Stealth Magnetoliposomes Based on Calcium-Substituted Magnesium Ferrite Nanoparticles for Curcumin Transport and Release
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fluorescence Properties of Curcumin
2.2. Nanoparticles Characterization
2.2.1. UV–Visible Absorption Spectra
2.2.2. X-Ray Diffraction (XRD) Measurements
2.2.3. Sedimentation Kinetics
2.2.4. Transmission Electron Microscopy (TEM)
2.2.5. Magnetic Properties
2.3. Characterization of Magnetoliposomes
2.3.1. Aqueous Magnetoliposomes
2.3.2. Solid Magnetoliposomes
2.3.3. Curcumin Release Profile
3. Materials and Methods
3.1. Preparation of CaxMg1−xFe2O4 Ferrite Nanoparticles
3.2. Preparation of Magnetoliposomes and GUVs
3.3. Characterization of Nanoparticles and Magnetoliposomes
3.4. Spectroscopic Measurements
3.5. Drug Release Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as ‘Curecumin’: From kitchen to clinic. Biochem. Pharm. 2008, 75, 787–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringman, J.M.; Frautschy, S.A.; Cole, G.M.; Masterman, D.L.; Cummings, J.L. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr. Alzheimer Res. 2005, 2, 131–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: A short review. Life Sci. 2006, 78, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, J.; Chirino, Y.I.; Molina-Jijón, E.; Andérica-Romero, A.C.; Tapia, E.; Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol. 2013, 1, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration Office of Food Additive Safety. Agency Response Letter GRAS Notice No. Grn 000460; U.S. Food and Drug Administration: White Oak, MD, USA, 2013.
- Heger, M.; van Golen, R.F.; Broekgaarden, M.; Michel, M.C. The molecular basis for the pharmacokinetics and pharmacodynamicsof curcumin and its metabolites in relation to cancers. Pharm. Rev. 2013, 66, 222–307. [Google Scholar] [CrossRef]
- Kurien, B.T.; Singh, A.; Matsumoto, H.; Scofield, R.H. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev. Technol. 2007, 5, 567–576. [Google Scholar] [CrossRef]
- Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem. 2009, 17, 2623–2631. [Google Scholar] [CrossRef]
- Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anticancer drug delivery. J. Control. Rel. 2010, 148, 135–146. [Google Scholar] [CrossRef]
- Sawant, R.R.; Torchilin, V.P. Challenges in development of targeted liposomal therapeutics. Aaps J. 2012, 14, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Gieré, R. Magnetite in the human body. PNAS 2016, 113, 11986–11987. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L.; Liu, Y.; Zhang, Z. Handbook of Nanophase and Nanostructured Materials; Kluwer Academic/Plenum: New York, NY, USA, 2003; Volume 3. [Google Scholar]
- Sharma, R.; Thakur, P.; Sharma, P. Mn2+ doped Mg-Zn ferrite nanoparticles for microwave device applications. IEEE Electron Device Lett. 2018, 39, 901–904. [Google Scholar] [CrossRef]
- Amariya, S.N.; Dolia, A.S.; Prasad, P.K.; Sharma, S.P.; Pareek, M.S.; Kumar, D.S. Size dependent structural and magnetic behavior of CaFe2O4. Curr. Appl. Phys. 2013, 13, 830–835. [Google Scholar] [CrossRef]
- Saldívar-Ramírez, M.M.G.; Sánchez-Torres, C.G.; Cortés-Hernández, D.A.; Escobedo-Bocardo, J.C.; Almanza-Robles, J.M.; Larson, A.; Reséndiz-Hernández, P.J.; Acunã-Gutiérrez, I.O. Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia. J. Mater. Sci. Mater. Electron. 2014, 25, 2229–2236. [Google Scholar] [CrossRef] [PubMed]
- Šepelák, V.; Baabe, D.; Mienert, D.; Litterst, F.J.; Becker, K.D. Enhanced magnetisation in nanocrystalline high-energy milled MgFe2O4. Scr. Mater. 2003, 48, 961–966. [Google Scholar] [CrossRef]
- Gismelseed, A.M.; Mohammed, K.A.; Widatallah, H.M.; Al-Rawas, A.D.; Elzain, M.E.; Yousif, A.A. Structure and magnetic properties of the ZnxMg1-xFe2O4 ferrites. J. Phys. Conf. Ser. 2010, 217, 012138. [Google Scholar] [CrossRef]
- Mazen, S.A.; Mansour, S.F.; Zaki, H.M. Some physical and magnetic properties of Mg-Zn ferrite. Cryst. Res. Technol. 2003, 38, 471–478. [Google Scholar] [CrossRef]
- Van Nong, H.; Hung, L.X.; Thang, P.N.; Chinh, V.D.; Vu, L.V.; Dung, P.T.; Van Trung, T.; Nga, P.T. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. Springerplus 2016, 22, 1147. [Google Scholar] [CrossRef] [Green Version]
- Barick, K.C.; Ekta, E.; Gawali, S.L.; Sarkar, A.; Kunwar, A.; Priyadarsini, K.L.; Hassan, P.A. Pluronic stabilized Fe3O4 magnetic nanoparticles for intracellular delivery of curcumin. RSC Adv. 2016, 6, 98674–98681. [Google Scholar] [CrossRef]
- Priyadarsini, K.I. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol. C Photochem. Rev. 2009, 10, 81–95. [Google Scholar] [CrossRef]
- Cardoso, B.D.; Rio, I.S.R.; Rodrigues, A.R.O.; Fernandes, F.C.T.; Almeida, B.G.; Pires, A.; Pereira, A.M.; Araujo, J.P.; Castanheira, E.M.S.; Coutinho, P.J.G. Magnetoliposomes containing magnesium ferrite nanoparticles as nanocarriers for the model drug curcumin. R. Soc. Open Sci. 2018, 5, 181017. [Google Scholar] [CrossRef] [Green Version]
- Jasim, F.; Ali., F. A novel and rapid method for the spectrofluorometric determination of curcumin in curcumin spices and flavors. Microchem. J. 1988, 38, 106–110. [Google Scholar] [CrossRef]
- Pereira, D.S.M.; Cardoso, B.D.; Rodrigues, A.R.O.; Amorim, C.O.; Amaral, V.S.; Almeida, B.G.; Queiroz, M.-J.; Martinho, O.; Baltazar, F.; Calhelha, R.C.; et al. Magnetoliposomes Containing Calcium Ferrite Nanoparticles for Applications in Breast Cancer Therapy. Pharmaceutics 2019, 11, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.G.; Borse, P.H.; Jang, J.S.; Jeong, E.D.; Jung, O.S.; Suh, Y.J.; Lee, J.S. Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem. Comm. 2009, 39, 5889–5891. [Google Scholar]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Rodrigues, A.R.O.; Matos, J.O.G.; Nova Dias, A.M.; Almeida, B.G.; Pires, A.; Pereira, A.M.; Araújo, J.P.; Queiroz, M.J.R.P.; Castanheira, E.M.S.; Coutinho, P.J.G. Development of multifunctional liposomes containing magnetic/plasmonic MnFe₂O₄/Au core/shell nanoparticles. Pharmaceutics 2019, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Pitschke, W.; Hermann, H.; Mattern, N. The influence of surface roughness on diffracted X-ray intensities in Bragg–Brentano geometry and its effect on the structure determination by means of Rietveld analysis. Powder Diffr. 1993, 8, 74–83. [Google Scholar] [CrossRef]
- Bamzai, K.K.; Kour, G.; Kaur, B.; Kulkarni, S.D. Preparation, and Structural and Magnetic Properties of Ca Substituted Magnesium Ferrite with Composition MgCaxFe2−xO4 (x = 0.00, 0.01, 0.03, 0.05, 0.07). J. Mater. 2014, 2014, 184340. [Google Scholar] [CrossRef] [Green Version]
- Stanley, K.J. Oxide Magnetic Materials; Clarendon Press: Oxford, UK, 1972. [Google Scholar]
- Khanna, L.; Verma, N.K. Synthesis, characterization and in vitro cytotoxicity study of calcium ferrite nanoparticles. Mater. Sci. Semicond. Process 2013, 16, 1842–1848. [Google Scholar] [CrossRef]
- Kawanishi, M.; Ogo, S.; Ikemoto, M.; Totsuka, Y.; Ishino, K.; Wakabayashi, K.; Yagi, T. Genotoxicity and reactive oxygen species production induced by magnetite nanoparticles in mammalian cells. J. Toxicol. Sci. 2013, 38, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Gao, J.; Ai, H.; Chen, X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 2013, 9, 1533–1545. [Google Scholar] [CrossRef]
- Widdrat, M.; Kumari, M.; Tompa, E.; Pósfai, M.; Hirt, A.M.; Faivre, D. Keeping nanoparticles fully functional: Long-term storage and alteration of magnetite. Chem. Plus. Chem. 2014, 79, 1225–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Niu, H.; Zhang, Y.; Liu, J.; Shia, Y.; Zhang, X.; Cai, Y. Biocompatible phosphatidylcholine bilayer coated on magnetic nanoparticles and their application in the extraction of several polycyclic aromatic hydrocarbons from environmental water and milk samples. J. Chromatogr. A 2012, 1238, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.R.O.; Almeida, B.G.; Rodrigues, J.M.; Queiroz, M.-J.R.P.; Calhelha, R.C.; Ferreira, I.C.F.R.; Pires, A.; Pereira, A.M.; Araújo, J.P.; Coutinho, P.J.G.; et al. Magnetoliposomes as carriers for promising antitumor thieno[3,2-b]pyridin-7-arylamines: Photophysical and biological studies. RSC Adv. 2017, 7, 15352–15361. [Google Scholar] [CrossRef] [Green Version]
- Illés, E.; Szekeres, M.; Kupcsik, E.; Tóth, I.Y.; Farkas, K.; Jedlovszky-Hajdú, A.; Tombácz, E. PEGylation of surfacted magnetite core-shell nanoparticles for biomedical application. Colloid Surf. A Phys. Eng. Asp. 2014, 460, 429–440. [Google Scholar]
- Nuytten, N.; Hakimhashemi, M.; Ysenbaert, T.; Defour, L.; Trekker, J.; Soenen, S.J.; Van der Meeren, P.; Cuyper, M. PEGylated lipids impede the lateral diffusion of adsorbed proteins at the surface of (magneto)liposomes. Colloid Surf. B Biointerfaces 2010, 80, 227–231. [Google Scholar] [CrossRef]
- Estelrich, J.; Busquets, M.A.; Morán, M.C. Effect of PEGylation on Ligand-Targeted Magnetoliposomes: A Missed Goal. Acs Omega 2017, 2, 6544–6555. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 89th ed.; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2009. [Google Scholar]
- Valeur, B. Molecular Fluorescence Principles and Applications; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Israelachvili, J.N.; Marcelja, S.; Horn, R.G. Physical principles of membrane organization. Q. Rev. Biophys. 1980, 13, 121–200. [Google Scholar] [CrossRef] [Green Version]
- Kell, D.B.; Harris, C.M. On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 1. Theory and overview. Eur. Biophys. J. 1985, 12, 181–197. [Google Scholar] [CrossRef]
- Tamba, Y.; Terashima, H.; Yamazaki, M. A membrane filtering method for the purification of giant unilamellar vesicles. Chem. Phys. Lipids 2011, 164, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Tamba, Y.; Masum, S.M.; Yamashita, Y.; Yamazaki, M. La3+ and Gd3+ induce shape change of giant unilamellar vesicles of phosphatidylcholine. Biochim. Biophys. Acta 2002, 1564, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Lentz, B.R. Membrane fluidity as detected by diphenylhexatriene probes. Chem. Phys. Lipids 1989, 50, 171–190. [Google Scholar] [CrossRef]
- Hervault, A.; Thanh, N.T.K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 2014, 6, 11553–11573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, H.; Barnes, N.S. Biology, 5th ed.; Worth Publishers: New York, NY, USA, 1989. [Google Scholar]
- Tilley, L.; Thulborn, K.R.; Sawyer, W.H. An assessment of the fluidity gradient of the lipid bilayer as determined by a set of n-(9-anthroyloxy)fatty acids (n = 2, 6, 9, 12, 16). J. Biol. Chem. 1979, 254, 2592–2594. [Google Scholar] [PubMed]
- Bahri, M.A.; Heyne, B.J.; Hans, P.; Seret, A.E.; Mouithys-Mickalad, A.A.; Hoebeke, M.D. Quantification of lipid bilayer effective microviscosity and fluidity effect induced by propofol. Biophys. Chem. 2005, 114, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Rainey, N.E.; Moustapha, A.; Saric, A.; Nicolas, G.; Sureau, F.; Petit, P.X. Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discov. 2019, 5, 150. [Google Scholar] [CrossRef]
- Muela, A.; Munoz, D.; Martín-Rodríguez, R.; Orue, I.; Garaio, E.; Cerio, A.A.D.; Alonso, J.; García, J.A. Optimal Parameters for Hyperthermia Treatment Using Biomineralized Magnetite Nanoparticles: Theoretical and Experimental Approach. J. Phys. Chem. C 2016, 120, 24437–24448. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modelling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar]
- Ghitman, J.; Stan, R.; Ghebaur, A.; Cecoltan, S.; Vasile, E.; Iovu, H. Novel PEG-modified hybrid PLGA-vegetable oils nanostructured carriers for improving performances of indomethacin delivery. Polymers 2018, 10, 579. [Google Scholar] [CrossRef] [Green Version]
- Kini, S.; Bahadur, D.; Panda, D. Mechanism of anti-cancer activity of benomyl loaded nanoparticles in multidrug resistant cancer cells. J. Biomed. Nanotechnol. 2015, 11, 877–889. [Google Scholar] [CrossRef]
- Joy, M.; Iyengar, S.; Chakraborty., J.; Ghosh, S. Layered double hydroxide using hydrothermal treatment: Morphology evolution, intercalation and release kinetics of diclofenac sodium. Front. Mater. Sci. 2017, 11, 395–408. [Google Scholar] [CrossRef]
- Costa, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Batzri, S.; Korn, E.D. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta 1973, 298, 1015–1019. [Google Scholar] [CrossRef]
- Kremer, J.M.H.; Van der Esker, M.W.; Pathmamanoharan, C.; Wiersema, P.H. Vesicles of variable diameter prepared by a modified injection method. Biochemistry 1977, 16, 3932–3935. [Google Scholar] [CrossRef] [PubMed]
- Demas, J.N.; Crosby, G.A. The measurement of photoluminescence quantum yields. Rev. J. Phys. Chem. 1971, 75, 991–1024. [Google Scholar]
- Fery-Forgues, S.; Lavabre, D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J. Chem. Educ. 1999, 76, 1260–1264. [Google Scholar] [CrossRef]
- Johnson, I.; Spence, M.T.Z. Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 11th ed.; Invitrogen: Carlsbad, CA, USA, 2011. [Google Scholar]
Sample | Ox,y,z | Micro Absorption Correction (#) | Overall Temperature Factor, Bover | Lattice Constant (nm) | Size (nm) | Rf | χ2 | |
---|---|---|---|---|---|---|---|---|
Ca0.50Mg0.50Fe2O4 | 0.378 | No | 0 (+) | 0.839045 | 6.3 | 5.92 | 1.39 | |
Ca0.50Mg0.50Fe2O4 | 0.377 | No | −3.67 | 0.839196 | 6.4 | 3.19 | 1.23 | |
Ca0.50Mg0.50Fe2O4 | 0.370 | P0 = 0.69 | τ = 0.14 | 0 (+) | 0.839164 | 6.4 | 2.64 | 1.23 |
Ca0.25Mg0.75Fe2O4 | 0.372 | P0 = 0.71 | τ = 0.11 | 0 (+) | 0.838978 | 5.8 | 3.62 | 1.26 |
Ca0.75Mg0.25Fe2O4 | 0.384 | P0 = 0.72 | τ = 0.09 | 0 (+) | 0.843550 | 7.0 | 3.71 | 1.28 |
Nanoparticles | Ms (emu/g) | Mr (emu/g) | Mr/Ms | Hc (kOe) |
---|---|---|---|---|
Ca0.75Mg0.25Fe2O4 | 8.83 | 0.08 | 0.009 | 5.74 |
Ca0.50Mg0.50Fe2O4 | 15.63 | 0.07 | 0.004 | 5.33 |
Ca0.25Mg0.75Fe2O4 | 12.98 | 0.15 | 0.011 | 5.45 |
Nanoparticles | Hydrodynamic Diameter ± SD (nm) | PDI | Zeta Potential ± SD (mV) |
---|---|---|---|
Ca0.25Mg0.75Fe2O4 | 147.8 ± 21 | 0.15 ± 0.018 | −16.8 ± 0.5 |
Ca0.50Mg0.50Fe2O4 | 149.2 ± 22 | 0.20 ± 0.013 | −18.0 ± 0.8 |
Ca0.75Mg0.25Fe2O4 | 131.4 ± 19 | 0.22 ± 0.015 | −15.3 ± 1.5 |
System | Lipid Formulation | r |
---|---|---|
Liposomes | Egg–PC | 0.340 [22] |
AMLs | Egg–PC | 0.320 |
AMLs | 95% Egg–PC/5% DSPE-PEG2000 | 0.335 |
Glycerol | ---- | 0.365 [22] |
Nanoparticles | ΦFRET | R0 (nm) | rAD (nm) |
---|---|---|---|
Ca0.25Mg0.75Fe2O4 | 0.87 | 5.31 | 3.87 |
Ca0.50Mg0.50Fe2O4 | 0.96 | 5.94 | 3.42 |
Ca0.75Mg0.25Fe2O4 | 0.68 | 3.59 | 3.17 |
Nanoparticles | Hydrodynamic Diameter ± SD (nm) | PDI | Zeta Potential ± SD (mV) |
---|---|---|---|
Ca0.25Mg0.75Fe2O4 | 127.3 ± 17 | 0.213 ± 0.025 | −19.8 ± 1.2 |
Ca0.50Mg0.50Fe2O4 | 147.0 ± 15 | 0.206 ± 0.012 | −21.4 ± 3 |
Ca0.75Mg0.25Fe2O4 | 155.4 ± 21 | 0.228 ± 0.021 | −20.9 ± 1.9 |
Lipid Formulation | Temperature (°C) | r | |
---|---|---|---|
Liposomes | DPPC | 25 | 0.287 [22] |
55 | 0.119 [22] | ||
SMLs | DPPC | 25 | 0.156 |
55 | 0.094 | ||
SMLs | 95% DPPC/5% DSPE-PEG2000 | 25 | 0.209 |
55 | 0.139 |
Conditions | Lipid Formulation | K (min−1) | n | R2 |
---|---|---|---|---|
Without AMF | DPPC | 2.98 × 10−3 | 0.685 | 0.9929 |
DPPC:DSPE-PEG | 2.43 × 10−2 | 0.659 | 0.9927 | |
With AMF | DPPC | 3.73 × 10−3 | 0.646 | 0.9900 |
DPPC:DSPE-PEG | 2.26 × 10−2 | 0.663 | 0.9923 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, B.D.; Rodrigues, A.R.O.; Almeida, B.G.; Amorim, C.O.; Amaral, V.S.; Castanheira, E.M.S.; Coutinho, P.J.G. Stealth Magnetoliposomes Based on Calcium-Substituted Magnesium Ferrite Nanoparticles for Curcumin Transport and Release. Int. J. Mol. Sci. 2020, 21, 3641. https://doi.org/10.3390/ijms21103641
Cardoso BD, Rodrigues ARO, Almeida BG, Amorim CO, Amaral VS, Castanheira EMS, Coutinho PJG. Stealth Magnetoliposomes Based on Calcium-Substituted Magnesium Ferrite Nanoparticles for Curcumin Transport and Release. International Journal of Molecular Sciences. 2020; 21(10):3641. https://doi.org/10.3390/ijms21103641
Chicago/Turabian StyleCardoso, Beatriz D., Ana Rita O. Rodrigues, Bernardo G. Almeida, Carlos O. Amorim, Vítor S. Amaral, Elisabete M. S. Castanheira, and Paulo J. G. Coutinho. 2020. "Stealth Magnetoliposomes Based on Calcium-Substituted Magnesium Ferrite Nanoparticles for Curcumin Transport and Release" International Journal of Molecular Sciences 21, no. 10: 3641. https://doi.org/10.3390/ijms21103641
APA StyleCardoso, B. D., Rodrigues, A. R. O., Almeida, B. G., Amorim, C. O., Amaral, V. S., Castanheira, E. M. S., & Coutinho, P. J. G. (2020). Stealth Magnetoliposomes Based on Calcium-Substituted Magnesium Ferrite Nanoparticles for Curcumin Transport and Release. International Journal of Molecular Sciences, 21(10), 3641. https://doi.org/10.3390/ijms21103641