokers | 56 (11.0) | 127 (10.8) | |
Current (every day or sometimes) | 67 (13.2) | 113 (9.7) | 0.1 |
Body mass index (kg m−2) (mean, SD) | 28.11 (5.56) | 28.54 (5.94) | 0.16 |
Diabetes mellitus (n, %) | 35 (6.9) | 118 (10.1) | 0.04 |
Thyroid diseases (n, %) | 112 (22.0) | 317 (27.1) | 0.03 |
Urinary cadmium (kg × 10−9/kg × 10−3 creatinine) (median, Q1, Q3) | 0.29 (0.18–0.43) | 0.24 (0.15–0.40) | 0.002 |
Urinary creatinine (kg × 10−9/m3 × 10−3) (median, Q1, Q3) | 1.35 (0.90–1.99) | 1.19 (0.83–1.75) | 0.001 |
Tumor histopathological characteristics | |||
Histology | |||
Invasive ductal carcinoma | 458 (78.3) | - | |
Invasive lobular carcinoma | 51 (8.7) | - | |
Receptors (n, %) | |||
Estrogen receptor-positive | 348 (68.4) | - | |
Progesterone receptor-positive | 243 (47.7) | - | |
Human epidermal growth receptor 2-negative | 435 (85.5) | - |
Controls/Cases | Number in Each Category of Urinary Cadmium (n, %) a | OR b (95% CI) | OR b per Category | p-Trend | p-Heterogeneity * | |||
---|---|---|---|---|---|---|---|---|
Low (<0.18) | Intermediate (0.18–0.33) | High (>0.33) | Intermediate vs. Low | High vs. Low | Increase (95% CI) | |||
Controls | 389 (33.3) | 392 (33.5) | 389 (33.3) | |||||
Cases | 133 (26.1) | 170 (33.4) | 206 (40.5) | 1.24 (0.94–1.63) | 1.55 (1.18–2.04) | 1.24 (1.09–1.42) | 0.002 | |
ER+ | 82 (23.6) | 114 (32.8) | 152 (43.7) | 1.30 (0.94–1.80) | 1.79 (1.30–2.46) | 1.34 (1.14–1.56) | <0.001 | 0.11 (1) |
ER− | 51 (31.7) | 56 (34.8) | 54 (33.5) | 1.10 (0.72–1.67) | 1.16 (0.75–1.79) | 1.07 (0.87–1.33) | 0.52 | - |
PR+ | 55 (22.6) | 84 (34.6) | 104 (42.8) | 1.48 (1.01–2.15) | 1.88 (1.30–2.74) | 1.36 (1.13–1.63) | 0.001 | 0.18 (2) |
PR− | 78 (29.3) | 86 (32.3) | 102 (38.4) | 1.03 (0.72–1.45) | 1.29 (0.91–1.82) | 1.14 (0.96–1.35) | 0.14 | - |
ER+/PR+ | 52 (22.6) | 77 (33.5) | 101 (43.9) | 1.42 (0.96–2.09) | 1.90 (1.30–2.78) | 1.37 (1.14–1.65) | 0.001 | 0.09 (3) |
ER+/PR− | 30 (25.4) | 37 (31.4) | 51 (43.2) | 1.05 (0.62–1.75) | 1.54 (0.94–2.54) | 1.26 (0.98–1.62) | 0.07 | 0.33 (4) |
ER−/PR− | 48 (32.4) | 49 (33.1) | 51 (34.5) | 1.02 (0.66–1.58) | 1.13 (0.73–1.76) | 1.06 (0.85–1.33) | 0.58 | - |
HER2+ | 28 (38.9) | 17 (23.6) | 27 (37.5) | 0.58 (0.31–1.09) | 0.99 (0.56–1.77) | 0.99 (0.73–1.35) | 0.97 | 0.12 (5) |
HER2− | 104 (23.9) | 152 (34.9) | 179 (41.2) | 1.41 (1.05–1.89) | 1.70 (1.27–2.29) | 1.30 (1.12–1.50) | <0.001 | - |
ER+/PR+/HER2− | 46 (21.1) | 74 (33.9) | 98 (45.0) | 1.54 (1.03–2.30) | 2.08 (1.41–3.09) | 1.43 (1.18–1.73) | <0.001 | 0.05 (6) |
ER+/PR−/HER2− | 29 (26.6) | 35 (32.1) | 45 (41.3) | 1.02 (0.60–1.74) | 1.40 (0.84–2.34) | 1.19 (0.92–1.54) | 0.18 | 0.32 (7) |
ER−/PR−/HER2− | 28 (28.9) | 36 (37.1) | 33 (34.0) | 1.30 (0.76–2.21) | 1.26 (0.73–2.18) | 1.12 (0.86–1.47) | 0.40 | 0.48 (8) |
ER−/PR−/HER2+ | 20 (40.0) | 12 (24.0) | 18 (36.0) | 0.57 (0.27–1.20) | 0.94 (0.47–1.86) | 0.95 (0.66–1.37) | 0.79 | - |
Controls/Cases | Number in Each Category of Urinary Cadmium (n, %) a | OR b (95% CI) | OR b per Category | p-Trend | p-Heterogeneity * | |||
---|---|---|---|---|---|---|---|---|
Low (<0.18) | Intermediate (0.18–0.33) | High (>0.33) | Intermediate vs. Low | High vs. Low | Increase (95% CI) | |||
Controls | 389 (33.3) | 392 (33.5) | 389 (33.3) | |||||
Ductal cases | 122 (26.6) | 151 (33.0) | 185 (40.4) | 1.18 (0.89–1.58) | 1.53 (1.15–2.04) | 1.24 (1.08–1.43) | 0.003 | 0.89 |
ER+ | 72 (24.0) | 96 (32.0) | 132 (44.0) | 1.23 (0.87–1.74) | 1.79 (1.27–2.50) | 1.34 (1.14–1.59) | 0.001 | 0.86 |
PR+ | 50 (23.9) | 71 (34.0) | 88 (42.1) | 1.36 (0.91–2.03) | 1.79 (1.21–2.66) | 1.33 (1.09–1.61) | 0.004 | 0.49 |
ER+/PR+ | 47 (23.9) | 64 (32.5) | 86 (43.6) | 1.29 (0.85–1.95) | 1.83 (1.22–2.73) | 1.35 (1.11–1.65) | 0.003 | 0.62 |
HER2− | 93 (24.2) | 133 (34.6) | 158 (41.2) | 1.36 (1.00–1.88) | 1.70 (1.25–2.31) | 1.30 (1.11–1.51) | 0.001 | 0.93 |
ER+/PR+/HER2− | 41 (22.2) | 61 (33.0) | 83 (44.9) | 1.41 (0.91–2.16) | 2.02 (1.33–3.07) | 1.41 (1.15–1.74) | 0.001 | 0.76 |
Lobular cases | 11 (21.6) | 19 (37.3) | 21 (41.2) | 1.72 (0.80–3.71) | 1.73 (0.80–3.75) | 1.27 (0.88–1.83) | 0.19 | - |
ER+ | 10 (20.8) | 18 (37.5) | 20 (41.7) | 1.77 (0.80–3.93) | 1.80 (0.81–4.00) | 1.29 (0.89–1.89) | 0.19 | - |
PR+ | 5 (14.7) | 13 (38.2) | 16 (47.1) | 2.70 (0.94–7.75) | 2.99 (1.05–8.51) | 1.58 (1.00–2.50) | 0.05 | - |
ER+/PR+ | 5 (15.2) | 13 (39.4) | 15 (45.4) | 2.70 (0.94–7.75) | 2.79 (0.97–8.00) | 1.53 (0.96–2.43) | 0.07 | - |
HER2− | 11 (21.6) | 19 (37.2) | 21 (41.2) | 1.72 (0.80–3.71) | 1.73 (0.80–3.75) | 1.27 (0.88–1.83) | 0.19 | - |
ER+/PR+/HER2− | 5 (15.2) | 13 (39.4) | 15 (45.4) | 2.70 (0.94–7.75) | 2.79 (0.97–8.00) | 1.53 (0.96–2.43) | 0.07 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strumylaite, L.; Kregzdyte, R.; Bogusevicius, A.; Poskiene, L.; Baranauskiene, D.; Pranys, D. Cadmium Exposure and Risk of Breast Cancer by Histological and Tumor Receptor Subtype in White Caucasian Women: A Hospital-Based Case-Control Study. Int. J. Mol. Sci. 2019, 20, 3029. https://doi.org/10.3390/ijms20123029
Strumylaite L, Kregzdyte R, Bogusevicius A, Poskiene L, Baranauskiene D, Pranys D. Cadmium Exposure and Risk of Breast Cancer by Histological and Tumor Receptor Subtype in White Caucasian Women: A Hospital-Based Case-Control Study. International Journal of Molecular Sciences. 2019; 20(12):3029. https://doi.org/10.3390/ijms20123029
Chicago/Turabian StyleStrumylaite, Loreta, Rima Kregzdyte, Algirdas Bogusevicius, Lina Poskiene, Dale Baranauskiene, and Darius Pranys. 2019. "Cadmium Exposure and Risk of Breast Cancer by Histological and Tumor Receptor Subtype in White Caucasian Women: A Hospital-Based Case-Control Study" International Journal of Molecular Sciences 20, no. 12: 3029. https://doi.org/10.3390/ijms20123029
APA StyleStrumylaite, L., Kregzdyte, R., Bogusevicius, A., Poskiene, L., Baranauskiene, D., & Pranys, D. (2019). Cadmium Exposure and Risk of Breast Cancer by Histological and Tumor Receptor Subtype in White Caucasian Women: A Hospital-Based Case-Control Study. International Journal of Molecular Sciences, 20(12), 3029. https://doi.org/10.3390/ijms20123029