The Number of Platelets in Patient’s Blood Influences the Mechanical and Morphological Properties of PRP-Clot and Lysophosphatidic Acid Quantity in PRP
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Macroscopic and Mechanical Observations
4.3. Microscopic Observation
4.4. In Vitro Test
4.5. LPA Quantification
4.6. Statistical Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Yeung, K.W. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Etulain, J. Platelets in wound healing and regenerative medicine. Platelets 2018, 29, 556–568. [Google Scholar] [CrossRef]
- Abdalla, R.I.B.; Alqutaibi, A.Y.; Kaddah, A. Does the adjunctive use of platelet-rich plasma to bone graft during sinus augmentation reduce implant failure and complication? Systematic review and meta-analysis. Quintessence Int. 2018, 49, 139–146. [Google Scholar] [PubMed]
- Stähli, A.; Strauss, F.J.; Gruber, R. The use of platelet-rich plasma to enhance the outcomes of implant therapy: A systematic review. Clin. Oral Implants Res. 2018, 29, 20–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paduano, F.; Marrelli, M.; Alom, N.; Amer, M.; White, L.J.; Shakesheff, K.M.; Tatullo, M. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J. Biomater. Sci. Polym. Ed. 2017, 28, 730–748. [Google Scholar] [CrossRef] [Green Version]
- Kerativitayanan, P.; Tatullo, M.; Khariton, M.; Joshi, P.; Perniconi, B.; Gaharwar, A.K. Nanoengineered Osteoinductive and Elastomeric Scaffolds for Bone Tissue Engineering. ACS Biomater. Sci. Eng. 2017, 3, 590–600. [Google Scholar] [CrossRef]
- Galliera, E.; Corsi, M.M.; Banfi, G. Platelet rich plasma therapy: Inflammatory molecules involved in tissue healing. J. Biol. Regul. Homeost. Agents 2012, 26, 35–42. [Google Scholar]
- Lubkowska, A.; Dolegowska, B.; Banfi, G. Growth factor content in PRP and their applicability in medicine. J. Biol. Regul. Homeost. Agents 2012, 26, 3–22. [Google Scholar]
- Hosogaya, S.; Yatomi, Y.; Nakamura, K.; Ohkawa, R.; Okubo, S.; Yokota, H.; Ohta, M.; Yamazaki, H.; Koike, T.; Ozaki, Y. Measurement of plasma lysophosphatidic acid concentration in healthy subjects: Strong correlation with lysophospholipase D activity. Ann. Clin. Biochem. 2008, 45, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Eichholtz, T.; Jalink, K.; Fahrenfort, I.; Moolenaar, W.H. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem. J. 1993, 291, 677–680. [Google Scholar] [CrossRef] [Green Version]
- Mansell, J.P. Convergence of vitamin D and lysophosphatidic acid signaling in stimulating human osteoblast maturation. Front. Physiol. 2014, 5, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panupinthu, N.; Rogers, J.T.; Zhao, L.; Possmayer, F.; Sims, S.M.; Solano-Flores, L.P.; Dixon, S.J. P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: A signaling axis promoting osteogenesis. J. Exp. Med. 2008, 205, 859–871. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.D.; Song, Z.J.; Chen, R.; Tan, S.Y.; Huang, C.H.; Liu, Y.H.; Cheng, B.; Fu, Q. Lysophosphatidic acid enhanced the osteogenic and angiogenic capability of osteoblasts via LPA1/3 receptor. Connect. Tissue Res. 2019, 60, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.Q.; Li, Z.B.; Yu, Z.L.; Li, D.Q.; Huang, X.Y.; Xing, X.; Li, Z. Lysophosphatidic acid upregulates connective tissue growth factor expression in osteoblasts through the GPCR/PKC and PKA pathways. Int. J. Mol. Med. 2016, 37, 468–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagiosis, S.A.; Karin, N.J. Lysophosphatidic acid induces osteocyte dendrite outgrowth. Biochem. Biophys. Res. Commun. 2007, 357, 194–199. [Google Scholar] [CrossRef]
- Kharode, Y.; Bodine, P.V.; Yaworsky, P.J.; Robinson, J.A.; Billiard, J.; Liu, Y.B. LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4. J. Cell. Biochem. 2010, 109, 794–800. [Google Scholar]
- Bosetti, M.; Borrone, A.; Leigheb, M.; Shastri, V.P.; Cannas, M. Injectable Graft Substitute Active on Bone Tissue Regeneration. Tissue Eng. Part A 2017, 23, 1413–1422. [Google Scholar] [CrossRef]
- Chahla, J.; Mannava, S.; Cinque, M.E.; Piuzzi, N.S.; Geeslin, A.G.; Murray, I.R.; Dornan, G.J.; Muschler, G.F.; Laprade, R.F. A Call for Standardization in Platelet-Rich Plasma Preparation Protocols and Composition Reporting. J. Bone Jt. Surg. 2017, 99, 1769–1779. [Google Scholar] [CrossRef]
- Shah, R.; Gowda, T.M.; Thomas, R.; Kumar, T.; Mehta, D.S. Biological activation of bone grafts using injectable platelet-rich fibrin. J. Prosthet. Dent. 2019, 121, 391–393. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Choukroun, J.; Ghanaati, S.; Miron, R. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets 2018, 29, 48–55. [Google Scholar] [CrossRef]
- Nakatani, Y.; Agata, H.; Sumita, Y.; Koga, T.; Asahina, I. Efficacy of freeze-dried platelet-rich plasma in bone engineering. Arch. Oral Biol. 2017, 73, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; Zalduendo, M.; Prado, R.; Alkhraisat, M.; Orive, G. Morphogen and pro-inflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: Evaluation of the effect of leucocyte inclusion. J. Biomed. Mater. Res. Part A 2014, 103, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Zadpoor, A.A. Bone tissue regeneration: The role of scaffold geometry. Biomater. Sci. 2015, 3, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Buxboim, A.; Discher, D.E. Stem cells feel the difference. Nat. Methods 2010, 7, 695–697. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.H.; Cheng, Y.C.; Chao, P.H.G. The influence and interactions of substrate thickness, organization and dimensionality on cell morphology and migration. Acta Biomater. 2013, 9, 5502–5510. [Google Scholar] [CrossRef]
- Ashworth, J.C.; Mehr, M.; Buxton, P.G.; Best, S.M.; Cameron, R.E. Optimising collagen scaffold architecture for enhanced periodontal ligament fibroblast migration. J. Mater. Sci. Mater. Electron. 2018, 29, 166. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.N.; Ma, Y.Y.; Su, N.C.; Shen, J.F.; Zhang, H.; Wang, H. Lysophosphatidic acid: Its role in bone cell biology and potential for use in bone regeneration. Prostaglandins Lipid Mediat. 2019, 143, 106335. [Google Scholar] [CrossRef]
- Sims, S.M.; Panupinthu, N.; Lapierre, D.M.; Pereverzev, A.; Dixon, S.J. Lisophosphatidic acid: A potential mediator of osteoblast-osteoclast signaling in bone. Biochim. Biophys. Acta 2013, 1831, 109–116. [Google Scholar] [CrossRef]
- Yu, Z.L.; Jiao, B.F.; Li, Z.B. Lysophosphatidic Acid Analogue rather than Lysophosphatidic Acid Promoted the Bone Formation In Vivo. BioMed Res. Int. 2018, 2018, 7537630. [Google Scholar] [CrossRef]
- Sano, T. Multiple Mechanisms Linked to Platelet Activation Result in Lysophosphatidic Acid and Sphingosine 1-Phosphate Generation in Blood. J. Biol. Chem. 2002, 277, 21197–21206. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; An, J.S.; Lim, W.H.; Lim, B.S.; Ahn, S.J. Microbial changes in biofilms on composite resins with different surface roughness: An in vitro study with a multispecies biofilm model. J. Prosthet. Dent. 2019, 122, 493.e1–493.e8. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Tatullo, M.; Dipalma, G.; Inchingolo, F. Oral infection by Staphylococcus aureus in patients affected by White Sponge Nevus: A description of two cases occurred in the same family. Int. J. Med. Sci. 2012, 9, 47–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laux, D.C.; Cohen, P.S.; Møller, A.; Goldberg, J.B.; Givskov, M.; Olson, J.C.; Hentzer, M.; Krogfelt, K.A.; Corson, J.M.; Wosencroft, K.A. Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA. Microbiology 2002, 148, 1709–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bounes, F.V.; Mujalli, A.; Cenac, C.; Severin, S.; Le Faouder, P.; Chicanne, G.; Gaits-Iacovoni, F.; Minville, V.; Gratacap, M.P.; Payrastre, B. The importance of blood platelet lipid signaling in thrombosis and in sepsis. Adv. Biol. Regul. 2018, 67, 66–73. [Google Scholar] [CrossRef]
- Skindersoe, M.E.; Krogfelt, K.A.; Blom, A.; Jiang, G.; Prestwich, G.D.; Mansell, J.P. Dual Action of Lysophosphatidate-Functionalised Titanium: Interactions with Human (MG63) Osteoblasts and Methicillin Resistant Staphylococcus aureus. PLoS ONE 2015, 10, e0143509. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zou, J.; Li, F.; Zhang, T.; Guo, T. Lysophosphatidic acid enhances neointimal hyperplasia following vascular injury through modulating proliferation, autophagy, inflammation and oxidative stress. Mol. Med. Rep. 2018, 18, 87–96. [Google Scholar] [CrossRef]
- Bae, G.H.; Lee, S.K.; Kim, H.S.; Lee, M.; Lee, H.Y.; Bae, Y.S. Lysophosphatidic acid protects against acetaminophen-induced acute liver injury. Exp. Mol. Med. 2017, 49, e407. [Google Scholar] [CrossRef]
- Olianas, M.C.; Dedoni, S.; Onali, P. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. J. Pharmacol. Exp. Ther. 2016, 359, 340–353. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, Y.; Wang, G.; Xiang, L.; Qi, J. A New Anti-Aging Lysophosphatidic Acid from Arabidopsis thaliana. Med. Chem. 2017, 13, 641–647. [Google Scholar] [CrossRef]
- Ray, R.; Rai, V. Lysophosphatidic acid converts monocytes into macrophages in both mice and humans. Blood 2017, 129, 1177–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoaglin, D.R.; Lines, G.K. Prevention of localized osteitis in mandibular third-molar sites using platelet-rich fibrin. Int. J. Dent. 2013, 2013, 875380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marck, R.E.; Gardien, K.L.M.; Vlig, M.; Breederveld, R.S.; Middelkoop, E. Growth Factor Quantification of Platelet-Rich Plasma in Burn Patients Compared to Matched Healthy Volunteers. Int. J. Mol. Sci. 2019, 20, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Den Dolder, J.; Mooren, R.; Vloon, A.P.; Stoelinga, P.J.; Jansen, J.A. Platelet-rich plasma: Quantifation of growth factor levels and the effect on grwth and differentiation of rat bone marrow cells. Tisseu Eng. 2006, 12, 3067–3073. [Google Scholar] [CrossRef] [Green Version]
- Weibrich, G.; Kleis, W.K.; Häfner, G.; Hitzler, W.E. Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J. Cranio Maxillofac. Surg. 2002, 30, 97–102. [Google Scholar] [CrossRef]
- Ito, K.; Yamada, Y.; Nagasaka, T.; Baba, S.; Ueda, M. Osteogenic potential of injectable tissue-engineered bone: A comparison among autogenous bone, bone substitute (Bio-Oss®), platelet-rich plasma, and tissue-engineered bone with respect to their mechanical properties and histological findings. J. Biomed. Mater. Res. Part A 2005, 73, 63–72. [Google Scholar] [CrossRef]
CELLS/μL | GROUP A | GROUP B |
---|---|---|
PLASMA | 114,500 ± 35,500 | 232,600 ± 35,500 |
F1 | 82,100 ± 2500 | 135,200 ± 38,200 |
F2 | 152,000 ± 36,000 | 313,200 ± 79,400 |
LPA μg/mL | PLASMA | F1 | F2 | F2-Clot | F2 Clot-Residual |
---|---|---|---|---|---|
GROUP A | 5.17 ± 0.05 | 5.23 ± 0.08 | 5.19 ± 0.03 | 2.72 ± 1.01 | 4.98 ± 0.15 |
GROUP B | 7.42 ± 0.04 * | 7.39 ± 0.05 * | 7.46 ± 0.03 * | 2.64 ± 1.20 | 7.14 ± 0.24 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosetti, M.; Boffano, P.; Marchetti, A.; Leigheb, M.; Colli, M.; Brucoli, M. The Number of Platelets in Patient’s Blood Influences the Mechanical and Morphological Properties of PRP-Clot and Lysophosphatidic Acid Quantity in PRP. Int. J. Mol. Sci. 2020, 21, 139. https://doi.org/10.3390/ijms21010139
Bosetti M, Boffano P, Marchetti A, Leigheb M, Colli M, Brucoli M. The Number of Platelets in Patient’s Blood Influences the Mechanical and Morphological Properties of PRP-Clot and Lysophosphatidic Acid Quantity in PRP. International Journal of Molecular Sciences. 2020; 21(1):139. https://doi.org/10.3390/ijms21010139
Chicago/Turabian StyleBosetti, Michela, Paolo Boffano, Alice Marchetti, Massimiliano Leigheb, Mattia Colli, and Matteo Brucoli. 2020. "The Number of Platelets in Patient’s Blood Influences the Mechanical and Morphological Properties of PRP-Clot and Lysophosphatidic Acid Quantity in PRP" International Journal of Molecular Sciences 21, no. 1: 139. https://doi.org/10.3390/ijms21010139
APA StyleBosetti, M., Boffano, P., Marchetti, A., Leigheb, M., Colli, M., & Brucoli, M. (2020). The Number of Platelets in Patient’s Blood Influences the Mechanical and Morphological Properties of PRP-Clot and Lysophosphatidic Acid Quantity in PRP. International Journal of Molecular Sciences, 21(1), 139. https://doi.org/10.3390/ijms21010139