Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates
Abstract
:1. Introduction
2. Results
2.1. Cytotoxic Effects of Ciprofloxacin on Parental and ABCB1-Overexpressing Cells
2.2. Effect of Ciprofloxacin on the Drug Sensitivity of ABCB1-Overexpressing Cells
2.3. Effect of Ciprofloxacin on the Intracellular Accumulation of [3H]-Paclitaxel
2.4. Effect of Ciprofloxacin on the Efflux of [3H]-Paclitaxel
2.5. Effect of Ciprofloxacin on the Expression of ABCB1
2.6. Effect of Ciprofloxacin on the ATPase Activity of ABCB1
2.7. Docking
3. Discussion
4. Material and Methods
4.1. Reagents
4.2. Cell Lines and Cell Culture
4.3. MTT Assay
4.4. [3H]-Paclitaxel Accumulation Assay
4.5. [3H]-Paclitaxel Efflux Assay
4.6. Preparation of Total Cell Lysate
4.7. Western Blotting
4.8. ATPase Assay
4.9. Molecular Modeling
4.10. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, Y.F.; Zhang, W.; Zeng, L.; Lei, Z.N.; Cai, C.Y.; Gupta, P.; Yang, D.H.; Cui, Q.; Qin, Z.D.; Chen, Z.S.; et al. Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters. Cancer Lett. 2018. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Wang, Y.J.; Gupta, P.; Chen, Z.S. Multidrug Resistance Proteins (MRPs) and Cancer Therapy. AAPS J. 2015, 17, 802–812. [Google Scholar] [CrossRef] [Green Version]
- Cui, Q.; Wang, J.Q.; Assaraf, Y.G.; Ren, L.; Gupta, P.; Wei, L.; Ashby, C.R.; Yang, D.H.; Chen, Z.S. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updat. 2018, 41, 1–25. [Google Scholar] [CrossRef]
- Anreddy, N.; Gupta, P.; Kathawala, R.J.; Patel, A.; Wurpel, J.N.; Chen, Z.S. Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 2014, 19, 13848–13877. [Google Scholar] [CrossRef]
- Gupta, P.; Jani, K.A.; Yang, D.H.; Sadoqi, M.; Squillante, E.; Chen, Z.S. Revisiting the role of nanoparticles as modulators of drug resistance and metabolism in cancer. Expert Opin. Drug Metab. Toxicol. 2016, 12, 281–289. [Google Scholar] [CrossRef]
- Kathawala, R.J.; Gupta, P.; Ashby, C.R.; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat. 2015, 18, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, Y.K.; Zhang, G.N.; Al Rihani, S.B.; Wei, M.N.; Gupta, P.; Zhang, X.Y.; Shukla, S.; Ambudkar, S.V.; Kaddoumi, A.; et al. Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: In vitro and in vivo study. Cancer Lett. 2017, 396, 145–154. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, Y.K.; Wang, Y.J.; Gupta, P.; Zeng, L.; Xu, M.; Wang, X.Q.; Yang, D.H.; Chen, Z.S. Osimertinib (AZD9291), a Mutant-Selective EGFR Inhibitor, Reverses ABCB1-Mediated Drug Resistance in Cancer Cells. Molecules 2016, 21, 1236. [Google Scholar] [CrossRef]
- Zhang, G.N.; Zhang, Y.K.; Wang, Y.J.; Gupta, P.; Ashby, C.R.; Alqahtani, S.; Deng, T.; Bates, S.E.; Kaddoumi, A.; Wurpel, J.N.D.; et al. Epidermal growth factor receptor (EGFR) inhibitor PD153035 reverses ABCG2-mediated multidrug resistance in non-small cell lung cancer: In vitro and in vivo. Cancer Lett. 2018, 424, 19–29. [Google Scholar] [CrossRef]
- Gujarati, N.A.; Zeng, L.; Gupta, P.; Chen, Z.S.; Korlipara, V.L. Design, synthesis and biological evaluation of benzamide and phenyltetrazole derivatives with amide and urea linkers as BCRP inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 4698–4704. [Google Scholar] [CrossRef]
- Gupta, P.; Zhang, Y.K.; Zhang, X.Y.; Wang, Y.J.; Lu, K.W.; Hall, T.; Peng, R.; Yang, D.H.; Xie, N.; Chen, Z.S. Voruciclib, a Potent CDK4/6 Inhibitor, Antagonizes ABCB1 and ABCG2-Mediated Multi-Drug Resistance in Cancer Cells. Cell. Physiol. Biochem. 2018, 45, 1515–1528. [Google Scholar] [CrossRef] [Green Version]
- Anreddy, N.; Patel, A.; Zhang, Y.K.; Wang, Y.J.; Shukla, S.; Kathawala, R.J.; Kumar, P.; Gupta, P.; Ambudkar, S.V.; Wurpel, J.N.; et al. A-803467, a tetrodotoxin-resistant sodium channel blocker, modulates ABCG2-mediated MDR in vitro and in vivo. Oncotarget 2015, 6, 39276–39291. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Xie, M.; Narayanan, S.; Wang, Y.J.; Wang, X.Q.; Yuan, T.; Wang, Z.; Yang, D.H.; Chen, Z.S. GSK1904529A, a Potent IGF-IR Inhibitor, Reverses MRP1-Mediated Multidrug Resistance. J. Cell. Biochem. 2017, 118, 3260–3267. [Google Scholar] [CrossRef]
- Shukla, S.; Chen, Z.S.; Ambudkar, S.V. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist. Updat. 2012, 15, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Beretta, G.L.; Cassinelli, G.; Pennati, M.; Zuco, V.; Gatti, L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur. J. Med. Chem. 2017, 142, 271–289. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D.H.; Chen, Z.S. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updat. 2016, 27, 14–29. [Google Scholar] [CrossRef]
- Gupta, P.; Kathawala, R.J.; Wei, L.; Wang, F.; Wang, X.; Druker, B.J.; Fu, L.W.; Chen, Z.S. PBA2, a novel inhibitor of imatinib-resistant BCR-ABL T315I mutation in chronic myeloid leukemia. Cancer Lett. 2016, 383, 220–229. [Google Scholar] [CrossRef]
- Wen, Y.; Zhao, R.Q.; Zhang, Y.K.; Gupta, P.; Fu, L.X.; Tang, A.Z.; Liu, B.M.; Chen, Z.S.; Yang, D.H.; Liang, G. Effect of Y6, an epigallocatechin gallate derivative, on reversing doxorubicin drug resistance in human hepatocellular carcinoma cells. Oncotarget 2017, 8, 29760–29770. [Google Scholar] [CrossRef]
- Schrickx, J.A.; Fink-Gremmels, J. Danofloxacin-mesylate is a substrate for ATP-dependent efflux transporters. Br. J. Pharmacol. 2007, 150, 463–469. [Google Scholar] [CrossRef]
- Bharate, J.B.; Singh, S.; Wani, A.; Sharma, S.; Joshi, P.; Khan, I.A.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B. Discovery of 4-acetyl-3-(4-fluorophenyl)-1-(p-tolyl)-5-methylpyrrole as a dual inhibitor of human P-glycoprotein and Staphylococcus aureus Nor A efflux pump. Org. Biomol. Chem. 2015, 13, 5424–5431. [Google Scholar] [CrossRef]
- Yuan, Z.; Shi, X.; Qiu, Y.; Jia, T.; Yuan, X.; Zou, Y.; Liu, C.; Yu, H.; Yuan, Y.; He, X.; et al. Reversal of P-gp-mediated multidrug resistance in colon cancer by cinobufagin. Oncol. Rep. 2017, 37, 1815–1825. [Google Scholar] [CrossRef]
- Li, Y.S.; Zhao, D.S.; Liu, X.Y.; Liao, Y.X.; Jin, H.W.; Song, G.P.; Cui, Z.N. Synthesis and biological evaluation of 2,5-disubstituted furan derivatives as P-glycoprotein inhibitors for Doxorubicin resistance in MCF-7/ADR cell. Eur. J. Med. Chem. 2018, 151, 546–556. [Google Scholar] [CrossRef]
- Li, S.; Yuan, S.; Zhao, Q.; Wang, B.; Wang, X.; Li, K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed. Pharmacother. 2018, 100, 441–447. [Google Scholar] [CrossRef]
- Naqvi, S.A.R.; Roohi, S.; Iqbal, A.; Sherazi, T.A.; Zahoor, A.F.; Imran, M. Ciprofloxacin: From infection therapy to molecular imaging. Mol. Biol. Rep. 2018, 45, 1457–1468. [Google Scholar] [CrossRef]
- Zhang, G.F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem. 2018, 146, 599–612. [Google Scholar] [CrossRef]
- Park, M.S.; Okochi, H.; Benet, L.Z. Is Ciprofloxacin a Substrate of P-glycoprotein? Arch. Drug Inf. 2011, 4, 1–9. [Google Scholar] [CrossRef]
- Michot, J.M.; Van Bambeke, F.; Mingeot-Leclercq, M.P.; Tulkens, P.M. Active efflux of ciprofloxacin from J774 macrophages through an MRP-like transporter. Antimicrob. Agents Chemother. 2004, 48, 2673–2682. [Google Scholar] [CrossRef]
- Beberok, A.; Wrześniok, D.; Rok, J.; Rzepka, Z.; Respondek, M.; Buszman, E. Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway. Int. J. Oncol. 2018. [Google Scholar] [CrossRef]
- Jaber, D.F.; Jallad, M.N.; Abdelnoor, A.M. The effect of ciprofloxacin on the growth of B16F10 melanoma cells. J. Cancer Res. Ther. 2017, 13, 956–960. [Google Scholar] [CrossRef]
- Kloskowski, T.; Gurtowska, N.; Nowak, M.; Joachimiak, R.; Bajek, A.; Olkowska, J.; Drewa, T. The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro. Acta Pol. Pharm. 2011, 68, 859–865. [Google Scholar] [CrossRef]
- Yadav, V.; Varshney, P.; Sultana, S.; Yadav, J.; Saini, N. Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer 2015, 15, 581. [Google Scholar] [CrossRef]
- De Vera, A.A.; Gupta, P.; Lei, Z.; Liao, D.; Narayanan, S.; Teng, Q.; Reznik, S.E.; Chen, Z.S. Immuno-oncology agent IPI-549 is a modulator of P-glycoprotein (P-gp, MDR1, ABCB1)-mediated multidrug resistance (MDR) in cancer: In vitro and in vivo. Cancer Lett. 2018, 442, 91–103. [Google Scholar] [CrossRef]
- Ji, N.; Yang, Y.; Lei, Z.N.; Cai, C.Y.; Wang, J.Q.; Gupta, P.; Xian, X.; Yang, D.H.; Kong, D.; Chen, Z.S. Ulixertinib (BVD-523) antagonizes ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Biochem. Pharmacol. 2018, 158, 274–285. [Google Scholar] [CrossRef]
- Ji, N.; Yang, Y.; Cai, C.Y.; Lei, Z.N.; Wang, J.Q.; Gupta, P.; Teng, Q.X.; Chen, Z.S.; Kong, D.; Yang, D.H. VS-4718 Antagonizes Multidrug Resistance in ABCB1- and ABCG2-Overexpressing Cancer Cells by Inhibiting the Efflux Function of ABC Transporters. Front. Pharmacol. 2018, 9, 1236. [Google Scholar] [CrossRef]
- Ambudkar, S.V. Drug-stimulatable ATPase activity in crude membranes of human MDR1-transfected mammalian cells. Methods Enzymol. 1998, 292, 504–514. [Google Scholar]
- Ozvegy-Laczka, C.; Hegedus, T.; Várady, G.; Ujhelly, O.; Schuetz, J.D.; Váradi, A.; Kéri, G.; Orfi, L.; Német, K.; Sarkadi, B. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol. Pharmacol. 2004, 65, 1485–1495. [Google Scholar] [CrossRef]
- Deng, W.; Dai, C.L.; Chen, J.J.; Kathawala, R.J.; Sun, Y.L.; Chen, H.F.; Fu, L.W.; Chen, Z.S. Tandutinib (MLN518) reverses multidrug resistance by inhibiting the efflux activity of the multidrug resistance protein 7 (ABCC10). Oncol. Rep. 2013, 29, 2479–2485. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, P.; Tao, H.; McGrath, A.P.; Villaluz, M.; Rees, S.D.; Lee, S.C.; Doshi, R.; Urbatsch, I.L.; Zhang, Q.; Chang, G. Snapshots of ligand entry, malleable binding and induced helical movement in P-glycoprotein. Acta Crystallogr. D Biol. Crystallogr. 2015, 71, 732–741. [Google Scholar] [CrossRef]
- Patel, B.A.; Abel, B.; Barbuti, A.M.; Velagapudi, U.K.; Chen, Z.S.; Ambudkar, S.V.; Talele, T.T. Comprehensive Synthesis of Amino Acid-Derived Thiazole Peptidomimetic Analogues to Understand the Enigmatic Drug/Substrate-Binding Site of P-Glycoprotein. J. Med. Chem. 2018, 61, 834–864. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
Compounds | SW620 | SW620/AD300 | ||
---|---|---|---|---|
IC50 ± SD a (μM) | FR b | IC50 ± SD a (μM) | FR b | |
Paclitaxel | 0.08 ± 0.01 | [1.0] | 27.38 ± 2.51 | [342.2] |
+ Ciprofloxacin 1 μM | 0.09 ± 0.02 | [1.1] | 19.58 ± 1.86 | [244.7] |
+ Ciprofloxacin 5 μM | 0.08 ± 0.01 | [1.0] | 5.71 ± 0.48 | [71.3] c |
+ Ciprofloxacin 10 μM | 0.07 ± 0.01 | [0.8] | 0.81 ± 0.03 | [10.1] c |
+ Verapamil 10 μM | 0.06 ± 0.01 | [0.7] | 0.92 ± 0.04 | [11.5] c |
Vincristine | 0.07 ± 0.02 | [1.0] | 16.44 ± 1.22 | [234.8] |
+ Ciprofloxacin 1 μM | 0.07 ± 0.01 | [1.0] | 10.21 ± 0.99 | [145.8] |
+ Ciprofloxacin 5 μM | 0.06 ± 0.01 | [0.8] | 3.89 ± 0.24 | [55.5] c |
+ Ciprofloxacin 10 μM | 0.05 ± 0.01 | [0.7] | 0.63 ± 0.03 | [9.0] c |
+ Verapamil 10 μM | 0.06 ± 0.02 | [0.8] | 0.69 ± 0.04 | [9.8] c |
Cisplatin | 2.23 ± 0.08 | [1.0] | 2.49 ± 0.09 | [1.1] |
+ Ciprofloxacin 1 μM | 2.04 ± 0.09 | [0.9] | 2.51 ± 0.12 | [1.1] |
+ Ciprofloxacin 5 μM | 2.17 ± 0.13 | [0.9] | 2.39 ± 0.19 | [1.0] |
+ Ciprofloxacin 10 μM | 2.54 ± 0.09 | [1.1] | 2.78 ± 0.15 | [1.2] |
+ Verapamil 10 μM | 2.69 ± 0.11 | [1.2] | 2.84 ± 0.14 | [1.2] |
Compounds | HEK293/pcDNA3.1 | HEK/ABCB1 | ||
---|---|---|---|---|
IC50 ± SD a (μM) | FR b | IC50 ± SD a (μM) | FR b | |
Paclitaxel | 0.07 ± 0.01 | [1.0] | 3.48 ± 0.31 | [49.7] |
+ Ciprofloxacin 1 μM | 0.06 ± 0.03 | [0.8] | 1.83 ± 0.12 | [26.1] |
+ Ciprofloxacin 5 μM | 0.06 ± 0.02 | [0.8] | 0.72 ± 0.04 | [10.2] c |
+ Ciprofloxacin 10 μM | 0.05 ± 0.01 | [0.7] | 0.24 ± 0.03 | [3.42] c |
+ Verapamil 10 μM | 0.08 ± 0.01 | [1.1] | 0.22 ± 0.04 | [3.14] c |
Vincristine | 0.04 ± 0.01 | [1.0] | 1.51 ± 0.08 | [37.7] |
+ Ciprofloxacin 1 μM | 0.05 ± 0.02 | [1.2] | 1.02 ± 0.06 | [25.5] |
+ Ciprofloxacin 5 μM | 0.04 ± 0.01 | [1] | 0.63 ± 0.03 | [15.7] c |
+ Ciprofloxacin 10 μM | 0.04 ± 0.01 | [1] | 0.11 ± 0.03 | [2.7] c |
+ Verapamil 10 μM | 0.05 ± 0.02 | [1.2] | 0.09 ± 0.04 | [2.2] c |
Cisplatin | 1.38 ± 0.16 | [1.0] | 1.59 ± 0.08 | [1.1] |
+ Ciprofloxacin 1 μM | 1.25 ± 0.09 | [0.9] | 1.29 ± 0.10 | [0.9] |
+ Ciprofloxacin 5 μM | 1.18 ± 0.13 | [0.8] | 1.32 ± 0.11 | [0.9] |
+ Ciprofloxacin 10 μM | 1.31 ± 0.22 | [0.9] | 1.44 ± 0.08 | [1.0] |
+ Verapamil 10 μM | 1.42 ± 0.15 | [1.0] | 1.33 ± 0.09 | [0.9] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, P.; Gao, H.-L.; Ashar, Y.V.; Karadkhelkar, N.M.; Yoganathan, S.; Chen, Z.-S. Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates. Int. J. Mol. Sci. 2019, 20, 268. https://doi.org/10.3390/ijms20020268
Gupta P, Gao H-L, Ashar YV, Karadkhelkar NM, Yoganathan S, Chen Z-S. Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates. International Journal of Molecular Sciences. 2019; 20(2):268. https://doi.org/10.3390/ijms20020268
Chicago/Turabian StyleGupta, Pranav, Hai-Ling Gao, Yunali V. Ashar, Nishant M. Karadkhelkar, Sabesan Yoganathan, and Zhe-Sheng Chen. 2019. "Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates" International Journal of Molecular Sciences 20, no. 2: 268. https://doi.org/10.3390/ijms20020268
APA StyleGupta, P., Gao, H. -L., Ashar, Y. V., Karadkhelkar, N. M., Yoganathan, S., & Chen, Z. -S. (2019). Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates. International Journal of Molecular Sciences, 20(2), 268. https://doi.org/10.3390/ijms20020268