Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis
Abstract
:1. Introduction
1.1. Characteristics
1.2. Current Therapeutics
1.3. Limitations and Unmet Medical Needs
2. Part I: Immunopathogenic Mechanisms in RA
2.1. Role of Innate and Adaptive Immune Cells
Primary Immune Cells: Macrophages, Neutrophils, and Dendritic Cells in RA
2.2. Dendritic Cells in RA
2.2.1. T-Cells, B-Cells, and Cytokine Milieu in RA
2.2.2. B-Cells in RA
2.2.3. Immune-Mediated Inflammatory Milieu in RA
3. Part II: Current Immune Target Therapy and on-Going Immune-Modulated Therapy in RA
3.1. B-Cell Targeting Therapy
3.2. Anti-TNF-α Therapy
3.3. Anti-IL-12/IL-23 Therapy
3.4. Anti-IL6 Signaling Therapy
3.5. Anti-Cytotoxic T-Lymphocyte–Associated Antigen 4 Therapy
3.6. Tolerogenic Dendritic Cells in RA
4. Clinical Trials and the Spotlight for RA in the Future
4.1. MicroRNA
4.2. PI3Kγ Inhibitors
4.3. Histamine H4
4.4. Histone Deacetylase (HDAC)
4.5. Cadherins
4.6. LHRH (Luteinizing Hormone-Releasing Hormone)
4.7. MMP-9
4.8. CX3C Ligand 1
4.9. Toll-Like Receptors (TLRs)-TLR4
4.10. Inflammasomes
5. Conclusions
5.1. Challenge: Lessons from Targeted Interventions
5.2. Potential Targets for RA in the Future
Funding
Conflicts of Interest
Abbreviations
ACPA | anticitrullinated protein antibody |
TNFi | tumor necrosis factor inhibitor |
APC | antigen-presenting cell |
CRT | calreticulin |
CIA | collagen-induced arthritis |
DMARDs | disease-modifying antirheumatic drugs |
csDMARD | conventional synthetic DMARD |
tsDMARD | targeted synthetic DMARD |
JAK | Janus kinase |
MMP | matrix metalloproteinase |
M1 | type 1 macrophage |
M2 | type 2 macrophage |
miRNA | microRNA |
MSC | mesenchymal stem cell |
NLRP3 | nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 |
RA | rheumatoid arthritis |
RANKL | receptor activator of NF-kappa B ligand; |
ROS | reactive oxygen species |
TNF-α | tumor necrosis factor-α |
Th | T helper |
TGF-β | tumor growth factor-β |
Treg | regulatory T-cell |
VEGF | vascular endothelial growth factor |
References
- Silman, A.J.; Pearson, J.E. Epidemiology andgenetics of rheumatoid arthritis. Arthritis Res. 2002, 4, S265–S272. [Google Scholar] [CrossRef]
- Aletaha, D.; Smolen, J.S. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; van der Heijde, D.; Machold, K.P.; Aletaha, D.; Landewe, R. Proposal fora new nomenclature of disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 2014, 73, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Landewe, R.; Bijlsma, J.; Burmester, G.; Chatzidionysiou, K.; Dougados, M.; Nam, J.; Ramiro, S.; Voshaar, M.; van Vollenhoven, R.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann. Rheum. Dis. 2017, 76, 960–977. [Google Scholar] [CrossRef] [Green Version]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef] [Green Version]
- Holmdahl, R.; Malmstrom, V.; Burkhardt, H. Autoimmune priming, tissue attack and chronic inflammation—The three stages of rheumatoid arthritis. Eur. J. Immunol. 2014, 44, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Harre, U.; Schett, G. Cellular and molecular pathways of structural damage in rheumatoid arthritis. Semin. Immunopathol. 2017, 39, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Mateen, S.; Zafar, A.; Moin, S.; Khan, A.Q.; Zubair, S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin. Chim. Acta 2016, 455, 161–171. [Google Scholar] [CrossRef]
- Cohen, E.; Nisonoff, A.; Hermes, P.; Norcross, B.M.; Lockie, L.M. Agglutination of sensitized alligator erythrocytes by rheumatoid factor(s). Nature 1961, 190, 552–553. [Google Scholar] [CrossRef]
- Scherer, H.U.; Huizinga, T.W.J.; Kronke, G.; Schett, G.; Toes, R.E.M. The B cell response to citrullinated antigens in the development of rheumatoid arthritis. Nat. Rev. Rheumatol. 2018, 14, 157–169. [Google Scholar] [CrossRef]
- Vande Walle, L.; Van Opdenbosch, N.; Jacques, P.; Fossoul, A.; Verheugen, E.; Vogel, P.; Beyaert, R.; Elewaut, D.; Kanneganti, T.D.; van Loo, G.; et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 2014, 512, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Cuda, C.M.; Pope, R.M.; Perlman, H. The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases. Nat. Rev. Rheumatol. 2016, 12, 543–558. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.P.; Lehman, C.W.; Lien, C.Z.; Lin, C.C.; Bazzazi, H.; Aghaei, M.; Memarian, A.; Asgarian-Omran, H.; Behnampour, N.; Yazdani, Y. Th1-Th17 Ratio as a New Insight in Rheumatoid Arthritis Disease. Int. J. Mol. Sci. 2018, 17, 68–77. [Google Scholar]
- Kessenbrock, K.; Krumbholz, M.; Schonermarck, U.; Back, W.; Gross, W.L.; Werb, Z.; Grone, H.J.; Brinkmann, V.; Jenne, D.E. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 2009, 15, 623–625. [Google Scholar] [CrossRef] [Green Version]
- Orkin, S.H.; Zon, L.I. Hematopoiesis: An evolving paradigm for stem cell biology. Cell 2008, 132, 631–644. [Google Scholar] [CrossRef]
- Wang, Y.; Han, C.C.; Cui, D.; Li, Y.; Ma, Y.; Wei, W. Is macrophage polarization important in rheumatoid arthritis? Int. Immunopharmacol. 2017, 50, 345–352. [Google Scholar] [CrossRef]
- Jaguin, M.; Houlbert, N.; Fardel, O.; Lecureur, V. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell. Immunol. 2013, 281, 51–61. [Google Scholar] [CrossRef]
- Sidiropoulos, P.I.; Goulielmos, G.; Voloudakis, G.K.; Petraki, E.; Boumpas, D.T. Inflammasomes and rheumatic diseases: Evolving concepts. Ann. Rheum. Dis. 2008, 67, 1382–1389. [Google Scholar] [CrossRef]
- Groslambert, M.; Py, B.F. Spotlight on the NLRP3 inflammasome pathway. J. Inflamm. Res. 2018, 11, 359–374. [Google Scholar] [CrossRef]
- Yi, Y.S. Regulatory Roles of the Caspase-11 Non-Canonical Inflammasome in Inflammatory Diseases. Immune Netw. 2018, 18, e41. [Google Scholar] [CrossRef]
- Yi, Y.S. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. Korean J. Physiol. Pharmacol. 2018, 22, 1–15. [Google Scholar] [CrossRef]
- Guo, C.; Fu, R.; Wang, S.; Huang, Y.; Li, X.; Zhou, M.; Zhao, J.; Yang, N. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin. Exp. Immunol. 2018, 194, 231–243. [Google Scholar] [CrossRef]
- Lacey, C.A.; Mitchell, W.J.; Dadelahi, A.S.; Skyberg, J.A. Caspases-1 and caspase-11 mediate pyroptosis, inflammation, and control of Brucella joint infection. Infect. Immun. 2018, 86, e00361-18. [Google Scholar] [CrossRef]
- Shen, H.H.; Yang, Y.X.; Meng, X.; Luo, X.Y.; Li, X.M.; Shuai, Z.W.; Ye, D.Q.; Pan, H.F. NLRP3: A promising therapeutic target for autoimmune diseases. Autoimmun. Rev. 2018, 17, 694–702. [Google Scholar] [CrossRef]
- Lebre, M.C.; Tak, P.P. Dendritic cell subsets: Their roles in rheumatoid arthritis. Acta Reumatol. Port. 2008, 33, 35–45. [Google Scholar]
- Zhao, Y.; Zhang, A.; Du, H.; Guo, S.; Ning, B.; Yang, S. Tolerogenic dendritic cells and rheumatoid arthritis: Current status and perspectives. Rheumatol. Int. 2012, 32, 837–844. [Google Scholar] [CrossRef]
- Schinnerling, K.; Soto, L.; Garcia-Gonzalez, P.; Catalan, D.; Aguillon, J.C. Skewing dendritic cell differentiation towards a tolerogenic state for recovery of tolerance in rheumatoid arthritis. Autoimmun. Rev. 2015, 14, 517–527. [Google Scholar] [CrossRef]
- Khan, S.; Greenberg, J.D.; Bhardwaj, N. Dendritic cells as targets for therapy in rheumatoid arthritis. Nat. Rev. Rheumatol. 2009, 5, 566–571. [Google Scholar] [CrossRef]
- Sallusto, F.; Schaerli, P.; Loetscher, P.; Schaniel, C.; Lenig, D.; Mackay, C.R.; Qin, S.; Lanzavecchia, A. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 1998, 28, 2760–2769. [Google Scholar] [CrossRef] [Green Version]
- Van der Kleij, D.; Latz, E.; Brouwers, J.F.; Kruize, Y.C.; Schmitz, M.; Kurt-Jones, E.A.; Espevik, T.; de Jong, E.C.; Kapsenberg, M.L.; Golenbock, D.T.; et al. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 2002, 277, 48122–48129. [Google Scholar] [CrossRef]
- Steinbrink, K.; Jonuleit, H.; Muller, G.; Schuler, G.; Knop, J.; Enk, A.H. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 1999, 93, 1634–1642. [Google Scholar]
- Lan, Y.Y.; Wang, Z.; Raimondi, G.; Wu, W.; Colvin, B.L.; de Creus, A.; Thomson, A.W. “Alternatively activated” dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J. Immunol. 2006, 177, 5868–5877. [Google Scholar] [CrossRef]
- Obregon, C.; Kumar, R.; Pascual, M.A.; Vassalli, G.; Golshayan, D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front. Immunol. 2017, 8, 1514. [Google Scholar] [CrossRef]
- Jung, S.M.; Lee, J.; Baek, S.Y.; Lee, J.; Jang, S.G.; Hong, S.M.; Park, J.S.; Cho, M.L.; Park, S.H.; Kwok, S.K. Fraxinellone Attenuates Rheumatoid Inflammation in Mice. Int. J. Mol. Sci. 2018, 19, 829. [Google Scholar] [CrossRef]
- Myers, L.K.; Stuart, J.M.; Kang, A.H. A CD4 cell is capable of transferring suppression of collagen-induced arthritis. J. Immunol. 1989, 143, 3976–3980. [Google Scholar]
- Chiocchia, G.; Boissier, M.C.; Ronziere, M.C.; Herbage, D.; Fournier, C. T cell regulation of collagen-induced arthritis in mice. I. Isolation of Type II collagen-reactive T cell hybridomas with specific cytotoxic function. J. Immunol. 1990, 145, 519–525. [Google Scholar]
- Sakaguchi, S.; Benham, H.; Cope, A.P.; Thomas, R. T-cell receptor signaling and the pathogenesis of autoimmune arthritis: Insights from mouse and man. Immunol. Cell Biol. 2012, 90, 277–287. [Google Scholar] [CrossRef]
- Miossec, P.; van den Berg, W. Th1/Th2 cytokine balance in arthritis. Arthritis Rheum. 1997, 40, 2105–2115. [Google Scholar] [CrossRef] [Green Version]
- Mauri, C.; Feldmann, M.; Williams, R.O. Down-regulation of Th1-mediated pathology in experimental arthritis by stimulation of the Th2 arm of the immune response. Arthritis Rheum. 2003, 48, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Van Hamburg, J.P.; Tas, S.W. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J. Autoimmun. 2018, 87, 69–81. [Google Scholar] [CrossRef]
- Volin, M.V.; Shahrara, S. Role of TH-17 cells in rheumatic and other autoimmune diseases. Rheumatology 2011, 1. [Google Scholar] [CrossRef]
- Ivanov, I.I.; McKenzie, B.S.; Zhou, L.; Tadokoro, C.E.; Lepelley, A.; Lafaille, J.J.; Cua, D.J.; Littman, D.R. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006, 126, 1121–1133. [Google Scholar] [CrossRef]
- Pollinger, B. IL-17 producing T cells in mouse models of multiple sclerosis and rheumatoid arthritis. J. Mol. Med. 2012, 90, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Kelchtermans, H.; Geboes, L.; Mitera, T.; Huskens, D.; Leclercq, G.; Matthys, P. Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann. Rheum. Dis. 2009, 68, 744–750. [Google Scholar] [CrossRef]
- Dulic, S.; Vasarhelyi, Z.; Sava, F.; Berta, L.; Szalay, B.; Toldi, G.; Kovacs, L.; Balog, A. T-Cell Subsets in Rheumatoid Arthritis Patients on Long-Term Anti-TNF or IL-6 Receptor Blocker Therapy. Mediat. Inflamm. 2017, 2017, 6894374. [Google Scholar] [CrossRef] [PubMed]
- Kerkman, P.F.; Rombouts, Y.; van der Voort, E.I.; Trouw, L.A.; Huizinga, T.W.; Toes, R.E.; Scherer, H.U. Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2013, 72, 1259–1263. [Google Scholar] [CrossRef]
- Pelzek, A.J.; Gronwall, C.; Rosenthal, P.; Greenberg, J.D.; McGeachy, M.; Moreland, L.; Rigby, W.F.C.; Silverman, G.J. Persistence of Disease-Associated Anti-Citrullinated Protein Antibody-Expressing Memory B Cells in Rheumatoid Arthritis in Clinical Remission. Arthritis Rheumatol. 2017, 69, 1176–1186. [Google Scholar] [CrossRef]
- Malemud, C.J. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2018, 10, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Navegantes, K.C.; de Souza Gomes, R.; Pereira, P.A.T.; Czaikoski, P.G.; Azevedo, C.H.M.; Monteiro, M.C. Immune modulation of some autoimmune diseases: The critical role of macrophages and neutrophils in the innate and adaptive immunity. J. Transl. Med. 2017, 15, 36. [Google Scholar] [CrossRef]
- Milanova, V.; Ivanovska, N.; Dimitrova, P. TLR2 elicits IL-17-mediated RANKL expression, IL-17, and OPG production in neutrophils from arthritic mice. Mediat. Inflamm. 2014, 2014, 643406. [Google Scholar] [CrossRef]
- Wright, H.L.; Chikura, B.; Bucknall, R.C.; Moots, R.J.; Edwards, S.W. Changes in expression of membrane TNF, NF-{kappa}B activation and neutrophil apoptosis during active and resolved inflammation. Ann. Rheum. Dis. 2011, 70, 537–543. [Google Scholar] [CrossRef]
- Pelletier, M.; Maggi, L.; Micheletti, A.; Lazzeri, E.; Tamassia, N.; Costantini, C.; Cosmi, L.; Lunardi, C.; Annunziato, F.; Romagnani, S.; et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 2010, 115, 335–343. [Google Scholar] [CrossRef]
- Cua, D.J.; Tato, C.M. Innate IL-17-producing cells: The sentinels of the immune system. Nat. Rev. Immunol. 2010, 10, 479–489. [Google Scholar] [CrossRef]
- Jaeger, B.N.; Donadieu, J.; Cognet, C.; Bernat, C.; Ordonez-Rueda, D.; Barlogis, V.; Mahlaoui, N.; Fenis, A.; Narni-Mancinelli, E.; Beaupain, B.; et al. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J. Exp. Med. 2012, 209, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23, 549–555. [Google Scholar] [CrossRef]
- Kennedy, A.; Fearon, U.; Veale, D.J.; Godson, C. Macrophages in synovial inflammation. Front. Immunol. 2011, 2, 52. [Google Scholar] [CrossRef]
- Morand, E.F.; Leech, M. Macrophage migration inhibitory factor in rheumatoid arthritis. Front. Biosci. A J. Virtual Libr. 2005, 10, 12–22. [Google Scholar] [CrossRef]
- Wang, K.C.; Tsai, C.P.; Lee, C.L.; Chen, S.Y.; Chin, L.T.; Chen, S.J. Elevated plasma high-mobility group box 1 protein is a potential marker for neuromyelitis optica. Neuroscience 2012, 226, 510–516. [Google Scholar] [CrossRef]
- Wang, L.H.; Wu, M.H.; Chen, P.C.; Su, C.M.; Xu, G.; Huang, C.C.; Tsai, C.H.; Huang, Y.L.; Tang, C.H. Prognostic significance of high-mobility group box protein 1 genetic polymorphisms in rheumatoid arthritis disease outcome. Int. J. Med Sci. 2017, 14, 1382–1388. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Liang, H.; Zen, K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol. 2014, 5, 614. [Google Scholar] [CrossRef]
- Roberts, C.A.; Dickinson, A.K.; Taams, L.S. The Interplay Between Monocytes/Macrophages and CD4(+) T Cell Subsets in Rheumatoid Arthritis. Front. Immunol. 2015, 6, 571. [Google Scholar] [CrossRef]
- Michalak, M.; Corbett, E.F.; Mesaeli, N.; Nakamura, K.; Opas, M. Calreticulin: One protein, one gene, many functions. Biochem. J. 1999, 344, 281–292. [Google Scholar] [CrossRef]
- Duo, C.C.; Gong, F.Y.; He, X.Y.; Li, Y.M.; Wang, J.; Zhang, J.P.; Gao, X.M. Soluble calreticulin induces tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6 production by macrophages through mitogen-activated protein kinase (MAPK) and NFkappaB signaling pathways. Int. J. Mol. Sci. 2014, 15, 2916–2928. [Google Scholar] [CrossRef]
- Burger, D.; Dayer, J.M. The role of human T-lymphocyte-monocyte contact in inflammation and tissue destruction. Arthritis Res. 2002, 4, S169–S176. [Google Scholar] [CrossRef]
- Zrioual, S.; Toh, M.L.; Tournadre, A.; Zhou, Y.; Cazalis, M.A.; Pachot, A.; Miossec, V.; Miossec, P. IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J. Immunol. 2008, 180, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Evans, H.G.; Gullick, N.J.; Kelly, S.; Pitzalis, C.; Lord, G.M.; Kirkham, B.W.; Taams, L.S. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc. Natl. Acad. Sci. USA 2009, 106, 6232–6237. [Google Scholar] [CrossRef] [Green Version]
- Alonso, M.N.; Wong, M.T.; Zhang, A.L.; Winer, D.; Suhoski, M.M.; Tolentino, L.L.; Gaitan, J.; Davidson, M.G.; Kung, T.H.; Galel, D.M.; et al. T(H)1, T(H)2, and T(H)17 cells instruct monocytes to differentiate into specialized dendritic cell subsets. Blood 2011, 118, 3311–3320. [Google Scholar] [CrossRef]
- Brennan, F.M.; Foey, A.D.; Feldmann, M. The importance of T cell interactions with macrophages in rheumatoid cytokine production. Curr. Top. Microbiol. Immunol. 2006, 305, 177–194. [Google Scholar] [PubMed]
- Hansen, W.; Westendorf, A.M.; Buer, J. Regulatory T cells as targets for immunotherapy of autoimmunity and inflammation. Inflamm. Allergy Drug Targets 2008, 7, 217–223. [Google Scholar] [CrossRef]
- Kishimoto, T.; Kang, S.; Tanaka, T. IL-6: A New Era for the Treatment of Autoimmune Inflammatory Diseases. Rheumatol. Int. 2015, 131–147. [Google Scholar] [Green Version]
- Venuturupalli, S. Immune Mechanisms and Novel Targets in Rheumatoid Arthritis. Immunol. Allergy Clin. North Am. 2017, 37, 301–313. [Google Scholar] [CrossRef]
- Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 2012, 8, 1237–1247. [Google Scholar] [CrossRef]
- Dayer, J.M.; Choy, E. Therapeutic targets in rheumatoid arthritis: The interleukin-6 receptor. Rheumatology 2010, 49, 15–24. [Google Scholar] [CrossRef]
- Yoshida, Y.; Tanaka, T. Interleukin 6 and rheumatoid arthritis. Biomed Res. Int. 2014, 2014, 698313. [Google Scholar] [CrossRef]
- Romano, M.; Sironi, M.; Toniatti, C.; Polentarutti, N.; Fruscella, P.; Ghezzi, P.; Faggioni, R.; Luini, W.; van Hinsbergh, V.; Sozzani, S.; et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997, 6, 315–325. [Google Scholar] [CrossRef]
- Suzuki, M.; Hashizume, M.; Yoshida, H.; Mihara, M. Anti-inflammatory mechanism of tocilizumab, a humanized anti-IL-6R antibody: Effect on the expression of chemokine and adhesion molecule. Rheumatol. Int. 2010, 30, 309–315. [Google Scholar] [CrossRef]
- Hashizume, M.; Mihara, M. The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis 2011, 2011, 765624. [Google Scholar] [CrossRef]
- Choy, E.H.; Panayi, G.S.; Kingsley, G.H. Therapeutic monoclonal antibodies. Br. J. Rheumatol. 1995, 34, 707–715. [Google Scholar] [CrossRef]
- Serio, I.; Tovoli, F. Rheumatoid arthritis: New monoclonal antibodies. Drugs Today 2018, 54, 219–230. [Google Scholar] [CrossRef]
- Edwards, J.C.; Szczepanski, L.; Szechinski, J.; Filipowicz-Sosnowska, A.; Emery, P.; Close, D.R.; Stevens, R.M.; Shaw, T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. New Engl. J. Med. 2004, 350, 2572–2581. [Google Scholar] [CrossRef]
- Schioppo, T.; Ingegnoli, F. Current perspective on rituximab in rheumatic diseases. Drug Des. Dev. Ther. 2017, 11, 2891–2904. [Google Scholar] [CrossRef] [Green Version]
- Emery, P.; Fleischmann, R.; Filipowicz-Sosnowska, A.; Schechtman, J.; Szczepanski, L.; Kavanaugh, A.; Racewicz, A.J.; van Vollenhoven, R.F.; Li, N.F.; Agarwal, S.; et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: Results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 2006, 54, 1390–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehsen, N.; Yvon, C.M.; Richez, C.; Schaeverbeke, T. Serum sickness following a first rituximab infusion with no recurrence after the second one. Clin. Exp. Rheumatol. 2008, 26, 967. [Google Scholar] [PubMed]
- Mease, P.J.; Cohen, S.; Gaylis, N.B.; Chubick, A.; Kaell, A.T.; Greenwald, M.; Agarwal, S.; Yin, M.; Kelman, A. Efficacy and safety of retreatment in patients with rheumatoid arthritis with previous inadequate response to tumor necrosis factor inhibitors: Results from the SUNRISE trial. J. Rheumatol. 2010, 37, 917–927. [Google Scholar] [CrossRef]
- Emery, P.; Gottenberg, J.E.; Rubbert-Roth, A.; Sarzi-Puttini, P.; Choquette, D.; Taboada, V.M.; Barile-Fabris, L.; Moots, R.J.; Ostor, A.; Andrianakos, A.; et al. Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: SWITCH-RA, a global, observational, comparative effectiveness study. Ann. Rheum. Dis. 2015, 74, 979–984. [Google Scholar] [CrossRef]
- Steeland, S.; Libert, C.; Vandenbroucke, R.E. A New Venue of TNF Targeting. Int. J. Mol. Sci. 2018, 19, 1442. [Google Scholar] [CrossRef] [PubMed]
- Billmeier, U.; Dieterich, W.; Neurath, M.F.; Atreya, R. Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J. Gastroenterol. 2016, 22, 9300–9313. [Google Scholar] [CrossRef]
- Nesbitt, A.; Fossati, G.; Bergin, M.; Stephens, P.; Stephens, S.; Foulkes, R.; Brown, D.; Robinson, M.; Bourne, T. Mechanism of action of certolizumab pegol (CDP870): In vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm. Bowel Dis. 2007, 13, 1323–1332. [Google Scholar] [CrossRef]
- Nguyen, D.X.; Ehrenstein, M.R. Anti-TNF drives regulatory T cell expansion by paradoxically promoting membrane TNF-TNF-RII binding in rheumatoid arthritis. J. Exp. Med. 2016, 213, 1241–1253. [Google Scholar] [CrossRef]
- Levy, L.; Fautrel, B.; Barnetche, T.; Schaeverbeke, T. Incidence and risk of fatal myocardial infarction and stroke events in rheumatoid arthritis patients. A systematic review of the literature. Clin. Exp. Rheumatol. 2008, 26, 673–679. [Google Scholar]
- Pala, O.; Diaz, A.; Blomberg, B.B.; Frasca, D. B Lymphocytes in Rheumatoid Arthritis and the Effects of Anti-TNF-alpha Agents on B Lymphocytes: A Review of the Literature. Clin. Ther. 2018, 40, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Kroesen, S.; Widmer, A.F.; Tyndall, A.; Hasler, P. Serious bacterial infections in patients with rheumatoid arthritis under anti-TNF-alpha therapy. Rheumatology 2003, 42, 617–621. [Google Scholar] [CrossRef] [Green Version]
- Kotyla, P.J. Bimodal Function of Anti-TNF Treatment: Shall We Be Concerned about Anti-TNF Treatment in Patients with Rheumatoid Arthritis and Heart Failure? Int. J. Mol. Sci. 2018, 19, 1739. [Google Scholar] [CrossRef] [PubMed]
- Monaco, C.; Nanchahal, J.; Taylor, P.; Feldmann, M. Anti-TNF therapy: Past, present and future. Int. Immunol. 2015, 27, 55–62. [Google Scholar] [CrossRef]
- Volpe, E.; Servant, N.; Zollinger, R.; Bogiatzi, S.I.; Hupe, P.; Barillot, E.; Soumelis, V. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat. Immunol. 2008, 9, 650–657. [Google Scholar] [CrossRef]
- Kirkham, B.W.; Kavanaugh, A.; Reich, K. Interleukin-17A: A unique pathway in immune-mediated diseases: Psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology 2014, 141, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Leipe, J.; Schramm, M.A.; Prots, I.; Schulze-Koops, H.; Skapenko, A. Increased Th17 cell frequency and poor clinical outcome in rheumatoid arthritis are associated with a genetic variant in the IL4R gene, rs1805010. Arthritis Rheumatol. 2014, 66, 1165–1175. [Google Scholar] [CrossRef]
- Leonardi, C.L.; Kimball, A.B.; Papp, K.A.; Yeilding, N.; Guzzo, C.; Wang, Y.; Li, S.; Dooley, L.T.; Gordon, K.B. PHOENIX 1 Study Investigators. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008, 371, 1665–1674. [Google Scholar] [CrossRef]
- Papp, K.A.; Langley, R.G.; Lebwohl, M.; Krueger, G.G.; Szapary, P.; Yeilding, N.; Guzzo, C.; Hsu, M.C.; Wang, Y.; Li, S.; et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008, 371, 1675–1684. [Google Scholar] [CrossRef]
- Gordon, K.B.; Duffin, K.C.; Bissonnette, R.; Prinz, J.C.; Wasfi, Y.; Li, S.; Shen, Y.K.; Szapary, P.; Randazzo, B.; Reich, K. A Phase 2 Trial of Guselkumab versus Adalimumab for Plaque Psoriasis. N. Engl. J. Med. 2015, 373, 136–144. [Google Scholar] [CrossRef]
- Smolen, J.S.; Agarwal, S.K.; Ilivanova, E.; Xu, X.L.; Miao, Y.; Zhuang, Y.; Nnane, I.; Radziszewski, W.; Greenspan, A.; Beutler, A.; et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann. Rheum. Dis. 2017, 76, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Traynor, K. FDA approves tofacitinib for rheumatoid arthritis. Am. J. Health-Syst. Pharm. 2012, 69, 2120. [Google Scholar] [CrossRef]
- Gertel, S.; Mahagna, H.; Karmon, G.; Watad, A.; Amital, H. Tofacitinib attenuates arthritis manifestations and reduces the pathogenic CD4 T cells in adjuvant arthritis rats. Clin. Immunol. 2017, 184, 77–81. [Google Scholar] [CrossRef]
- Cheung, T.T.; McInnes, I.B. Future therapeutic targets in rheumatoid arthritis? Semin. Immunopathol. 2017, 39, 487–500. [Google Scholar] [CrossRef]
- Chastek, B.; Becker, L.K.; Chen, C.I.; Mahajan, P.; Curtis, J.R. Outcomes of tumor necrosis factor inhibitor cycling versus switching to a disease-modifying anti-rheumatic drug with a new mechanism of action among patients with rheumatoid arthritis. J. Med Econ. 2017, 20, 464–473. [Google Scholar] [CrossRef]
- Samson, M.; Audia, S.; Janikashvili, N.; Ciudad, M.; Trad, M.; Fraszczak, J.; Ornetti, P.; Maillefert, J.F.; Miossec, P.; Bonnotte, B. Brief report: Inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 2012, 64, 2499–2503. [Google Scholar] [CrossRef]
- Pesce, B.; Soto, L.; Sabugo, F.; Wurmann, P.; Cuchacovich, M.; Lopez, M.N.; Sotelo, P.H.; Molina, M.C.; Aguillon, J.C.; Catalan, D. Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin. Exp. Immunol. 2013, 171, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Sarantopoulos, A.; Tselios, K.; Gkougkourelas, I.; Pantoura, M.; Georgiadou, A.M.; Boura, P. Tocilizumab treatment leads to a rapid and sustained increase in Treg cell levels in rheumatoid arthritis patients: Comment on the article by Thiolat et al. Arthritis Rheumatol. 2014, 66, 2638. [Google Scholar] [CrossRef]
- Tono, T.; Aihara, S.; Hoshiyama, T.; Arinuma, Y.; Nagai, T.; Hirohata, S. Effects of anti-IL-6 receptor antibody on human monocytes. Mod. Rheumatol. 2015, 25, 79–84. [Google Scholar] [CrossRef]
- Huizinga, T.W.; Fleischmann, R.M.; Jasson, M.; Radin, A.R.; van Adelsberg, J.; Fiore, S.; Huang, X.; Yancopoulos, G.D.; Stahl, N.; Genovese, M.C. Sarilumab, a fully human monoclonal antibody against IL-6Ralpha in patients with rheumatoid arthritis and an inadequate response to methotrexate: Efficacy and safety results from the randomised SARIL-RA-MOBILITY Part A trial. Ann. Rheum. Dis. 2014, 73, 1626–1634. [Google Scholar] [CrossRef]
- Genovese, M.C.; Fleischmann, R.; Kivitz, A.J.; Rell-Bakalarska, M.; Martincova, R.; Fiore, S.; Rohane, P.; van Hoogstraten, H.; Garg, A.; Fan, C.; et al. Sarilumab Plus Methotrexate in Patients with Active Rheumatoid Arthritis and Inadequate Response to Methotrexate: Results of a Phase III Study. Arthritis Rheumatol. 2015, 67, 1424–1437. [Google Scholar] [CrossRef]
- Gabay, C.; Msihid, J.; Zilberstein, M.; Paccard, C.; Lin, Y.; Graham, N.M.H.; Boyapati, A. Identification of sarilumab pharmacodynamic and predictive markers in patients with inadequate response to TNF inhibition: A biomarker substudy of the phase 3 TARGET study. RMD Open 2018, 4, e000607. [Google Scholar] [CrossRef]
- Kubo, S.; Nakayamada, S.; Sakata, K.; Kitanaga, Y.; Ma, X.; Lee, S.; Ishii, A.; Yamagata, K.; Nakano, K.; Tanaka, Y. Janus Kinase Inhibitor Baricitinib Modulates Human Innate and Adaptive Immune System. Front. Immunol. 2018, 9, 1510. [Google Scholar] [CrossRef]
- Al-Salama, Z.T.; Scott, L.J. Baricitinib: A Review in Rheumatoid Arthritis. Drugs 2018, 78, 761–772. [Google Scholar] [CrossRef]
- Kaine, J.L. Abatacept for the treatment of rheumatoid arthritis: A review, Current therapeutic research. Clin. Exp. 2007, 68, 379–399. [Google Scholar]
- Langdon, K.; Haleagrahara, N. Regulatory T-cell dynamics with abatacept treatment in rheumatoid arthritis. Int. Rev. Immunol. 2018, 37, 206–214. [Google Scholar] [CrossRef]
- De Matteis, R.; Larghi, P.; Paroni, M.; Murgo, A.; De Lucia, O.; Pagani, M.; Pierannunzii, L.; Truzzi, M.; Ioan-Facsinay, A.; Abrignani, S.; et al. Abatacept therapy reduces CD28+CXCR5+ follicular helper-like T cells in patients with rheumatoid arthritis. Arthritis Res. Ther. 2017, 35, 562–570. [Google Scholar]
- Trzonkowski, P.; Bacchetta, R.; Battaglia, M.; Berglund, D.; Bohnenkamp, H.R.; ten Brinke, A.; Bushell, A.; Cools, N.; Geissler, E.K.; Gregori, S.; et al. Hurdles in therapy with regulatory T cells. Sci. Transl. Med. 2015, 7, 304ps18. [Google Scholar] [CrossRef]
- Jansen, M.A.A.; Spiering, R.; Broere, F.; van Laar, J.M.; Isaacs, J.D.; van Eden, W.; Hilkens, C.M.U. Targeting of tolerogenic dendritic cells towards heat-shock proteins: A novel therapeutic strategy for autoimmune diseases? Immunology 2018, 153, 51–59. [Google Scholar] [CrossRef]
- Boog, C.J.; de Graeff-Meeder, E.R.; Lucassen, M.A.; van der Zee, R.; Voorhorst-Ogink, M.M.; van Kooten, P.J.; Geuze, H.J.; van Eden, W. Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. J. Exp. Med. 1992, 175, 1805–1810. [Google Scholar] [CrossRef] [Green Version]
- Schett, G.; Redlich, K.; Xu, Q.; Bizan, P.; Groger, M.; Tohidast-Akrad, M.; Kiener, H.; Smolen, J.; Steiner, G. Enhanced expression of heat shock protein 70 (hsp70) and heat shock factor 1 (HSF1) activation in rheumatoid arthritis synovial tissue. Differential regulation of hsp70 expression and hsf1 activation in synovial fibroblasts by proinflammatory cytokines, shear stress, and antiinflammatory drugs. J. Clin. Investig. 1998, 102, 302–311. [Google Scholar]
- Benham, H.; Nel, H.J.; Law, S.C.; Mehdi, A.M.; Street, S.; Ramnoruth, N.; Pahau, H.; Lee, B.T.; Ng, J.; Brunck, M.E.; et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci. Transl. Med. 2015, 7, 290ra87. [Google Scholar] [CrossRef]
- Gatenby, P.; Lucas, R.; Swaminathan, A. Vitamin D deficiency and risk for rheumatic diseases: An update. Curr. Opin. Rheumatol. 2013, 25, 184–191. [Google Scholar] [CrossRef]
- Ishikawa, L.L.W.; Colavite, P.M.; Fraga-Silva, T.F.C.; Mimura, L.A.N.; Franca, T.G.D.; Zorzella-Pezavento, S.F.G.; Chiuso-Minicucci, F.; Marcolino, L.D.; Penitenti, M.; Ikoma, M.R.V.; et al. Vitamin D Deficiency and Rheumatoid Arthritis. Clin. Rev. Allergy Immunol. 2017, 52, 373–388. [Google Scholar] [CrossRef]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef]
- Naranjo-Gomez, M.; Raich-Regue, D.; Onate, C.; Grau-Lopez, L.; Ramo-Tello, C.; Pujol-Borrell, R.; Martinez-Caceres, E.; Borras, F.E. Comparative study of clinical grade human tolerogenic dendritic cells. J. Transl. Med. 2011, 9, 89. [Google Scholar] [CrossRef]
- Phillips, B.E.; Garciafigueroa, Y.; Trucco, M.; Giannoukakis, N. Clinical Tolerogenic Dendritic Cells: Exploring Therapeutic Impact on Human Autoimmune Disease. Front. Immunol. 2017, 8, 1279. [Google Scholar] [CrossRef]
- Soltanzadeh-Yamchi, M.; Shahbazi, M.; Aslani, S.; Mohammadnia-Afrouzi, M. MicroRNA signature of regulatory T cells in health and autoimmunity. Int. J. Mol. Sci. 2018, 100, 316–323. [Google Scholar] [CrossRef]
- Furer, V.; Greenberg, J.D.; Attur, M.; Abramson, S.B.; Pillinger, M.H. The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clin. Immunol. 2010, 136, 1–15. [Google Scholar] [CrossRef]
- Alivernini, S.; Gremese, E.; McSharry, C.; Tolusso, B.; Ferraccioli, G.; McInnes, I.B.; Kurowska-Stolarska, M. MicroRNA-155-at the Critical Interface of Innate and Adaptive Immunity in Arthritis. Front. Immunol. 2017, 8, 1932. [Google Scholar] [CrossRef]
- Fukuhara, A.; Matsuda, M.; Nishizawa, M.; Segawa, K.; Tanaka, M.; Kishimoto, K.; Matsuki, Y.; Murakami, M.; Ichisaka, T.; Murakami, H.; et al. Visfatin: A protein secreted by visceral fat that mimics the effects of insulin. Science 2005, 307, 426–430. [Google Scholar] [CrossRef]
- Wu, M.H.; Tsai, C.H.; Huang, Y.L.; Fong, Y.C.; Tang, C.H. Visfatin Promotes IL-6 and TNF-α Production in Human Synovial Fibroblasts by Repressing miR-199a-5p through ERK, p38 and JNK Signaling Pathways. Int. J. Mol. Sci. 2018, 19, 190. [Google Scholar] [CrossRef]
- Hayer, S.; Pundt, N.; Peters, M.A.; Wunrau, C.; Kuhnel, I.; Neugebauer, K.; Strietholt, S.; Zwerina, J.; Korb, A.; Penninger, J.; et al. PI3Kgamma regulates cartilage damage in chronic inflammatory arthritis. FASEB J. 2009, 23, 4288–4298. [Google Scholar] [CrossRef]
- Rommel, C.; Camps, M.; Ji, H. PI3K delta and PI3K gamma: Partners in crime in inflammation in rheumatoid arthritis and beyond? Nat. Rev. Immunol. 2007, 7, 191–201. [Google Scholar] [CrossRef]
- Nandakumar, K.S. Targeting IgG in Arthritis: Disease Pathways and Therapeutic Avenues. Int. J. Mol. Sci. 2018, 19, 677. [Google Scholar] [CrossRef]
- Boutet, M.A.; Nerviani, A.; Gallo Afflitto, G.; Pitzalis, C. Role of the IL-23/IL-17 Axis in Psoriasis and Psoriatic Arthritis: The Clinical Importance of Its Divergence in Skin and Joints. Int. J. Mol. Sci. 2018, 19, 530. [Google Scholar] [CrossRef]
- Park, M.J.; Park, H.S.; Cho, M.L.; Oh, H.J.; Cho, Y.G.; Min, S.Y.; Chung, B.H.; Lee, J.W.; Kim, H.Y.; Cho, S.G. Transforming growth factor beta-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum. 2011, 63, 1668–1680. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, P.; Tan, W.; Zhang, M. Cell therapies for refractory rheumatoid arthritis. Clin. Exp. Rheumatol. 2018, 36, 911–919. [Google Scholar]
- Nent, E.; Frommholz, D.; Gajda, M.; Brauer, R.; Illges, H. Histamine 4 receptor plays an important role in auto-antibody-induced arthritis. Int. Immunol. 2013, 25, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Yamaura, K.; Oda, M.; Suzuki, M.; Ueno, K. Lower expression of histamine H(4) receptor in synovial tissues from patients with rheumatoid arthritis compared to those with osteoarthritis. Rheumatol. Int. 2012, 32, 3309–3313. [Google Scholar] [CrossRef]
- Grabiec, A.M.; Korchynskyi, O.; Tak, P.P.; Reedquist, K.A. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann. Rheum. Dis. 2012, 71, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Delcuve, G.P.; Khan, D.H.; Davie, J.R. Roles of histone deacetylases in epigenetic regulation: Emerging paradigms from studies with inhibitors. Clin. Epigenetics 2012, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Angiolilli, C.; Kabala, P.A.; Grabiec, A.M.; Van Baarsen, I.M.; Ferguson, B.S.; Garcia, S.; Malvar Fernandez, B.; McKinsey, T.A.; Tak, P.P.; Fossati, G.; et al. Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Ann. Rheum. Dis. 2017, 76, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Valencia, X.; Higgins, J.M.; Kiener, H.P.; Lee, D.M.; Podrebarac, T.A.; Dascher, C.C.; Watts, G.F.; Mizoguchi, E.; Simmons, B.; Patel, D.D.; et al. Cadherin-11 provides specific cellular adhesion between fibroblast-like synoviocytes. J. Exp. Med. 2004, 200, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.M.; Kiener, H.P.; Agarwal, S.K.; Noss, E.H.; Watts, G.F.; Chisaka, O.; Takeichi, M.; Brenner, M.B. Cadherin-11 in synovial lining formation and pathology in arthritis. Science 2007, 315, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Noss, E.H.; Watts, G.F.; Zocco, D.; Keller, T.L.; Whitman, M.; Blobel, C.P.; Lee, D.M.; Brenner, M.B. Evidence for cadherin-11 cleavage in the synovium and partial characterization of its mechanism. Arthritis Res. Ther. 2015, 17, 126. [Google Scholar] [CrossRef]
- Sfikakis, P.P.; Vlachogiannis, N.I.; Christopoulos, P.F. Cadherin-11 as a therapeutic target in chronic, inflammatory rheumatic diseases. Clin. Immunol. 2017, 176, 107–113. [Google Scholar] [CrossRef]
- Tan, A.L.; Emery, P. Role of oestrogen in the development of joint symptoms? Lancet Oncol. 2008, 9, 817–818. [Google Scholar] [CrossRef]
- Kass, A.; Hollan, I.; Fagerland, M.W.; Gulseth, H.C.; Torjesen, P.A.; Forre, O.T. Rapid Anti-Inflammatory Effects of Gonadotropin-Releasing Hormone Antagonism in Rheumatoid Arthritis Patients with High Gonadotropin Levels in the AGRA Trial. PLoS ONE 2015, 10, e0139439. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, Q.; Xuan, W.; Feng, X.; Wang, F.; Tsao, B.P.; Zhang, M.; Tan, W. Transcription Factor SOX5 Promotes the Migration and Invasion of Fibroblast-Like Synoviocytes in Part by Regulating MMP-9 Expression in Collagen-Induced Arthritis. Front. Immunol. 2018, 9, 749. [Google Scholar] [CrossRef]
- Jovanovic, D.V.; Martel-Pelletier, J.; Di Battista, J.A.; Mineau, F.; Jolicoeur, F.C.; Benderdour, M.; Pelletier, J.P. Stimulation of 92-kd gelatinase (matrix metalloproteinase 9) production by interleukin-17 in human monocyte/macrophages: A possible role in rheumatoid arthritis. Arthritis Rheum. 2000, 43, 1134–1144. [Google Scholar] [CrossRef]
- Blaschke, S.; Koziolek, M.; Schwarz, A.; Benohr, P.; Middel, P.; Schwarz, G.; Hummel, K.M.; Muller, G.A. Proinflammatory role of fractalkine (CX3CL1) in rheumatoid arthritis. J. Rheumatol. 2003, 30, 1918–1927. [Google Scholar]
- Isozaki, T.; Otsuka, K.; Sato, M.; Takahashi, R.; Wakabayashi, K.; Yajima, N.; Miwa, Y.; Kasama, T. Synergistic induction of CX3CL1 by interleukin-1beta and interferon-gamma in human lung fibroblasts: Involvement of signal transducer and activator of transcription 1 signaling pathways. Transl. Res. J. Lab. Clin. Med. 2011, 157, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Nanki, T.; Imai, T.; Kawai, S. Fractalkine/CX3CL1 in rheumatoid arthritis. Mod. Rheumatol. 2017, 27, 392–397. [Google Scholar] [CrossRef]
- Hatterer, E.; Shang, L.; Simonet, P.; Herren, S.; Daubeuf, B.; Teixeira, S.; Reilly, J.; Elson, G.; Nelson, R.; Gabay, C.; et al. A specific anti-citrullinated protein antibody profile identifies a group of rheumatoid arthritis patients with a toll-like receptor 4-mediated disease. Arthritis Res. Ther. 2016, 18, 224. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, S.W.; Kim, H.Y.; Lee, W.S.; Hong, K.W.; Kim, C.D. HMGB1 induces angiogenesis in rheumatoid arthritis via HIF-1alpha activation. Eur. J. Immunol. 2015, 45, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Yang, S.; Zhang, Y.; Cao, J.; Fu, X. DFMG attenuates the activation of macrophages induced by coculture with LPCinjured HUVE12 cells via the TLR4/MyD88/NFkappaB signaling pathway. Int. J. Mol. Med. 2018, 41, 2619–2628. [Google Scholar] [PubMed]
- Deuteraiou, K.; Kitas, G.; Garyfallos, A.; Dimitroulas, T. Novel insights into the role of inflammasomes in autoimmune and metabolic rheumatic diseases. Rheumatol. Int. 2018, 38, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Borie, D.; Kremer, J.M. Considerations on the appropriateness of the John Cunningham virus antibody assay use in patients with rheumatoid arthritis. Semin. Arthritis Rheum. 2015, 45, 163–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, Y.; Kasuya, T.; Ishikawa, J.; Fujiwara, M.; Kita, Y. A case of developing progressive multifocal leukoencephalopathy while using rituximab and mycophenolate mofetil in refractory systemic lupus erythematosus. Ther. Clin. Risk Manag. 2018, 14, 1149–1153. [Google Scholar] [CrossRef]
- Casulo, C.; Maragulia, J.; Zelenetz, A.D. Incidence of hypogammaglobulinemia in patients receiving rituximab and the use of intravenous immunoglobulin for recurrent infections. Clin. Lymphoma Myeloma Leuk. 2013, 13, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Breuer, G.S.; Ehrenfeld, M.; Rosner, I.; Balbir-Gurman, A.; Zisman, D.; Oren, S.; Paran, D. Late-onset neutropenia following rituximab treatment for rheumatologic conditions. Clin. Rheumatol. 2014, 33, 1337–1340. [Google Scholar] [CrossRef]
- Priora, M.; Parisi, S.; Scarati, M.; Borrelli, R.; Peroni, C.L.; Fusaro, E. Abatacept and granulocyte-colony stimulating factor in a patient with rheumatoid arthritis and neutropenia. Immunotherapy 2017, 9, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tian, F.; Wang, F. Rheumatoid arthritis-associated microRNA-155 targets SOCS1 and upregulates TNF-alpha and IL-1beta in PBMCs. Int. J. Mol. Sci. 2013, 14, 23910–23921. [Google Scholar] [CrossRef] [PubMed]
Drug/Delivery | Target | Mechanism | Immune-Modulation |
---|---|---|---|
Target CD80/CD86 receptor on T cells | |||
Abatacept (Orencia®) /Intravenous delivery | Fc-fusion protein of the extracellular domain of human CTLA-4 | block the binding reaction between CD80/CD86 and CD28, a costimulatory signal required for complete activation of T cells and inhibition of TNFα, and IFNγ production by activated T cells. | TNFα inducing the expression of innate cytokines IL-1β, IL-6 and IL-8, resulting in the rapid recruitment of neutrophils upon exposure to infection is blocked by and inhibition of TNFα, and IFNγ production by preveting T cells activation |
Antagonist of IL-1 | |||
Anakinra (Kineret®) / Subcutaneous injection | Block the reaction of IL-1 binding to IL-1RI | Block the reaction of IL-1 binding to IL-1RI resulting in intracellular signal transduction | Lessen the IL-1 effect on increasing the synovial fibroblast cytokine, chemokine, iNOS, PGs and MMPs release. |
IL-6 receptor monoclonal antibody | |||
Sarilumab (Kevzara®)/Subcutaneous injection | a human IgG1 antibody, specifically binds to soluble and membrane-bound IL-6R (sIL-6Ra and mIL-6Ra) | Inhibit IL-6-mediated signalling involving ubiquitous signal transducing gp130 and STAT3 | Interference the activator RANKL dependent or RANKL independent mechanismand also block the synergismwith IL-1β and TNF-α in producing VEGF |
IL-12/IL-23 antibodies | |||
Ustekinumab (STELARA®)/ Subcutaneous injection | targeting the IL-12/23 p40 subunit, inhibiting both IL-12 and IL-23 activities | Bind to the IL-12 and IL-23, cytokines and down modulate lymphocyte function, including Th 1 and Th17 cell subsets | Inhibit IL-12-mediated signaling to reduce intracellular phosphorylation of STAT4 and STAT6 proteins, and impair the responses including cell surface molecule expression, NK cell activities and cytokine production, i.e., IFNγ |
Guselkumab (Tremfya®)/ Subcutaneous injection | Specific targeting IL-23 | Bind to IL-23 and repress induction of Th17 cell subsets IL-23, mainly produced by dendritic cells, macrophages | Block IL-23 target cells via either an IL-17-dependent or an IL-17-independent mechanism and decrease IL-23 secretion and inpair activation of producing Th17 cells via IL-23R and reduce cytokine such as IL-17 or IL-22 |
JAK inhibitor | |||
Tofacitinib (Xeljanz®)/ ORAL | the first-in-class JAK inhibitor, block JAK1 and JAK3 factor. | Interference the binding of IL-6 to the IL-6Rα/gp130 complex, STAT proteins | Tofacitinib block the pathway of JAK/STAT activation; due to JAK/STAT activation by IL-7 versus IL-6 or GM-CSF and the recruited to the cytokine/receptor complex |
Baricitinib (Olumiant®) Decernotinib ORAL | Selective JAK1 and JAK2 inhibitor | Block with intracellular signal transduction , facilate the turnover of active, phosphorylated STAT1 and STAT3 | inhibition of cytokine (IL-6) or thrombopoietin and reduce the expression of pathogenic Th1 and Th17 and prevent chemotaxis towards IL-8 |
Filgotinib/ORAL | selective JAK1 inhibitor | Block with intracellular signal transduction , facilate the turnover of active, phosphorylated STAT1 | decrease IL-1β, IL-6, TNFα and MMP1 and MMP3, inhibit immune cell trafficking (CXCL10, ICAM-1 and VCAM-1) and VEGF. Also significantly decrease Th1 and Th17 cell subset differentiation and activity |
Rheumavax®/Intradermal injection | first-in-human trial for the treatment of RA generated tDC by NF-κB inhibition | InhibitNF-κB and prevent DC maturation to reduce the expression of CD40 and HLA-DR ( a class II MHC molecule) | confers tolerogenic properties to DC including induction of T-cell anergy elevation of B220+ CD11c− B cells with a subpopulation of B-regulatory cells (Bregs) |
Pulsing tlDCs with HSP peptides /Intravenous delivery with with HSP loaded tDCs | HSP 40 (dnaJB1): dnaJP1 HSP 60 (HspD1): DiaPep277 HSP 70 (HspA9): mB29a | Induce disease-suppressive regulatory T cells | induce IL-10 production and TGF-β |
Drug or Compound | Target | Potential Mechanism | Immune-Modulation |
---|---|---|---|
Developing inhibitor of miR-155 | miR-155 | regulatory functions on the expression of genes by modulating the cell transcriptome directly | Inhibit TLR/cytokine receptor pathways and suppress the production of TNF, IL-1β, IL-6, and chemokines CCR7 |
Developing inhibitor of visfatin | Visfatin | Upregulation of miR-199a-5p expression through modulation of the ERK, p38, and JNK pathways | Decrease the production of IL-6 and TNF-α |
Developing inhibitor of PI3Kγ | PI3Kγ | modulation of chemokine-induced migration | Control enrollment of inflammatory cells (i.e., neutrophils, monocytes, and macrophages) |
andclozapine tJNJ77777120 (JNJ) | Histamine 4 receptor (H4R) | Block H4R in synovial tissue to prevent the destruction cartilage and bone | Immune-modulatory effect and repression of chemotaxic potentials by influencing the secretion of MMP-3 |
the pan HDAC inhibitors: ITF 2357 and SAHA HDAC6 inhibitors: Tubastatin A, Tubacin, and CKD-L | histone deacetylase (HDAC) | repress the production of IL-6 in RA FLS and macrophages by promoting mRNA decay | CKD-L increased CTLA-4 expression in Foxp3+ T cells and inhibited the T cells proliferation in the suppression assay. CKD-L significantly increased IL-10, and inhibited TNF-α and IL-1β |
a monoclonal antibody against cadherin-11 | cadherin-11 | Block the reaction of engagement with a recombinant soluble form of the cadherin-11 extracellular binding domain linked to immunoglobulin Fc tail induced MAPK and NF-κB activation in SFL | Suppression the production of IL-6, chemokines, and MMP expression in SFL |
GnRH-antagonism—cetrorelix | LHRH (luteinizing hormone-releasing hormone) | rapid anti-inflammatory effects | decreased TNF-α, IL-1β, IL-10, and CRP |
knock-down model of SOX5 | Block the MMP-9 | Inhibit high expression of transcription factor SOX5 in RA-FLS | repressed IL-17 through interacting with the macrophages |
anti-CX3CL1 monoclonal antibody | CX3CL1 | Block monocyte chemotaxis and angiogenesis | Decreased MMP-2 |
NI-0101, a TLR4 antagonism | TLR4 | block the HMGB1-dependent upregulation of HIF-1α mRNA expression | amend cytokines release including IL1, IL-6, IL-8 and TNF-α. |
Hydroxychloroquine (complex formation of the inflammasome) | TLR overexpression | Inflammasome priming mechanism | Potential decreased TNF-α |
VX 740 | Caspace-1 | Inhibit CARD8 overexpression | Decrease NLRP-3 and dwonstream cytokines |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-J.; Lin, G.-J.; Chen, J.-W.; Wang, K.-C.; Tien, C.-H.; Hu, C.-F.; Chang, C.-N.; Hsu, W.-F.; Fan, H.-C.; Sytwu, H.-K. Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis. Int. J. Mol. Sci. 2019, 20, 1332. https://doi.org/10.3390/ijms20061332
Chen S-J, Lin G-J, Chen J-W, Wang K-C, Tien C-H, Hu C-F, Chang C-N, Hsu W-F, Fan H-C, Sytwu H-K. Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis. International Journal of Molecular Sciences. 2019; 20(6):1332. https://doi.org/10.3390/ijms20061332
Chicago/Turabian StyleChen, Shyi-Jou, Gu-Jiun Lin, Jing-Wun Chen, Kai-Chen Wang, Chiung-Hsi Tien, Chih-Fen Hu, Chia-Ning Chang, Wan-Fu Hsu, Hueng-Chuen Fan, and Huey-Kang Sytwu. 2019. "Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis" International Journal of Molecular Sciences 20, no. 6: 1332. https://doi.org/10.3390/ijms20061332
APA StyleChen, S. -J., Lin, G. -J., Chen, J. -W., Wang, K. -C., Tien, C. -H., Hu, C. -F., Chang, C. -N., Hsu, W. -F., Fan, H. -C., & Sytwu, H. -K. (2019). Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis. International Journal of Molecular Sciences, 20(6), 1332. https://doi.org/10.3390/ijms20061332