Development of Drought-Tolerant Transgenic Wheat: Achievements and Limitations
Abstract
:1. Introduction
2. Drought-Induced Gene Expression/Single Action Gene
3. Osmoprotectants, Metabolites and Protective Genes
3.1. Proline
3.2. Glycine Betaine
3.3. Mannitols
3.4. Heat/Cold Shock Protein Chaperons/Molecular Chaperons
3.5. Late Embryogenesis Abundant (LEA) Proteins
4. Transporters Genes
5. Carbon Metabolism
6. Transcription Factors
6.1. DREB
6.2. WRKY2
6.3. HDG11
6.4. TaSHN1
6.5. NAC
6.6. bZIP2
7. Post-Translational Modification
8. Protein Kinase
8.1. Phosphoenolpyruvate Carboxylase Kinase Related Kinases
8.2. Signal Transduction Genes
9. Nuclear Factor
10. Limitations
11. Future Directions in the Development of Drought-Tolerant Transgenic Wheat
Funding
Conflicts of Interest
References
- Senapati, N.; Stratonovitch, P.; Paul, M.J.; Semenov, M.A. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. J. Exp. Bot. 2018, 70, 2549–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, R.R.; Rangan, P.; Furtado, A. Functional cereals for production in new and variable climates. Curr. Opin. Plant Biol. 2016, 30, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Langridge, P. Wheat genomics and the ambitious targets for future wheat production. Genome 2013, 56, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Borisjuk, N.; Kishchenko, O.; Eliby, S.; Schramm, C.; Anderson, P.; Jatayev, S.; Kurishbayev, A.; Shavrukov, Y. Genetic Modification for Wheat Improvement: From Transgenesis to Genome Editing. BioMed Res. Int. 2019, 2019. [Google Scholar] [CrossRef] [PubMed]
- Manickavelu, A.; Kawaura, K.; Oishi, K.; Shin-I, T.; Kohara, Y.; Yahiaoui, N.; Keller, B.; Abe, R.; Suzuki, A.; Nagayama, T.; et al. Comprehensive functional analyses of expressed sequence tags in common wheat (Triticum aestivum). DNA Res. 2012, 19, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef] [PubMed]
- Mwadzingeni, L.; Shimelis, H.; Dube, E.; Laing, M.D.; Tsilo, T.J. Breeding wheat for drought tolerance: Progress and technologies. J. Integr. Agric. 2016, 15, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.P.; Balyan, S.S.; Gahlaut, V. QTL analysis for drought tolerance in wheat: Present status and future possibilities. Agronomy 2017, 7, 5. [Google Scholar] [CrossRef]
- Bhatta, M.; Morgounov, A.; Belamkar, V.; Baenziger, P.S. Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat. Int. J. Mol. Sci. 2018, 19, 3011. [Google Scholar] [CrossRef]
- Przewieslik-Allen, A.M.; Burridge, A.A.; Wilkinson, P.P.; Winfield, M.M.; Shaw, D.D.; McAusland, L.; King, J.; King, I.I.; Edwards, K.K.; Barker, G.L.A. Developing a High-Throughput SNP-Based Marker System to Facilitate the Introgression of Traits from Aegilops Species Into Bread Wheat (Triticum aestivum). Front. Plant Sci. 2019, 9, 1993. [Google Scholar] [CrossRef]
- Gosal, S.S.; Wani, S.S.; Kang, M.S. Biotechnology and drought tolerance. J. Crop Imp. 2009, 23, 19–54. [Google Scholar] [CrossRef]
- Hu, H.; Xiong, L. Genetic engineering and breeding of drought-resistant crops. Annu. Rev. Plant Biol. 2014, 65, 715–741. [Google Scholar] [CrossRef] [PubMed]
- Araus, J.J.; Serret, M.D.; Lopes, M.S. Transgenic solutions to increase yield and stability in wheat: Shining hope or flash in the pan? J. Exp. Bot. 2019, 70, 1419–1424. [Google Scholar] [CrossRef] [PubMed]
- Vasil, V.; Castillo, A.A.; Fromm, M.E.; Vasil, I.K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 1992, 10, 667. [Google Scholar] [CrossRef]
- Ortiz, R.; Iwanaga, M.; Reynolds, M.M.; Huixia, W.; Crouch, J.H. Overview on crop genetic engineering for drought-prone environments. J. SAT Agric. Res. 2007, 4, 30. [Google Scholar]
- González, F.F.; Capella, M.; Ribichich, K.K.; Curín, F.; Giacomelli, J.J.; Ayala, F.; Watson, G.; Otegui, M.E.; Chan, R.L. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. J. Exp. Bot. 2019, 70, 1669–1681. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Xu, H.; Cheng, X.; Chen, M.; Xu, Z.; Li, L.; Ye, X.; Du, L.; Hao, X.; Ma, Y. Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max). Chin. Sci. Bull. 2005, 50, 2714–2723. [Google Scholar] [CrossRef]
- Abebe, T.; Guenzi, A.A.; Martin, B.; Cushman, J.C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 2003, 131, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Vendruscolo, E.C.G.; Schuster, I.; Pileggi, M.; Scapim, C.C.; Molinari, H.B.C.; Marur, C.C.; Vieira, L.G.E. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 2007, 164, 1367–1376. [Google Scholar] [CrossRef]
- Zhu, X.; Gong, H.; Chen, G.; Wang, S.; Zhang, C. Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. J. Arid Environ. 2005, 62, 1–14. [Google Scholar] [CrossRef]
- Saxena, S.S.; Kaur, H.; Verma, P.; Petla, B.B.; Andugula, V.V.; Majee, M. Osmoprotectants: Potential for crop improvement under adverse conditions. In Plant Acclimation to Environmental Stress; Tuteja, N., Singh, S.S., Eds.; Springer: New York, NY, USA, 2013; pp. 197–232. [Google Scholar]
- Hong, Z.L.; Lakkineni, K.; Zhang, Z.M.; Verma, D.P.S. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 2000, 122, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Hmida-Sayari, A.; Gargouri-Bouzid, R.; Bidani, A.; Jaoua, L.; Savouré, A.; Jaoua, S. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci. 2005, 169, 746–752. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Sawahel, W.W.; Hassan, A.H. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol. Lett. 2002, 24, 721–725. [Google Scholar] [CrossRef]
- Kishor, P.B.K.; Hong, Z.; Miao, G.G.; Hu, C.A.A.; Verma, D.P.S. Overexpression of ∆1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 1995, 108, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.C.; Lu, Q.; Verma, D.P.S. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J. Biol. Chem. 1995, 270, 20491–20496. [Google Scholar] [CrossRef]
- Pavei, D.; Gonçalves-Vidigal, M.M.; Schuelter, A.A.; Schuster, I.; Vieira, E.E.; Vendruscolo, E.E.; Poletine, J.J. Response to water stress in transgenic (p5cs gene) wheat plants (Triticum aestivum L.). Aust. J. Crop Sci. 2016, 10, 776. [Google Scholar] [CrossRef]
- Giri, J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef]
- Sakamoto, A.; Murata, N. Genetic engineering of glycinebetaine synthesis in plants: Current status and implications for enhancement of stress tolerance. J. Exp. Bot. 2000, 51, 81–88. [Google Scholar] [CrossRef]
- Wang, G.G.; Hui, Z.; Li, F.; Zhao, M.M.; Zhang, J.; Wang, W. Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnol. Rep. 2010, 4, 213–222. [Google Scholar] [CrossRef]
- He, C.; Zhang, W.; Gao, Q.; Yang, A.; Hu, X.; Zhang, J. Enhancement of drought resistance and biomass by increasing the amount of glycinebetaine in wheat seedlings. Euphytica 2011, 177, 151–167. [Google Scholar] [CrossRef]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Dell’Aversana, E.; Carillo, P. Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses. Front. Plant Sci. 2019, 10, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, F.; Wang, W.; Liang, C.; Wang, X.; Wang, G.; Wang, W. Overaccumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress. Crop J. 2017, 5, 73–82. [Google Scholar] [CrossRef]
- Guo, B.B.; Zhang, Y.Y.; Li, H.H.; Du, L.L.; Li, Y.Y.; Zhang, J.J.; Chen, S.Y.; Zhu, Z.Q. Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Bot. Sin. 2000, 42, 279–283. [Google Scholar]
- Wang, G.P.; Zhang, X.X.; Li, F.; Luo, Y.; Wang, W. Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 2010, 48, 117–126. [Google Scholar] [CrossRef]
- Tarczynski, M.M.; Jensen, R.G.; Bohnert, H.J. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc. Natl. Acad. Sci. USA 1992, 89, 2600–2604. [Google Scholar] [CrossRef] [PubMed]
- Karakas, B.; Ozias-Akins, P.; Stushnoff, C.; Suefferheld, M.; Rieger, M. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ. 1997, 20, 609–616. [Google Scholar] [CrossRef]
- Pujni, D.; Chaudhary, A.; Rajam, M.V. Increased tolerance to salinity and drought in transgenic indica rice by mannitol accumulation. J. Plant Biochem. Biotechnol. 2007, 16, 1–7. [Google Scholar] [CrossRef]
- Thomas, J.J.; Sepahi, M.; Arendall, B.; Bohnert, H.J. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ. 1995, 18, 801–806. [Google Scholar] [CrossRef]
- Bhauso, T.T.; Radhakrishnan, T.; Kumar, A.; Mishra, G.G.; Dobaria, J.J.; Patel, K.; Rajam, M.M. Overexpression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef]
- Maheswari, M.; Varalaxmi, Y.; Vijayalakshmi, A.; Yadav, S.K.; Sharmila, P.; Venkateswarlu, B.; Vanaja, M.; PardhaSardhi, P. Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol. Plant. 2010, 54, 647–652. [Google Scholar] [CrossRef]
- Castiglioni, P.; Warner, D.; Bensen, R.R.; Anstrom, D.D.; Harrison, J.; Stoecker, M.; Abad, M.; Kumar, G.; Salvador, S.; D’Ordine, R.; et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol. 2008, 147, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.T.; Xu, Z.Z.; Guo, J.J.; Wang, Y.Y.; Abernathy, B.; Fu, J.J.; Chen, X.; Zhou, Y.Y.; Chen, M.; Ye, X.X.; et al. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Sci. Rep. 2017, 7, 44050. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Uknes, S.J.; Ho, T.D. Cloning and characterization of a cDNA encoding a mRNA rapidly-induced by ABA in barley aleurone layers. Plant Mol. Biol. 1988, 11, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Babu, R.R.; Zhang, J.J.; Blum, A.; Ho, T.H.D.; Wu, R.; Nguyen, H.T. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci. 2004, 166, 855–862. [Google Scholar] [CrossRef]
- Xiao, B.; Huang, Y.; Tang, N.; Xiong, L. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor. Appl. Genet. 2007, 115, 35–46. [Google Scholar] [CrossRef]
- Sivamani, E.; Bahieldin, A.; Wraith, J.M.; Al-Niemi, T.; Dyer, W.E.; Ho, T.H.D.; Qu, R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 2000, 155, 1–9. [Google Scholar] [CrossRef]
- Bahieldin, A.; Hesham, H.H.; Eissa, H.H.; Saleh, O.O.; Ramadan, A.A.; Ahmed, I.I.; Dyer, W.W.; El-Itriby, H.H.; Madkour, M.A. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol. Plant 2005, 123, 421–427. [Google Scholar] [CrossRef]
- Borg, S.; Brinch-Pedersen, H.; Tauris, B.; Madsen, L.H.; Darbani, B.; Noeparvar, S. Wheat ferritins: Improving the iron content of the wheat grain. J. Cereal Sci. 2012, 56, 204–213. [Google Scholar] [CrossRef]
- Zang, X.; Geng, X.; Wang, F.; Liu, Z.; Zhang, L.; Zhao, Y.; Tian, X.; Ni, Z.; Yao, Y.; Xin, M.; et al. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol. 2017, 17, 14. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, W.; Wang, H.; Hu, L.; Li, Y.; Qi, X.; Zhang, L.; Li, C.; Hua, X. Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. Protoplasma 2014, 251, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Xu, W.; Hu, L.; Li, Y.; Wang, H.; Qi, X.; Fang, Y.; Hua, X. Drought tolerance and proteomics studies of transgenic wheat containing the maize C 4 phosphoenolpyruvate carboxylase (PEPC) gene. Protoplasma 2015, 253, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Vanderbeld, B.; Wan, J.; Huang, Y. Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops. Mol. Plant 2010, 3, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Okay, S.; Derelli, E.; Unver, T. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress. Mol. Genet. Genom. 2014, 289, 765–781. [Google Scholar] [CrossRef] [PubMed]
- Gahlaut, V.; Jaiswal, V.; Kumar, A.; Gupta, P.K. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theor. Appl. Genet. 2016, 129, 2019–2042. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Transgenic approaches for abiotic stress tolerance in plants: Retrospect and prospects. Plant Cell Rep. 2008, 27, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Shi, J.; Kovalchuk, N.; Luang, S.; Bazanova, N.; Chirkova, L.; Zhang, D.; Shavrukov, Y.; Stepanenko, A.; Tricker, P.; et al. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance, and no yield penalty under controlled growth conditions. Plant Cell Environ. 2018, 41, 2549–2566. [Google Scholar] [CrossRef]
- Zhou, S.; Hu, W.; Deng, X.; Ma, Z.; Chen, L.; Huang, C.; Wang, C.; Wang, J.; He, Y.; Yang, G.; et al. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE 2012, 7, e52439. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zheng, M.; Deng, G.; Liang, J.; Zhang, H.; Pan, Z.; Long, H.; Yu, M. Overexpression of AtHDG11 enhanced drought tolerance in wheat (Triticum aestivum L.). Mol. Breed. 2016, 36, 23. [Google Scholar] [CrossRef]
- Jiang, Q.; Sun, X.; Niu, F.; Hu, Z.; Chen, R.; Zhang, H. GmDREB1 overexpression affects the expression of microRNAs in GM wheat seeds. PLoS ONE 2017, 12, e0175924. [Google Scholar] [CrossRef]
- Pellegrineschi, A.; Reynolds, M.; Pacheco, M.; Brito, R.M.; Almeraya, R.; Yamaguchi-Shinozaki, K.; Hoisington, D. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 2004, 47, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Pierre, C.C.; Crossa, J.J.; Bonnett, D.; Yamaguchi-Shinozaki, K.; Reynolds, M.P. Phenotyping transgenic wheat for drought resistance. J. Exp. Bot. 2012, 63, 1799–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.Y.; Zhang, W.W.; He, S.S.; Zhang, J.J.; Liu, Q.; Chen, S.Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet. 2003, 106, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Latini, A.; Rasi, C.; Sperandei, M.; Cantale, C.; Iannetta, M.; Dettori, M.; Ammar, K.; Galeffi, P. Identification of a DREB-related gene in Triticum durum and its expression under water stress conditions. Ann. Appl. Biol. 2007, 150, 187–195. [Google Scholar] [CrossRef]
- Noor, S.; Ali, S.; Ali, G.M. Comparative Study of Transgenic (DREB1A) and Non-transgenic Wheat Lines on Relative Water Content, Sugar, Proline and Chlorophyll under Drought and Salt Stresses. Sarhad J. Agric. 2018, 34, 986–993. [Google Scholar] [CrossRef]
- Bakshi, M.; Oelmüller, R. WRKY transcription factors: Jack of many trades in plants. Plant Signal. Behave. 2014, 9, e27700. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.F.; Wei, W.; Zhou, Q.Y.; Tian, A.G.; Hao, Y.J.; Zhang, W.K.; Ma, B.; Lin, Q.; Zhang, Z.B.; Zhang, J.S.; et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ. 2012, 35, 1156–1170. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Deng, P.; Chen, L.; Wang, X.; Ma, H.; Hu, W.; Yao, N.; Feng, Y.; Chai, R.; Yang, G.; et al. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE 2013, 8, e65120. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Xu, P.; Zhang, Z. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front. Plant Sci. 2018, 9, 997. [Google Scholar] [CrossRef]
- Yu, H.; Chen, X.; Hong, Y.Y.; Wang, Y.; Xu, P.; Ke, S.; Liu, H.; Zhu, J.; Oliver, D.; Xiang, C. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 2008, 20, 1134–1151. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, Q.; Liao, Y.; Song, H.; Li, X.; Xiang, C.; Kuai, B. Ectopic overexpression of AtHDG11 in tall fescue resulted in enhanced tolerance to drought and salt stress. Plant Cell Rep. 2009, 28, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Aharoni, A.; Dixit, S.; Jetter, R.; Thoenes, E.; van Arkel, G.; Pereira, A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 2004, 16, 2463–2480. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Shikata, M.; Koyama, T.; Ohtsubo, N.; Mitsuda, N.; Ohme-Takagi, M. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 2013, 25, 1609–1624. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Zhang, H.; Qian, X.; Li, A.; Zhang, G.; Jing, R. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J. Exp. Bot. 2012, 63, 2933–2946. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Sharoni, A.M.; Kikuchi, S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 2013, 4, 248. [Google Scholar] [CrossRef] [Green Version]
- Xue, G.G.; Way, H.H.; Richardson, T.; Drenth, J.; Joyce, P.A.; McIntyre, C.L. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol. Plant 2011, 4, 697–712. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, X.; Jin, S.; Liu, X.; Zhu, L.; Nie, Y.; Zhang, X. Overexpression of Rice NAC Gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE 2014, 9, e86895. [Google Scholar] [CrossRef]
- Xue, G.G.; Bower, N.N.; McIntyre, C.C.; Riding, G.G.; Kazan, K.; Shorter, R. TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Funct. Plant Biol. 2006, 33, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Liu, M.; Gao, S.; Zhang, Z.; Zhao, X.; Zhao, C.; Zhang, F.; Chen, X. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol. Plant 2012, 144, 210–224. [Google Scholar] [CrossRef]
- Xu, D.B.; Gao, S.Q.; Ma, Y.Z.; Xu, Z.S.; Zhao, C.P.; Tang, Y.M.; Li, X.Y.; Li, L.C.; Chen, Y.F.; Chen, M. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants. Funct. Integr. Genom. 2014, 14, 717–730. [Google Scholar] [CrossRef]
- Luang, S.; Sornaraj, P.; Bazanova, N.; Jia, W.; Eini, O.; Hussain, S.S.; Kovalchuk, N.; Agarwal, P.; Hrmova, M.; Lopato, S. The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase. Plant Mol. Biol. 2018, 96, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Guerra, D.; Crosatti, C.; Khoshro, H.; Mastrangelo, A.; Mica, E.; Mazzucotelli, E. Post-transcriptional and post-translational regulations of drought and heat response in plants: A spider’s web of mechanisms. Front. Plant Sci. 2015, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.; Murtas, G.; Dash, S.; Coupland, G. Early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC. Development 2002, 129, 5349–5361. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Zhang, C.; Caine, R.; Gray, J.; Sadanandom, A. Rice SUMO protease overly tolerant to Salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice. Plant J. 2007, 92, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, M.L.; Kunert, K.J.; van der Vyver, C.; Cullis, C.A.; Botha, A.M. Expression of a Small Ubiquitin-Like Modifier Protease Increases Drought Tolerance in Wheat (Triticum aestivum L.). Front. Plant Sci. 2019, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Hrabak, E.E.; Chan, C.C.; Gribskov, M.; Harper, J.J.; Choi, J.J.; Halford, N.; Kudla, J.; Luan, S.; Nimmo, H.G.; Sussman, M.R.; et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 2003, 132, 666–680. [Google Scholar] [CrossRef]
- Krugman, T.; Chague, V.; Peleg, Z.; Balzergue, S.; Just, J.; Korol, A.A.; Nevo, E.; SarangaBoulos, Y.; Tzion, C.; Fahima, T. Multilevel regulation and signalling processes associated with adaptation to terminal drought in wild emmer wheat. Funct. Integr. Genom. 2010, 10, 167–186. [Google Scholar] [CrossRef]
- Zang, X.; Geng, X.; He, K.; Wang, F.; Tian, X.; Ni, Z.; Yao, Y.; Hu, Z.; Xin, M.; Sun, Q.; et al. Overexpression of the wheat (Triticum aestivum L.) TaPEPKR2 gene enhances heat and dehydration tolerance in both wheat and Arabidopsis. Front. Plant Sci. 2018, 9, 1710. [Google Scholar] [CrossRef]
- Mo, C.; Wan, S.; Xia, Y.; Ren, N.; Zhou, Y.; Jiang, X. Expression patterns and identified protein-protein interactions suggest that cassava CBL-CIPK signal networks function in responses to abiotic stresses. Front. Plant Sci. 2018, 9, 269. [Google Scholar] [CrossRef]
- Cui, X.X.; Du, Y.Y.; Fu, J.J.; Yu, T.T.; Wang, C.C.; Chen, M.; Chen, J.; Ma, Y.Y.; Xu, Z.Z. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Boil. 2018, 18, 93. [Google Scholar] [CrossRef]
- Petroni, K.; Kumimoto, R.W.; Gnesutta, N.; Calvenzani, V.; Fornari, M.; Tonelli, C.; Holt, B.F., III; Mantovani, R. The promiscuous life of plant Nuclear factor Y transcription factors. Plant Cell 2012, 24, 4777–4792. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; He, X.; Wang, J.; Zhao, Y.; Teng, W.; Shao, A.; Zhao, X.; Ma, W.; Wang, J.; Li, B.; et al. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Plant Physiol. 2015, 167, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.D.; Repetti, P.P.; Adams, T.T.; Creelman, R.R.; Wu, J.; Warner, D.D.; Anstrom, D.D.; Bensen, R.R.; Castiglioni, P.P.; Donnarummo, M.G.; et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc. Natl. Acad. Sci. USA 2007, 104, 16450–16455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, D.; Shavrukov, Y.; Bazanova, N.; Chirkova, L.; Borisjuk, N.; Kovalchuk, N.; Ismagul, A.; Parent, B.; Langridge, P.; Hrmova, M.; et al. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield. J. Exp. Bot. 2015, 66, 6635–6650. [Google Scholar] [CrossRef] [PubMed]
- Fehér-Juhász, E.; Majer, P.; Sass, L.; Lantos, C.; Csiszár, J.; Turóczy, Z.; Mihály, R.; Mai, A.; Horváth, G.G.; Vass, I.; et al. Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. Acta Physiol. Plant. 2014, 36, 663–673. [Google Scholar] [CrossRef]
- Alotaibi, S.; Alyasi, H.; El-Shehawi, A.; Gaber, A.; Hassan, M.; Simkin, B.A.A.; Raines, C. Functional analysis of SBPase gene promoter in transgenic wheat under abiotic stresses. Biotechnology 2019, 18, 15–23. [Google Scholar] [CrossRef]
- El-Esawi, M.M.; Al-Ghamdi, A.A.; Ali, H.M.; Ahmad, M. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes 2019, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Amalraj, A.; Luang, S.; Kumar, M.M.; Sornaraj, P.; Eini, O.; Kovalchuk, N.; Bazanova, N.; Li, Y.; Yang, N.; Eliby, S.; et al. Change of function of the wheat stress-responsive transcriptional repressor Ta RAP 2.1 L by repressor motif modification. Plant Biotechnol. J. 2016, 14, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Morran, S.; Eini, O.; Pyvovarenko, T.; Parent, B.; Singh, R.; Ismagul, A.; Eliby, S.; Shirley, N.; Langridge, P.; Lopato, S. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol. J. 2011, 9, 230–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Yang, F.F.; Chen, X.X.; Liang, R.R.; Zhang, L.L.; Geng, D.D.; Zhang, X.X.; Song, Y.Y.; Zhang, G.S. Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genet. Sin. 2006, 33, 468–476. [Google Scholar] [CrossRef]
- Montenegro, J.J.; Golicz, A.A.; Bayer, P.P.; Hurgobin, B.; Lee, H.; Chan, C.K.K.; Visendi, P.; Lai, K.; Doležel, J.; Batley, J.; et al. The pangenome of hexaploid bread wheat. Plant J. 2017, 90, 1007–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appels, R.; Eversole, K.; Feuillet, C.; Keller, B.; Rogers, J.; Stein, N.; Pozniak, C.C.; Choulet, F.; Distelfeld, A.; Poland, J.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar] [PubMed]
- Passioura, J.B. Phenotyping for drought tolerance in grain crops: When is it useful to breeders? Functional Plant Biol. 2012, 39, 851–859. [Google Scholar] [CrossRef]
- Kovalchuk, N.; Chew, W.; Sornaraj, P.; Borisjuk, N.; Yang, N.; Singh, R.; Bazanova, N.; Shavrukov, Y.; Guendel, A.; Munz, E.; et al. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley. New Phytol. 2016, 211, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Luang, S.; Harris, J.; Riboni, M.; Li, Y.; Bazanova, N.; Hrmova, M.; Haefele, S.; Kovalchuk, N.; Lopato, S. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. Plant Biotechnol. J. 2018, 16, 1227–1240. [Google Scholar] [CrossRef] [PubMed]
- Orroño, D.D.; Vesprini, F. Directives and requirements for genetically modified (GM) crop regulation in Argentina. Crop Breed. Appl. Biotechnol. 2018, 18, 301–308. [Google Scholar] [CrossRef]
Transgene | Transgenic Recipient | Source | Improved Traits | References |
---|---|---|---|---|
TaWRKY2 | Fielder, a spring Triticum aestivum cultivar | Xifeng20, a drought tolerant wheat | Higher survival rate, proline, soluble sugar and chlorophyll. | [70] |
calcineurin B-like protein (CBL)-interacting protein kinase CIPK23 | Fielder, a Triticum aestivum cultivar | Triticum aestivum cultivar Xiaobaimai | Higher survival rate, increased osmolytes, induction of stomatal closure, enhanced ABA sensitivity. | [91] |
aldose reductase gene MsALR | CY-45, a spring Triticum aestivum cultivar | Alfalfa | Higher detoxification activity for the aldehyde substrate; higher biomass and seed weight. | [96] |
HVA1 | Hi-Line, a spring Triticum aestivum cultivar | Barley | Improved biomass and water use efficiency. | [48] |
HVA1 | Hi-Line, a spring Triticum aestivum cultivar | Barley | Higher plant height, total biomass and grain yield. | [49] |
Mannitol-1-phosphate dehydrogenase mtlD | Bobwhite, Triticum aestivum cultivar | Escherichia coli | Improved biomass, mannitol accumulation. | [18] |
betA encoding choline dehydrogenase | Jinan 17, Triticum aestivum cultivar | Escherichia coli | Accumulation of glycinebetaine. | [32] |
Betaine aldehyde dehydrogenase, BADH | Triticum aestivum | Atriplex hortensis | Higher BADH activity, show normal growth. | [35] |
Betaine aldehyde dehydrogenase, BADH | Line (T6), from Shi4185 line | Atriplex hortensis | Accumulation of glycinebetaine. | [31] |
Betaine aldehyde dehydrogenase, BADH | Line (T6), from Shi4185 line | Atriplex hortensis | Decreased PSII photoinhibition. | [36] |
GmDREB | Lumai22, Triticum aestivum cultivar | Glycine max cultivar Jinong27 | Improved drought tolerance with more leaves, roots and high soluble sugar contents. | [17] |
Δ1-pyrroline-5 carboxylate synthetase, P5CS | CD200126, Triticum aestivum cultivar | Vigna aconitifolia | Proline biosynthesis. | [19] |
Δ1-pyrroline-5 carboxylate synthetase, P5cs | Triticum aestivum | Triticum aestivum | Proline accumulation. | [28] |
DREB1A | bread wheat | Arabidopsis thaliana | More branched root phenotype higher total number of heads, enhance drought tolerance. | [62] |
sedoheptulose-1, 7-bisphosphatase SBPase | Line (T2) from cultivar Cadenza | Brachypodium distachyon | SBPase promoter fully drive the GUS expression. | [97] |
HaHB4 | cv. Cadenza | Sunflower | Increased yield and water use efficiency. | [16] |
AtWRKY30 | Sakha-61 genotype, Triticum aestivum | Arabidopsis thaliana | Higher biomass, photosynthesis, relative water content, prolines, soluble proteins, soluble sugars, and antioxidant enzymes activities. | [98] |
AtHDG11 | Chinese Spring, Triticum aestivum | Arabidopsis thaliana | More yield, higher proline content and photosynthesis, lower stomatal density, lower water loss rate, and increased activities of catalase and superoxide dismutase. | [60] |
cold shock protein gene SeCspA | cultivar KN199, winter wheat | Escherichia coli | Higher proline, grain weight and grain yield, less reduction in chlorophyll, low MDA content. | [44] |
ferritin gene, TaFER-5B | Jimai5265, wheat cultivar | wheat cultivar, TAM107 | Improved leaf iron content and ROS, enhanced drought and temperature tolerance. | [51] |
phosphoenolpyruvate carboxylase kinase-related kinase gene, TaPEPKR2 | Liaochun10, wheat cultivar | wheat cultivar, TAM107 | Enhanced drought tolerance, higher root length. | [89] |
TaSHN1 | Triticum aestivum cultivar Gladius | Australian drought tolerant genotype RAC875 | Lower stomatal density and leaf water loss, and improved recovery after severe drought. | [58] |
TaNF-YB4 | Triticum aestivum cultivar Gladius | Triticum aestivum cultivar RAC875 | More spikes. | [95] |
DREB/CBF gene TaRAP2.1Lmut | Triticum aestivum cultivar Gladius | Triticum aestivum cultivar RAC785 | Enhanced ability to survive frost and drought. | [99] |
OTS1, overly tolerant to salt-1 | Triticum aestivum Gamtoos-R | Arabidopsis thaliana | Delayed senescence, higher relative water content, photosynthesis and antioxidants. | [86] |
TaNAC69 | Triticum aestivum cultivar Bobwhite | Triticum aestivum | More root biomass, longer roots. | [77] |
TabZIP2 | Triticum aestivum cultivar Gladius | Triticum aestivum cultivar RAC875 | Fewer spikes and seeds, increased single seed weight. | [82] |
DREB | Triticum aestivum cultivar Bobwhite | Triticum durum L. cultivar Langdon | Improved survival, slow growth, delayed flowering, less grain yield. | [100] |
DREB | Triticum aestivum cultivar 8901, 5–98, 99–92, Baofeng 104 | Arabidopsis thaliana | Still green after 15 d withholding water, high proline contents. | [101] |
PEPC | Triticum aestivum cultivar Zhoumai19 | Maize | Higher proline, soluble sugar and water use efficiency. | [53] |
CspA and CspB | Triticum aestivum cultivar KN199 | Escherichia coli | Lower water loss rate and MDA content, higher chlorophyll, proline and yield. | [44] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Anwar, S.; Yu, S.; Sun, M.; Yang, Z.; Gao, Z.-q. Development of Drought-Tolerant Transgenic Wheat: Achievements and Limitations. Int. J. Mol. Sci. 2019, 20, 3350. https://doi.org/10.3390/ijms20133350
Khan S, Anwar S, Yu S, Sun M, Yang Z, Gao Z-q. Development of Drought-Tolerant Transgenic Wheat: Achievements and Limitations. International Journal of Molecular Sciences. 2019; 20(13):3350. https://doi.org/10.3390/ijms20133350
Chicago/Turabian StyleKhan, Shahbaz, Sumera Anwar, Shaobo Yu, Min Sun, Zhenping Yang, and Zhi-qiang Gao. 2019. "Development of Drought-Tolerant Transgenic Wheat: Achievements and Limitations" International Journal of Molecular Sciences 20, no. 13: 3350. https://doi.org/10.3390/ijms20133350
APA StyleKhan, S., Anwar, S., Yu, S., Sun, M., Yang, Z., & Gao, Z. -q. (2019). Development of Drought-Tolerant Transgenic Wheat: Achievements and Limitations. International Journal of Molecular Sciences, 20(13), 3350. https://doi.org/10.3390/ijms20133350