Carbodiimide Conjugation of Latent Transforming Growth Factor β1 to Superparamagnetic Iron Oxide Nanoparticles for Remote Activation
Abstract
:1. Introduction
2. Results
2.1. Characterization of Conjugated Particles
2.1.1. Fourier Transform Infrared—Attenuated Total Reflectance Spectroscopy
2.1.2. Dynamic Light Scattering (DLS)
2.1.3. Transmission Electron Microscopy (TEM)
2.1.4. Superconducting Quantum Interference Device Magnetometer.
2.2. ELISA of Activated TGF-β
2.2.1. Magnetic Release of Active TGF-β
2.2.2. Heat Controls
3. Discussion
4. Materials and Methods
4.1. Hydrolysis of SPION to Open Conjugation Sites
4.2. Carbodiimide Conjugation
4.3. Particle Characterization
4.3.1. Fourier Transmission Infrared Attenuated Total Reflectance Spectroscopy (FTIR-ATR)
4.3.2. Dynamic Light Scattering (DLS)
4.3.3. Transmission Electron Microscopy
4.3.4. Superconducting Quantum Interference Device (SQUID) Magnetometry
4.4. ELISA of Activated TGF-β
4.4.1. Magnetic Release of Active Transforming Growth Factor-β
4.4.2. Heat Controls
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SPION | Superparamagnetic Iron Oxide Nanoparticle |
SAR | Specific Absorption Rate |
EDC | 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide |
NHS | N-Hydroxysuccinimide |
TGF-β | Transforming Growth Factor Beta |
FTIR-ATR | Fourier Transmission Infrared Attenuated Total Reflectance Spectroscopy |
TEM | Transmission Electron Microscopy |
DLS | Dynamic Light Scattering |
SQUID | Superconducting Quantum Interfering Device Magnetometry |
LAP | Latent Associated Peptide |
SLC | Small Latent Complex |
MARS | Magnetic Activation of Receptor Signalling |
SMCC | Succinimidyl 4-[N-maleimidomethyl] Cyclohexane-1-Carboxylate |
NIR | Near Infrared |
PBS | Phosphate Buffered Saline |
RF | Radiofrequency |
References
- Alexandrow, M.G.; Moses, H.L. Transforming growth factor beta and cell cycle regulation. Cancer Res. 1995, 55, 1452–1457. [Google Scholar] [PubMed]
- Huang, S.S.; Huang, J.S. TGF-beta control of cell proliferation. J. Cell. Biochem. 2005, 96, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Moses, H.L.; Arteaga, C.L.; Alexandrow, M.G.; Dagnino, L.; Kawabata, M.; Pierce, D.F., Jr.; Serra, R. TGF beta regulation of cell proliferation. Princess Takamatsu Symp. 1994, 24, 250–263. [Google Scholar]
- Hinz, B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol. 2015, 47, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Verrecchia, F.; Mauviel, A. Transforming growth factor-beta signaling through the Smad pathway: Role in extracellular matrix gene expression and regulation. J. Investig. Dermatol. 2002, 118, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Sakaki-Yumoto, M.; Katsuno, Y.; Derynck, R. TGF-β family signaling in stem cells. Biochim. Et Biophys. Acta 2013, 1830, 2280–2296. [Google Scholar] [CrossRef] [PubMed]
- Watabe, T.; Miyazono, K. Roles of TGF-[beta] family signaling in stem cell renewal and differentiation. Cell Res. 2009, 19, 103–115. [Google Scholar] [CrossRef]
- Gomis, R.R.; Alarcon, C.; Nadal, C.; Van Poznak, C.; Massague, J. C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 2006, 10, 203–214. [Google Scholar] [CrossRef]
- Vijayachandra, K.; Lee, J.; Glick, A.B. Smad3 regulates senescence and malignant conversion in a mouse multistage skin carcinogenesis model. Cancer Res. 2003, 63, 3447–3452. [Google Scholar]
- Siegel, P.M.; Massague, J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat. Rev. Cancer 2003, 3, 807–821. [Google Scholar] [CrossRef]
- Ikushima, H.; Miyazono, K. TGFbeta signalling: A complex web in cancer progression. Nat. Rev. Cancer 2010, 10, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Connolly, E.; Freimuth, J.; Akhurst, R. Complexities of TGF-β targeted cancer therapy. Int. J. Biol. Sci. 2012, 8, 964–978. [Google Scholar] [CrossRef] [PubMed]
- Annes, J.P.; Munger, J.S.; Rifkin, D.B. Making sense of latent TGFβ activation. J. Cell Sci. 2003, 116, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Unni, M.; Uhl, A.M.; Savliwala, S.; Savitzky, B.H.; Dhavalikar, R.; Garraud, N.; Arnold, D.P.; Kourkoutis, L.F.; Andrew, J.S.; Rinaldi, C. Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen. ACS Nano 2017, 11, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zhu, J.; Wang, R.; Chen, X.; Mi, L.; Walz, T.; Springer, T.A. Latent TGF-β structure and activation. Nature 2011, 474, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D.; Wakefield, L.M.; Levinson, A.D.; Sporn, M.B. Physicochemical activation of recombinant latent transforming growth factor-beta’s 1, 2, and 3. Growth Factors 1990, 3, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Liu, L.; Zhao, B.; Xie, R.; Lin, W.; Li, H.; Li, Y.; Shi, M.; Chen, Y.G.; Springer, T.A.; et al. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light. Nat. Nanotechnol. 2015, 10, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Mancini, M.C.; Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711. [Google Scholar] [CrossRef] [Green Version]
- Petri-Fink, A.; Hofmann, H. Superparamagnetic Iron Oxide Nanoparticles (SPIONs): From Synthesis to In Vivo Studies—A Summary of the Synthesis, Characterization, In Vitro, and In Vivo Investigations of SPIONs With Particular Focus on Surface and Colloidal Properties. IEEE Trans. Nanobioscience 2007, 6, 289–297. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connoly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D 2003, 36, R167–R181. [Google Scholar] [CrossRef] [Green Version]
- Pankhurst, Q.A.; Thanh, N.K.T.; Jones, S.K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D 2009, 42, 224001. [Google Scholar] [CrossRef]
- Rajesh, K.S.; Raje, C.; Laxmi, P.B.; Bajpai, A.K. Strategies of Targeting Tumors and Cancers. J. Cancer Res. Updates 2012, 1, 129–152. [Google Scholar]
- Louguet, S.; Rousseau, B.; Epherre, R.; Guidolin, N.; Goglio, G.; Mornet, S.; Duguet, E.; Lecommandoux, S.; Schatz, C. Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release. Polym. Chem. 2012, 3, 1408–1417. [Google Scholar] [CrossRef]
- Olivia, L.L.; Adam, G.M.; Peter, S.M.; Jon, D. Magnetically triggered release of biologics. Int. Mater. Rev. 2018. [Google Scholar] [CrossRef]
- Dobson, J. Remote control of cellular behavior with magnetic nanoparticles. Nat. Nanotechnol. 2008, 3, 139–143. [Google Scholar] [CrossRef]
- Laurent, S.; Dutz, S.; Häfeli, U.; Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 2011, 166, 8–23. [Google Scholar] [CrossRef]
- Timkovich, R. Detection of the stable addition of carbodiimide to proteins. Anal. Biochem. 1977, 79, 135–143. [Google Scholar] [CrossRef]
- Creixell, M.; Bohorquez, A.C.; Torres-Lugo, M.; Rinaldi, C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS nano 2011. [Google Scholar] [CrossRef]
- Monsalve, A.; Bohorquez, A.; Rinaldi, C.; Dobson, J. Remotely Triggered Activation of TGF—With Magnetic Nanoparticles. IEEE Magn. Lett. 2015, 6, 1–4. [Google Scholar] [CrossRef]
- Staros, J.V.; Wright, R.W.; Swingle, D.M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 1986, 156, 220–222. [Google Scholar] [CrossRef]
- Fischer, M.J. Amine Coupling Through EDC/NHS: A Practical Approach. Methods Mol. Biol. 2010, 627, 55–73. [Google Scholar] [PubMed]
- Chen, Y.; Ali, T.; Todorovic, V.; O’leary, J.M.; Kristina Downing, A.; Rifkin, D.B. Amino Acid Requirements for Formation of the TGF-β-Latent TGF-β Binding Protein Complexes. J. Mol. Biol. 2005, 345, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Bean, C.P.; Livingston, J.D. Superparamagnetism. J. Appl. Phys. 1959, 30, S120–S129. [Google Scholar] [CrossRef]
- Sirota, J.; Davis, I. Hydrolysis of maleic anhydride copolymers. U.S. Patent No. US3733292A, 18 November 1971. [Google Scholar]
- Chen, D.; Sanchez, A.; Taboada, E.; Roig, A.; Sun, N.; Gu, H.C. Size determination of superparamagnetic nanoparticles from magnetization curve. J. Appl. Phys. 2009, 105, 083924. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azie, O.; Greenberg, Z.F.; Batich, C.D.; Dobson, J.P. Carbodiimide Conjugation of Latent Transforming Growth Factor β1 to Superparamagnetic Iron Oxide Nanoparticles for Remote Activation. Int. J. Mol. Sci. 2019, 20, 3190. https://doi.org/10.3390/ijms20133190
Azie O, Greenberg ZF, Batich CD, Dobson JP. Carbodiimide Conjugation of Latent Transforming Growth Factor β1 to Superparamagnetic Iron Oxide Nanoparticles for Remote Activation. International Journal of Molecular Sciences. 2019; 20(13):3190. https://doi.org/10.3390/ijms20133190
Chicago/Turabian StyleAzie, Obiora, Zachary F. Greenberg, Christopher D. Batich, and Jon P. Dobson. 2019. "Carbodiimide Conjugation of Latent Transforming Growth Factor β1 to Superparamagnetic Iron Oxide Nanoparticles for Remote Activation" International Journal of Molecular Sciences 20, no. 13: 3190. https://doi.org/10.3390/ijms20133190
APA StyleAzie, O., Greenberg, Z. F., Batich, C. D., & Dobson, J. P. (2019). Carbodiimide Conjugation of Latent Transforming Growth Factor β1 to Superparamagnetic Iron Oxide Nanoparticles for Remote Activation. International Journal of Molecular Sciences, 20(13), 3190. https://doi.org/10.3390/ijms20133190