Cellular Stress in the Pathogenesis of Muscular Disorders—From Cause to Consequence
Abstract
:1. Introduction
2. The Cellular Stress Response in Context of Muscle Cells
3. Endoplasmic Reticulum (ER)-Stress and Unfolded Protein Response
3.1. ER-Stress in Inflammatory Myopathies
3.2. ER-Stress in Muscular Dystrophies
3.3. ER-Stress in Disturbance of Calcium Homeostasis
3.4. ER-Stress in Metabolic Myopathies
3.5. ER-Stress in Myasthenia Gravis
4. Oxidative Stress Response
4.1. Oxidative Stress in Muscular Dystrophies
4.2. Oxidative Stress in Mitochondriopathies
4.3. Oxidative Stress in Inflammatory Myopathies
5. Hypoxic Stress
6. Mitochondrial Stress Response
7. Integrated Stress Response and Stress Granule Formation
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galluzzi, L.; Yamazaki, T.; Kroemer, G. Linking Cellular Stress Responses to Systemic Homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 731–745. [Google Scholar] [CrossRef]
- Bond, S.; Lopez-Lloreda, C.; Gannon, P.J.; Akay-Espinoza, C.; Jordan-Sciutto, K.L. The Integrated Stress Response and Phosphorylated Eukaryotic Initiation Factor 2alpha in Neurodegeneration. J. Neuropathol. Exp. Neurol. 2020, 79, 123–143. [Google Scholar] [CrossRef]
- Newsholme, P.; Keane, K.N.; Carlessi, R.; Cruzat, V. Oxidative Stress Pathways in Pancreatic Beta-Cells and Insulin-Sensitive Cells and Tissues: Importance to Cell Metabolism, Function, and Dysfunction. Am. J. Physiol.-Cell Physiol. 2019, 317, C420–C433. [Google Scholar] [CrossRef]
- Santos-Ribeiro, D.; Pilette, C.; Perros, F. The Integrated Stress Response System in Cardiovascular Disease. Drug Discov. Today 2018, 23, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng, H.X.; et al. Mutations in Cu/Zn Superoxide Dismutase Gene Are Associated with Familial Amyotrophic Lateral Sclerosis. Nature 1993, 362, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Bunton-Stasyshyn, R.K.; Saccon, R.A.; Fratta, P.; Fisher, E.M. Sod1 Function and Its Implications for Amyotrophic Lateral Sclerosis Pathology: New and Renascent Themes. Neuroscientist 2015, 21, 519–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.P.; van Broeckhoven, C.; van der Zee, J. Als Genes in the Genomic Era and Their Implications for Ftd. Trends Genet. 2018, 34, 404–423. [Google Scholar] [CrossRef] [Green Version]
- Ferraiuolo, L.; Kirby, J.; Grierson, A.J.; Sendtner, M.; Shaw, P.J. Molecular Pathways of Motor Neuron Injury in Amyotrophic Lateral Sclerosis. Nat. Rev. Neurol. 2011, 7, 616–630. [Google Scholar] [CrossRef]
- Hirsch, G.E.; Heck, T.G. Inflammation, Oxidative Stress and Altered Heat Shock Response in Type 2 Diabetes: The Basis for New Pharmacological and Non-Pharmacological Interventions. Arch. Physiol. Biochem. 2019, 1–15. [Google Scholar] [CrossRef]
- Teixeira, P.F.; Cerca, F.; Santos, S.D.; Saraiva, M.J. Endoplasmic Reticulum Stress Associated with Extracellular Aggregates. Evidence from Transthyretin Deposition in Familial Amyloid Polyneuropathy. J. Biol. Chem. 2006, 281, 21998–22003. [Google Scholar] [CrossRef] [Green Version]
- Marieb, E.N.; Hoehn, K. Human Anatomy & Physiology, 7th ed.; Pearson Benjamin Cummings: San Francisco, CA, USA, 2007. [Google Scholar]
- Sontheimer, R.D. Skin Is Not the Largest Organ. J. Investig. Dermatol. 2014, 134, 581–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afroze, D.; Kumar, A. Er Stress in Skeletal Muscle Remodeling and Myopathies. FEBS J. 2019, 286, 379–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukund, K.; Subramaniam, S. Skeletal Muscle: A Review of Molecular Structure and Function, in Health and Disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurlo, F.; Larson, K.; Bogardus, C.; Ravussin, E. Skeletal Muscle Metabolism Is a Major Determinant of Resting Energy Expenditure. J. Clin. Investig. 1990, 86, 1423–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Vizarra, E.; Enriquez, J.A.; Perez-Martos, A.; Montoya, J.; Fernandez-Silva, P. Tissue-Specific Differences in Mitochondrial Activity and Biogenesis. Mitochondrion 2011, 11, 207–213. [Google Scholar] [CrossRef]
- Bohnert, K.R.; McMillan, J.D.; Kumar, A. Emerging Roles of Er Stress and Unfolded Protein Response Pathways in Skeletal Muscle Health and Disease. J. Cell. Physiol. 2018, 233, 67–78. [Google Scholar] [CrossRef]
- Pakos-Zebrucka, K.; Koryga, I.; Mnich, K.; Ljujic, M.; Samali, A.; Gorman, A.M. The Integrated Stress Response. EMBO Rep. 2016, 17, 1374–1395. [Google Scholar] [CrossRef] [Green Version]
- Kuga, A.; Ohsawa, Y.; Okada, T.; Kanda, F.; Kanagawa, M.; Toda, T.; Sunada, Y. Endoplasmic Reticulum Stress Response in P104l Mutant Caveolin-3 Transgenic Mice. Hum. Mol. Genet. 2011, 20, 2975–2983. [Google Scholar] [CrossRef]
- Hulmi, J.J.; Hentila, J.; DeRuisseau, K.C.; Oliveira, B.M.; Papaioannou, K.G.; Autio, R.; Kujala, U.M.; Ritvos, O.; Kainulainen, H.; Korkmaz, A.; et al. Effects of Muscular Dystrophy, Exercise and Blocking Activin Receptor Iib Ligands on the Unfolded Protein Response and Oxidative Stress. Free Radic. Biol. Med. 2016, 99, 308–322. [Google Scholar] [CrossRef] [Green Version]
- Moorwood, C.; Barton, E.R. Caspase-12 Ablation Preserves Muscle Function in the Mdx Mouse. Hum. Mol. Genet. 2014, 23, 5325–5341. [Google Scholar] [CrossRef] [Green Version]
- Pauly, M.; Angebault-Prouteau, C.; Dridi, H.; Notarnicola, C.; Scheuermann, V.; Lacampagne, A.; Matecki, S.; Fauconnier, J. Er Stress Disturbs Sr/Er-Mitochondria Ca(2+) Transfer: Implications in Duchenne Muscular Dystrophy. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2229–2239. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, Q.; Liu, F.; Zhang, X.; Li, W.; Liu, S.; Zhao, Y.; Gong, Y.; Yan, C. Unfolded Protein Response and Activated Degradative Pathways Regulation in Gne Myopathy. PLoS ONE 2013, 8, e58116. [Google Scholar] [CrossRef] [PubMed]
- Sela, I.; Krentsis, I.M.; Shlomai, Z.; Sadeh, M.; Dabby, R.; Argov, Z.; Ben-Bassat, H.; Mitrani-Rosenbaum, S. The Proteomic Profile of Hereditary Inclusion Body Myopathy. PLoS ONE 2011, 6, e16334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarparanta, J.; Jonson, P.H.; Kawan, S.; Udd, B. Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int. J. Mol. Sci. 2020, 21, 1409. [Google Scholar] [CrossRef] [Green Version]
- Palmio, J.; Jonson, P.H.; Inoue, M.; Sarparanta, J.; Bengoechea, R.; Savarese, M.; Vihola, A.; Jokela, M.; Nakagawa, M.; Noguchi, S.; et al. Mutations in the J Domain of Dnajb6 Cause Dominant Distal Myopathy. Neuromuscul. Disord. 2020, 30, 38–46. [Google Scholar] [CrossRef]
- Sarparanta, J.; Jonson, P.H.; Golzio, C.; Sandell, S.; Luque, H.; Screen, M.; McDonald, K.; Stajich, J.M.; Mahjneh, I.; Vihola, A.; et al. Mutations Affecting the Cytoplasmic Functions of the Co-Chaperone Dnajb6 Cause Limb-Girdle Muscular Dystrophy. Nat. Genet. 2012, 44, 450–455. [Google Scholar] [CrossRef]
- Boito, C.A.; Fanin, M.; Gavassini, B.F.; Cenacchi, G.; Angelini, C.; Pegoraro, E. Biochemical and Ultrastructural Evidence of Endoplasmic Reticulum Stress in Lgmd2i. Virchows Arch. 2007, 451, 1047–1055. [Google Scholar] [CrossRef]
- Lin, Y.Y.; White, R.J.; Torelli, S.; Cirak, S.; Muntoni, F.; Stemple, D.L. Zebrafish Fukutin Family Proteins Link the Unfolded Protein Response with Dystroglycanopathies. Hum. Mol. Genet. 2011, 20, 1763–1775. [Google Scholar] [CrossRef] [Green Version]
- Screen, M.; Raheem, O.; Holmlund-Hampf, J.; Jonson, P.H.; Huovinen, S.; Hackman, P.; Udd, B. Gene Expression Profiling in Tibial Muscular Dystrophy Reveals Unfolded Protein Response and Altered Autophagy. PLoS ONE 2014, 9, e90819. [Google Scholar] [CrossRef]
- Selcen, D.; Engel, A.G. Myofibrillar Myopathy Caused by Novel Dominant Negative Alpha B-Crystallin Mutations. Ann. Neurol. 2003, 54, 804–810. [Google Scholar] [CrossRef]
- Selcen, D.; Muntoni, F.; Burton, B.K.; Pegoraro, E.; Sewry, C.; Bite, A.V.; Engel, A.G. Mutation in Bag3 Causes Severe Dominant Childhood Muscular Dystrophy. Ann. Neurol. 2009, 65, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozzer, D.; Varone, E.; Chernorudskiy, A.; Schiarea, S.; Missiroli, S.; Giorgi, C.; Pinton, P.; Canato, M.; Germinario, E.; Nogara, L.; et al. A Maladaptive Er Stress Response Triggers Dysfunction in Highly Active Muscles of Mice with Selenon Loss. Redox Biol. 2019, 20, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Hanna, A.D.; Wang, H.; Dagnino-Acosta, A.; Joshi, A.D.; Knoblauch, M.; Xia, Y.; Georgiou, D.K.; Xu, J.; Long, C.; et al. A Chemical Chaperone Improves Muscle Function in Mice with a Ryr1 Mutation. Nat. Commun. 2017, 8, 14659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, Y.; Kobayashi, H.; Kawagoe, S.; Aoki, K.; Kaneshiro, E.; Shimizu, H.; Eto, Y.; Ida, H.; Ohashi, T. Endoplasmic Reticulum Stress Induces Autophagy through Activation of P38 Mapk in Fibroblasts from Pompe Disease Patients Carrying C.546g>T Mutation. Mol. Genet. Metab. 2011, 104, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Rashid, T.; Nemazanyy, I.; Paolini, C.; Tatsuta, T.; Crespin, P.; de Villeneuve, D.; Brodesser, S.; Benit, P.; Rustin, P.; Baraibar, M.A.; et al. Lipin1 Deficiency Causes Sarcoplasmic Reticulum Stress and Chaperone-Responsive Myopathy. EMBO J. 2019, 38, e99576. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, K.; Casciola-Rosen, L.; Lundberg, I.; Rawat, R.; Cutting, S.; Thapliyal, R.; Chang, J.; Dwivedi, S.; Mitsak, M.; Chen, Y.W.; et al. Activation of the Endoplasmic Reticulum Stress Response in Autoimmune Myositis: Potential Role in Muscle Fiber Damage and Dysfunction. Arthritis Rheum. 2005, 52, 1824–1835. [Google Scholar] [CrossRef]
- Song, J.; Kim, D.; Hong, J.; Kim, G.W.; Jung, J.; Park, S.; Park, H.J.; Joo, J.W.J.; Jang, W. Meta-Analysis of Polymyositis and Dermatomyositis Microarray Data Reveals Novel Genetic Biomarkers. Genes 2019, 10, 864. [Google Scholar] [CrossRef] [Green Version]
- Vitadello, M.; Doria, A.; Tarricone, E.; Ghirardello, A.; Gorza, L. Myofiber Stress-Response in Myositis: Parallel Investigations on Patients and Experimental Animal Models of Muscle Regeneration and Systemic Inflammation. Arthritis Res. Ther. 2010, 12, R52. [Google Scholar] [CrossRef] [Green Version]
- Askanas, V.; Engel, W.K. Inclusion-Body Myositis: Newest Concepts of Pathogenesis and Relation to Aging and Alzheimer Disease. J. Neuropathol. Exp. Neurol. 2001, 60, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Delaunay, A.; Bromberg, K.D.; Hayashi, Y.; Mirabella, M.; Burch, D.; Kirkwood, B.; Serra, C.; Malicdan, M.C.; Mizisin, A.P.; Morosetti, R.; et al. The Er-Bound Ring Finger Protein 5 (Rnf5/Rma1) Causes Degenerative Myopathy in Transgenic Mice and Is Deregulated in Inclusion Body Myositis. PLoS ONE 2008, 3, e1609. [Google Scholar] [CrossRef] [Green Version]
- Fratta, P.; Engel, W.K.; McFerrin, J.; Davies, K.J.; Lin, S.W.; Askanas, V. Proteasome Inhibition and Aggresome Formation in Sporadic Inclusion-Body Myositis and in Amyloid-Beta Precursor Protein-Overexpressing Cultured Human Muscle Fibers. Am. J. Pathol. 2005, 167, 517–526. [Google Scholar] [CrossRef]
- Nogalska, A.; Engel, W.K.; McFerrin, J.; Kokame, K.; Komano, H.; Askanas, V. Homocysteine-Induced Endoplasmic Reticulum Protein (Herp) Is up-Regulated in Sporadic Inclusion-Body Myositis and in Endoplasmic Reticulum Stress-Induced Cultured Human Muscle Fibers. J. Neurochem. 2006, 96, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Nogalska, A.; Wojcik, S.; Engel, W.K.; McFerrin, J.; Askanas, V. Endoplasmic Reticulum Stress Induces Myostatin Precursor Protein and Nf-Kappab in Cultured Human Muscle Fibers: Relevance to Inclusion Body Myositis. Exp. Neurol. 2007, 204, 610–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vattemi, G.; Engel, W.K.; McFerrin, J.; Askanas, V. Endoplasmic Reticulum Stress and Unfolded Protein Response in Inclusion Body Myositis Muscle. Am. J. Pathol. 2004, 164, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kitazawa, M.; Trinh, D.N.; LaFerla, F.M. Inflammation Induces Tau Pathology in Inclusion Body Myositis Model Via Glycogen Synthase Kinase-3beta. Ann. Neurol. 2008, 64, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Barthel, K.; Zschuntzsch, J.; Muth, I.E.; Swindle, E.J.; Hombach, A.; Sehmisch, S.; Wrede, A.; Luhder, F.; Gold, R.; et al. Nitric Oxide Stress in Sporadic Inclusion Body Myositis Muscle Fibres: Inhibition of Inducible Nitric Oxide Synthase Prevents Interleukin-1beta-Induced Accumulation of Beta-Amyloid and Cell Death. Brain 2012, 135, 1102–1114. [Google Scholar] [CrossRef] [Green Version]
- Amici, D.R.; Pinal-Fernandez, I.; Mazala, D.A.; Lloyd, T.E.; Corse, A.M.; Christopher-Stine, L.; Mammen, A.L.; Chin, E.R. Calcium Dysregulation, Functional Calpainopathy, and Endoplasmic Reticulum Stress in Sporadic Inclusion Body Myositis. Acta Neuropathol. Commun. 2017, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Nogalska, A.; D’Agostino, C.; Terracciano, C.; Engel, W.K.; Askanas, V. Impaired Autophagy in Sporadic Inclusion-Body Myositis and in Endoplasmic Reticulum Stress-Provoked Cultured Human Muscle Fibers. Am. J. Pathol. 2010, 177, 1377–1387. [Google Scholar] [CrossRef]
- Du, A.; Huang, S.; Zhao, X.; Zhang, Y.; Zhu, L.; Ding, J.; Xu, C. Endoplasmic Reticulum Stress Contributes to Acetylcholine Receptor Degradation by Promoting Endocytosis in Skeletal Muscle Cells. J. Neuroimmunol. 2016, 290, 109–114. [Google Scholar] [CrossRef]
- Iwasa, K.; Nambu, Y.; Motozaki, Y.; Furukawa, Y.; Yoshikawa, H.; Yamada, M. Increased Skeletal Muscle Expression of the Endoplasmic Reticulum Chaperone Grp78 in Patients with Myasthenia Gravis. J. Neuroimmunol. 2014, 273, 72–76. [Google Scholar] [CrossRef]
- Edwards, R.H.; Jones, D.A.; Jackson, M.J. An Approach to Treatment Trials in Muscular Dystrophy with Particular Reference to Agents Influencing Free Radical Damage. Med. Biol. 1984, 62, 143–147. [Google Scholar]
- Hauser, E.; Hoger, H.; Bittner, R.; Widhalm, K.; Herkner, K.; Lubec, G. Oxyradical Damage and Mitochondrial Enzyme Activities in the Mdx Mouse. Neuropediatrics 1995, 26, 260–262. [Google Scholar] [CrossRef]
- Haycock, J.W.; MacNeil, S.; Jones, P.; Harris, J.B.; Mantle, D. Oxidative Damage to Muscle Protein in Duchenne Muscular Dystrophy. Neuroreport 1996, 8, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.J.; Jones, D.A.; Edwards, R.H. Techniques for Studying Free Radical Damage in Muscular Dystrophy. Med. Biol. 1984, 62, 135–138. [Google Scholar] [PubMed]
- Kar, N.C.; Pearson, C.M. Catalase, Superoxide Dismutase, Glutathione Reductase and Thiobarbituric Acid-Reactive Products in Normal and Dystrophic Human Muscle. Clin. Chim. Acta 1979, 94, 277–280. [Google Scholar] [CrossRef]
- Mechler, F.; Imre, S.; Dioszeghy, P. Lipid Peroxidation and Superoxide Dismutase Activity in Muscle and Erythrocytes in Duchenne Muscular Dystrophy. J. Neurol. Sci. 1984, 63, 279–283. [Google Scholar] [CrossRef]
- Mizuno, Y. Changes in Superoxide Dismutase, Catalase, Glutathione Peroxidase, and Glutathione Reductase Activities and Thiobarbituric Acid-Reactive Products Levels in Early Stages of Development in Dystrophic Chickens. Exp. Neurol. 1984, 84, 58–73. [Google Scholar] [CrossRef]
- Omaye, S.T.; Tappel, A.L. Glutathione Peroxidase, Glutathione Reductase, and Thiobarbituric Acid-Reactive Products in Muscles of Chickens and Mice with Genetic Muscular Dystrophy. Life Sci. 1974, 15, 137–145. [Google Scholar] [CrossRef]
- Disatnik, M.H.; Dhawan, J.; Yu, Y.; Beal, M.F.; Whirl, M.M.; Franco, A.A.; Rando, T.A. Evidence of Oxidative Stress in Mdx Mouse Muscle: Studies of the Pre-Necrotic State. J. Neurol. Sci. 1998, 161, 77–84. [Google Scholar] [CrossRef]
- Martensson, J.; Meister, A. Mitochondrial Damage in Muscle Occurs after Marked Depletion of Glutathione and Is Prevented by Giving Glutathione Monoester. Proc. Natl. Acad. Sci. USA 1989, 86, 471–475. [Google Scholar] [CrossRef] [Green Version]
- Rajakumar, D.; Senguttuvan, S.; Alexander, M.; Oommen, A. Involvement of Oxidative Stress, Nuclear Factor Kappa B and the Ubiquitin Proteasomal Pathway in Dysferlinopathy. Life Sci. 2014, 108, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Laoudj-Chenivesse, D.; Carnac, G.; Bisbal, C.; Hugon, G.; Bouillot, S.; Desnuelle, C.; Vassetzky, Y.; Fernandez, A. Increased Levels of Adenine Nucleotide Translocator 1 Protein and Response to Oxidative Stress Are Early Events in Facioscapulohumeral Muscular Dystrophy Muscle. J. Mol. Med. 2005, 83, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Macaione, V.; Aguennouz, M.; Rodolico, C.; Mazzeo, A.; Patti, A.; Cannistraci, E.; Colantone, L.; di Giorgio, R.M.; de Luca, G.; Vita, G. Rage-Nf-Kappab Pathway Activation in Response to Oxidative Stress in Facioscapulohumeral Muscular Dystrophy. Acta Neurol. Scand. 2007, 115, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Turki, A.; Hayot, M.; Carnac, G.; Pillard, F.; Passerieux, E.; Bommart, S.; de Mauverger, E.R.; Hugon, G.; Pincemail, J.; Pietri, S.; et al. Functional Muscle Impairment in Facioscapulohumeral Muscular Dystrophy Is Correlated with Oxidative Stress and Mitochondrial Dysfunction. Free Radic. Biol. Med. 2012, 53, 1068–1079. [Google Scholar] [CrossRef]
- Sasaki-Honda, M.; Jonouchi, T.; Arai, M.; Hotta, A.; Mitsuhashi, S.; Nishino, I.; Matsuda, R.; Sakurai, H. A Patient-Derived Ipsc Model Revealed Oxidative Stress Increases Facioscapulohumeral Muscular Dystrophy-Causative Dux4. Hum. Mol. Genet. 2018, 27, 4024–4035. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, P.; Saada, Y.B.; Dib, C.; Ansseau, E.; Barat, A.; Hamade, A.; Dessen, P.; Robert, T.; Lazar, V.; Louzada, R.A.N.; et al. Dux4-Induced Constitutive DNA Damage and Oxidative Stress Contribute to Aberrant Differentiation of Myoblasts from Fshd Patients. Free Radic. Biol. Med. 2016, 99, 244–258. [Google Scholar] [CrossRef]
- Cho, A.; Christine, M.; Malicdan, V.; Miyakawa, M.; Nonaka, I.; Nishino, I.; Noguchi, S. Sialic Acid Deficiency Is Associated with Oxidative Stress Leading to Muscle Atrophy and Weakness in Gne Myopathy. Hum. Mol. Genet. 2017, 26, 3081–3093. [Google Scholar] [CrossRef]
- Murgia, M.; Tan, J.; Geyer, P.E.; Doll, S.; Mann, M.; Klopstock, T. Proteomics of Cytochrome C Oxidase-Negative Versus-Positive Muscle Fiber Sections in Mitochondrial Myopathy. Cell Rep. 2019, 29, 3825–3834.e4. [Google Scholar] [CrossRef] [Green Version]
- Meseguer, S.; Martinez-Zamora, A.; Garcia-Arumi, E.; Andreu, A.L.; Armengod, M.E. The Ros-Sensitive Microrna-9/9* Controls the Expression of Mitochondrial Trna-Modifying Enzymes and Is Involved in the Molecular Mechanism of Melas Syndrome. Hum. Mol. Genet. 2015, 24, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.B.; Wei, Y.H. Ampk-Mediated Increase of Glycolysis as an Adaptive Response to Oxidative Stress in Human Cells: Implication of the Cell Survival in Mitochondrial Diseases. Biochim. Biophys. Acta 2012, 1822, 233–247. [Google Scholar] [CrossRef] [Green Version]
- Parikh, S.; Saneto, R.; Falk, M.J.; Anselm, I.; Cohen, B.H.; Haas, R.; The Mitochondrial Medicine Society. A Modern Approach to the Treatment of Mitochondrial Disease. Curr. Treat Options Neurol. 2009, 11, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, M.C.; MacDonald, J.R.; Mahoney, D.J.; Parise, G.; Beal, M.F.; Tarnopolsky, M.A. Beneficial Effects of Creatine, Coq10, and Lipoic Acid in Mitochondrial Disorders. Muscle Nerve 2007, 35, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.L.; Buch, A.E.; Cohen, B.H.; Falk, M.J.; Goldsberry, A.; Goldstein, A.; Karaa, A.; Koenig, M.K.; Muraresku, C.C.; Meyer, C.; et al. Safety and Efficacy of Omaveloxolone in Patients with Mitochondrial Myopathy: Motor Trial. Neurology 2020, 94, e687–e698. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, N.; Byron, C.; Hargreaves, I.; Guerra, P.F.; Furdek, A.K.; Land, J.; Radford, W.W.; Frerman, F.; Corydon, T.J.; Gregersen, N.; et al. Secondary Coenzyme Q10 Deficiency and Oxidative Stress in Cultured Fibroblasts from Patients with Riboflavin Responsive Multiple Acyl-Coa Dehydrogenation Deficiency. Hum. Mol. Genet. 2013, 22, 3819–3827. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.P.; Corydon, T.J.; Pedersen, C.B.; Bross, P.; Gregersen, N. Misfolding of Short-Chain Acyl-Coa Dehydrogenase Leads to Mitochondrial Fission and Oxidative Stress. Mol. Genet. Metab. 2010, 100, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Zolkipli, Z.; Pedersen, C.B.; Lamhonwah, A.M.; Gregersen, N.; Tein, I. Vulnerability to Oxidative Stress in Vitro in Pathophysiology of Mitochondrial Short-Chain Acyl-Coa Dehydrogenase Deficiency: Response to Antioxidants. PLoS ONE 2011, 6, e17534. [Google Scholar] [CrossRef] [Green Version]
- Lightfoot, A.P.; McArdle, A.; Jackson, M.J.; Cooper, R.G. In the Idiopathic Inflammatory Myopathies (Iim), Do Reactive Oxygen Species (Ros) Contribute to Muscle Weakness? Ann. Rheum. Dis. 2015, 74, 1340–1346. [Google Scholar] [CrossRef]
- Manole, E.; Bastian, A.E.; Butoianu, N.; Goebel, H.H. Myositis Non-Inflammatory Mechanisms: An up-Dated Review. J. Immunoass. Immunochem. 2017, 38, 115–126. [Google Scholar] [CrossRef]
- Engel, W.K.; Hawley, R.J. Focal Lesions of Muscle in Peripheral Vascular Disease. J. Neurol. 1977, 215, 161–168. [Google Scholar] [CrossRef]
- Landisch, R.M.; Kosir, A.M.; Nelson, S.A.; Baltgalvis, K.A.; Lowe, D.A. Adaptive and Nonadaptive Responses to Voluntary Wheel Running by Mdx Mice. Muscle Nerve 2008, 38, 1290–1303. [Google Scholar] [CrossRef] [Green Version]
- Latroche, C.; Matot, B.; Martins-Bach, A.; Briand, D.; Chazaud, B.; Wary, C.; Carlier, P.G.; Chretien, F.; Jouvion, G. Structural and Functional Alterations of Skeletal Muscle Microvasculature in Dystrophin-Deficient Mdx Mice. Am. J. Pathol. 2015, 185, 2482–2494. [Google Scholar] [CrossRef] [PubMed]
- Loufrani, L.; Dubroca, C.; You, D.; Li, Z.; Levy, B.; Paulin, D.; Henrion, D. Absence of Dystrophin in Mice Reduces No-Dependent Vascular Function and Vascular Density: Total Recovery after a Treatment with the Aminoglycoside Gentamicin. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 671–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsakas, A.; Yadav, V.; Lorca, S.; Narkar, V. Muscle Errgamma Mitigates Duchenne Muscular Dystrophy Via Metabolic and Angiogenic Reprogramming. FASEB J. 2013, 27, 4004–4016. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, R.P.; Flann, K.L.; Cardinal, T.R.; Rathbone, C.R.; Liu, X.; Allen, R.E. Satellite Cells Isolated from Aged or Dystrophic Muscle Exhibit a Reduced Capacity to Promote Angiogenesis in Vitro. Biochem. Biophys. Res. Commun. 2013, 440, 399–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosqueira, M.; Willmann, G.; Ruohola-Baker, H.; Khurana, T.S. Chronic Hypoxia Impairs Muscle Function in the Drosophila Model of Duchenne’s Muscular Dystrophy (Dmd). PLoS ONE 2010, 5, e13450. [Google Scholar] [CrossRef] [Green Version]
- Banerji, C.R.; Knopp, P.; Moyle, L.A.; Severini, S.; Orrell, R.W.; Teschendorff, A.E.; Zammit, P.S. Beta-Catenin Is Central to Dux4-Driven Network Rewiring in Facioscapulohumeral Muscular Dystrophy. J. R. Soc. Interface 2015, 12, 20140797. [Google Scholar] [CrossRef] [Green Version]
- Niinikoski, J.; Paljarvi, L.; Laato, M.; Lang, H.; Panelius, M. Muscle Hypoxia in Myositis. J. Neurol. Neurosurg. Psychiatry 1986, 49, 1455. [Google Scholar] [CrossRef] [Green Version]
- Grundtman, C.; Lundberg, I.E. Vascular Involvement in the Pathogenesis of Idiopathic Inflammatory Myopathies. Autoimmunity 2009, 42, 615–626. [Google Scholar] [CrossRef]
- De Luna, N.; Suarez-Calvet, X.; Lleixa, C.; Diaz-Manera, J.; Olive, M.; Illa, I.; Gallardo, E. Hypoxia Triggers Ifn-I Production in Muscle: Implications in Dermatomyositis. Sci. Rep. 2017, 7, 8595. [Google Scholar] [CrossRef] [Green Version]
- Konttinen, Y.T.; Mackiewicz, Z.; Povilenaite, D.; Sukura, A.; Hukkanen, M.; Virtanen, I. Disease-Associated Increased Hif-1, Alphavbeta3 Integrin, and Flt-1 Do Not Suffice to Compensate the Damage-Inducing Loss of Blood Vessels in Inflammatory Myopathies. Rheumatol. Int. 2004, 24, 333–339. [Google Scholar] [CrossRef]
- Preusse, C.; Allenbach, Y.; Hoffmann, O.; Goebel, H.H.; Pehl, D.; Radke, J.; Doeser, A.; Schneider, U.; Alten, R.H.; Kallinich, T.; et al. Differential Roles of Hypoxia and Innate Immunity in Juvenile and Adult Dermatomyositis. Acta Neuropathol. Commun. 2016, 4, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikkanen, J.; Forsstrom, S.; Euro, L.; Paetau, I.; Kohnz, R.A.; Wang, L.; Chilov, D.; Viinamaki, J.; Roivainen, A.; Marjamaki, P.; et al. Mitochondrial DNA Replication Defects Disturb Cellular Dntp Pools and Remodel One-Carbon Metabolism. Cell Metab. 2016, 23, 635–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyynismaa, H.; Carroll, C.J.; Raimundo, N.; Ahola-Erkkila, S.; Wenz, T.; Ruhanen, H.; Guse, K.; Hemminki, A.; Peltola-Mjosund, K.E.; Tulkki, V.; et al. Mitochondrial Myopathy Induces a Starvation-Like Response. Hum. Mol. Genet. 2010, 19, 3948–3958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.A.; Nikkanen, J.; Yatsuga, S.; Jackson, C.; Wang, L.; Pradhan, S.; Kivela, R.; Pessia, A.; Velagapudi, V.; Suomalainen, A. Mtorc1 Regulates Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression. Cell Metab. 2017, 26, 419–428.e5. [Google Scholar] [CrossRef] [PubMed]
- Ravel-Chapuis, A.; Gunnewiek, A.K.; Belanger, G.; Parks, T.E.C.; Cote, J.; Jasmin, B.J. Staufen1 Impairs Stress Granule Formation in Skeletal Muscle Cells from Myotonic Dystrophy Type 1 Patients. Mol. Biol. Cell 2016, 27, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Mensch, A.; Meinhardt, B.; Bley, N.; Huttelmaier, S.; Schneider, I.; Stoltenburg-Didinger, G.; Kraya, T.; Muller, T.; Zierz, S. The P.S85c-Mutation in Matr3 Impairs Stress Granule Formation in Matrin-3 Myopathy. Exp. Neurol. 2018, 306, 222–231. [Google Scholar] [CrossRef]
- Palmio, J.; Sandell, S.; Suominen, T.; Penttila, S.; Raheem, O.; Hackman, P.; Huovinen, S.; Haapasalo, H.; Udd, B. Distinct Distal Myopathy Phenotype Caused by Vcp Gene Mutation in a Finnish Family. Neuromuscul. Disord. 2011, 21, 551–555. [Google Scholar] [CrossRef]
- Seguin, S.J.; Morelli, F.F.; Vinet, J.; Amore, D.; de Biasi, S.; Poletti, A.; Rubinsztein, D.C.; Carra, S. Inhibition of Autophagy, Lysosome and Vcp Function Impairs Stress Granule Assembly. Cell Death Differ. 2014, 21, 1838–1851. [Google Scholar] [CrossRef] [Green Version]
- Hackman, P.; Sarparanta, J.; Lehtinen, S.; Vihola, A.; Evila, A.; Jonson, P.H.; Luque, H.; Kere, J.; Screen, M.; Chinnery, P.F.; et al. Welander Distal Myopathy Is Caused by a Mutation in the Rna-Binding Protein Tia1. Ann. Neurol. 2013, 73, 500–509. [Google Scholar] [CrossRef]
- Hebert, D.N.; Molinari, M. In and out of the Er: Protein Folding, Quality Control, Degradation, and Related Human Diseases. Physiol. Rev. 2007, 87, 1377–1408. [Google Scholar] [CrossRef]
- Allard, B. From Excitation to Intracellular Ca(2+) Movements in Skeletal Muscle: Basic Aspects and Related Clinical Disorders. Neuromuscul. Disord. 2018, 28, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, Regulation and Functions of the Unfolded Protein Response. Nat. Rev. Mol. Cell Biol. 2020, 21, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Harding, H.P.; Zhang, Y.; Ron, D. Protein Translation and Folding Are Coupled by an Endoplasmic-Reticulum-Resident Kinase. Nature 1999, 397, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Brewer, J.W.; Diehl, J.A.; Hendershot, L.M. Two Distinct Stress Signaling Pathways Converge Upon the Chop Promoter During the Mammalian Unfolded Protein Response. J. Mol. Biol. 2002, 318, 1351–1365. [Google Scholar] [CrossRef]
- Ron, D.; Walter, P. Signal Integration in the Endoplasmic Reticulum Unfolded Protein Response. Nat. Rev. Mol. Cell Biol. 2007, 8, 519–529. [Google Scholar] [CrossRef]
- Tirasophon, W.; Welihinda, A.A.; Kaufman, R.J. A Stress Response Pathway from the Endoplasmic Reticulum to the Nucleus Requires a Novel Bifunctional Protein Kinase/Endoribonuclease (Ire1p) in Mammalian Cells. Genes Dev. 1998, 12, 1812–1824. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, H.; Nadanaka, S.; Sato, R.; Mori, K. Xbp1 Is Critical to Protect Cells from Endoplasmic Reticulum Stress: Evidence from Site-2 Protease-Deficient Chinese Hamster Ovary Cells. Cell Struct. Funct. 2006, 31, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Haze, K.; Yoshida, H.; Yanagi, H.; Yura, T.; Mori, K. Mammalian Transcription Factor Atf6 Is Synthesized as a Transmembrane Protein and Activated by Proteolysis in Response to Endoplasmic Reticulum Stress. Mol. Biol. Cell 1999, 10, 3787–3799. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Baumeister, P.; Roy, B.; Phan, T.; Foti, D.; Luo, S.; Lee, A.S. Atf6 as a Transcription Activator of the Endoplasmic Reticulum Stress Element: Thapsigargin Stress-Induced Changes and Synergistic Interactions with Nf-Y and Yy1. Mol. Cell. Biol. 2000, 20, 5096–5106. [Google Scholar] [CrossRef] [Green Version]
- Iwawaki, T.; Akai, R.; Kohno, K.; Miura, M. A Transgenic Mouse Model for Monitoring Endoplasmic Reticulum Stress. Nat. Med. 2004, 10, 98–102. [Google Scholar] [CrossRef]
- Krebs, J.; Agellon, L.B.; Michalak, M. Ca(2+) Homeostasis and Endoplasmic Reticulum (Er) Stress: An Integrated View of Calcium Signaling. Biochem. Biophys. Res. Commun. 2015, 460, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Yang, L.; Li, P.; Hofmann, O.; Dicker, L.; Hide, W.; Lin, X.; Watkins, S.M.; Ivanov, A.R.; Hotamisligil, G.S. Aberrant Lipid Metabolism Disrupts Calcium Homeostasis Causing Liver Endoplasmic Reticulum Stress in Obesity. Nature 2011, 473, 528–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbleib, K.; Pesek, K.; Covino, R.; Hofbauer, H.F.; Wunnicke, D.; Hanelt, I.; Hummer, G.; Ernst, R. Activation of the Unfolded Protein Response by Lipid Bilayer Stress. Mol. Cell 2017, 67, 673–684.e8. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.S.; Kaufman, R.J. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxid. Redox Signal. 2014, 21, 396–413. [Google Scholar] [CrossRef] [PubMed]
- Walter, P.; Ron, D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J. Current Classification and Management of Inflammatory Myopathies. J. Neuromuscul. Dis. 2018, 5, 109–129. [Google Scholar] [CrossRef]
- Freret, M.; Drouot, L.; Obry, A.; Ahmed-Lacheheb, S.; Dauly, C.; Adriouch, S.; Cosette, P.; Authier, F.J.; Boyer, O. Overexpression of Mhc Class I in Muscle of Lymphocyte-Deficient Mice Causes a Severe Myopathy with Induction of the Unfolded Protein Response. Am. J. Pathol. 2013, 183, 893–904. [Google Scholar] [CrossRef]
- Askanas, V.; Engel, W.K. Proposed Pathogenetic Cascade of Inclusion-Body Myositis: Importance of Amyloid-Beta, Misfolded Proteins, Predisposing Genes, and Aging. Curr. Opin. Rheumatol. 2003, 15, 737–744. [Google Scholar] [CrossRef]
- Ahmed, M.; Machado, P.M.; Miller, A.; Spicer, C.; Herbelin, L.; He, J.; Noel, J.; Wang, Y.; McVey, A.L.; Pasnoor, M.; et al. Targeting Protein Homeostasis in Sporadic Inclusion Body Myositis. Sci. Transl. Med. 2016, 8, 331ra41. [Google Scholar] [CrossRef] [Green Version]
- Malfatti, E.; Romero, N.B. Diseases of the Skeletal Muscle. Handb. Clin. Neurol. 2017, 145, 429–451. [Google Scholar]
- Mercuri, E.; Bonnemann, C.G.; Muntoni, F. Muscular Dystrophies. Lancet 2019, 394, 2025–2038. [Google Scholar] [CrossRef]
- Morrison, L.A. Dystrophinopathies. Handb. Clin. Neurol. 2011, 101, 11–39. [Google Scholar] [PubMed]
- Fichna, J.P.; Maruszak, A.; Zekanowski, C. Myofibrillar Myopathy in the Genomic Context. J. Appl. Genet. 2018, 59, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meister-Broekema, M.; Freilich, R.; Jagadeesan, C.; Rauch, J.N.; Bengoechea, R.; Motley, W.W.; Kuiper, E.F.E.; Minoia, M.; Furtado, G.V.; van Waarde, M.; et al. Myopathy Associated Bag3 Mutations Lead to Protein Aggregation by Stalling Hsp70 Networks. Nat. Commun. 2018, 9, 5342. [Google Scholar] [CrossRef] [Green Version]
- Wojtowicz, I.; Jablonska, J.; Zmojdzian, M.; Taghli-Lamallem, O.; Renaud, Y.; Junion, G.; Daczewska, M.; Huelsmann, S.; Jagla, K.; Jagla, T. Drosophila Small Heat Shock Protein Cryab Ensures Structural Integrity of Developing Muscles, and Proper Muscle and Heart Performance. Development 2015, 142, 994–1005. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Long, P.A.; Bos, J.M.; Shih, Y.H.; Ma, X.; Sundsbak, R.S.; Chen, J.; Jiang, Y.; Zhao, L.; Hu, X.; et al. A Modifier Screen Identifies Dnajb6 as a Cardiomyopathy Susceptibility Gene. JCI Insight 2016, 1, e88797. [Google Scholar] [CrossRef] [Green Version]
- Snoeck, M.; van Engelen, B.G.; Kusters, B.; Lammens, M.; Meijer, R.; Molenaar, J.P.; Raaphorst, J.; Verschuuren-Bemelmans, C.C.; Straathof, C.S.; Sie, L.T.; et al. Ryr1-Related Myopathies: A Wide Spectrum of Phenotypes Throughout Life. Eur. J. Neurol. 2015, 22, 1094–1112. [Google Scholar] [CrossRef]
- Adler, M.; Shieh, P.B. Metabolic Myopathies. Semin. Neurol. 2015, 35, 385–397. [Google Scholar]
- Chan, J.; Desai, A.K.; Kazi, Z.B.; Corey, K.; Austin, S.; Hobson-Webb, L.D.; Case, L.E.; Jones, H.N.; Kishnani, P.S. The Emerging Phenotype of Late-Onset Pompe Disease: A Systematic Literature Review. Mol. Genet. Metab. 2017, 120, 163–172. [Google Scholar] [CrossRef]
- Fukuda, T.; Ahearn, M.; Roberts, A.; Mattaliano, R.J.; Zaal, K.; Ralston, E.; Plotz, P.H.; Raben, N. Autophagy and Mistargeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease. Mol. Ther. 2006, 14, 831–839. [Google Scholar] [CrossRef]
- Fukuda, T.; Ewan, L.; Bauer, M.; Mattaliano, R.J.; Zaal, K.; Ralston, E.; Plotz, P.H.; Raben, N. Dysfunction of Endocytic and Autophagic Pathways in a Lysosomal Storage Disease. Ann. Neurol. 2006, 59, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Reue, K. Lipin Proteins and Glycerolipid Metabolism: Roles at the Er Membrane and Beyond. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1583–1595. [Google Scholar] [CrossRef] [PubMed]
- Volmer, R.; Ron, D. Lipid-Dependent Regulation of the Unfolded Protein Response. Curr. Opin. Cell Biol. 2015, 33, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zito, E. Targeting Er Stress/Er Stress Response in Myopathies. Redox Biol. 2019, 26, 101232. [Google Scholar] [CrossRef]
- Gilhus, N.E. Myasthenia Gravis. N. Engl. J. Med. 2016, 375, 2570–2581. [Google Scholar] [CrossRef]
- Davies, K.J. Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life 2000, 50, 279–289. [Google Scholar] [CrossRef]
- Martindale, J.L.; Holbrook, N.J. Cellular Response to Oxidative Stress: Signaling for Suicide and Survival. J. Cell. Physiol. 2002, 192, 1–15. [Google Scholar] [CrossRef]
- Terrill, J.R.; Radley-Crabb, H.G.; Iwasaki, T.; Lemckert, F.A.; Arthur, P.G.; Grounds, M.D. Oxidative Stress and Pathology in Muscular Dystrophies: Focus on Protein Thiol Oxidation and Dysferlinopathies. FEBS J. 2013, 280, 4149–4164. [Google Scholar] [CrossRef]
- Mancuso, C.; Scapagini, G.; Curro, D.; Stella, A.M.G.; de Marco, C.; Butterfield, D.A.; Calabrese, V. Mitochondrial Dysfunction, Free Radical Generation and Cellular Stress Response in Neurodegenerative Disorders. Front. Biosci. 2007, 12, 1107–1123. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.J.; Pollock, N.; Staunton, C.A.; Stretton, C.; Vasilaki, A.; McArdle, A. Oxidative Stress in Skeletal Muscle: Unraveling the Potential Beneficial and Deleterious Roles of Reactive Oxygen Species. In Oxidative Stress; Sies, H., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 713–733. [Google Scholar]
- Chong, W.C.; Shastri, M.D.; Eri, R. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology. Int. J. Mol. Sci. 2017, 18, 771. [Google Scholar] [CrossRef]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Berwal, S.K.; Bhatia, V.; Bendre, A.; Suresh, C.G.; Chatterjee, S.; Pal, J.K. Activation of Hri Is Mediated by Hsp90 During Stress through Modulation of the Hri-Hsp90 Complex. Int. J. Biol. Macromol. 2018, 118, 1604–1613. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Motohashi, H.; Yamamoto, M. Molecular Mechanisms of the Keap1-Nrf2 Pathway in Stress Response and Cancer Evolution. Genes Cells 2011, 16, 123–140. [Google Scholar] [CrossRef]
- Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.L. The Keap1-Nrf2 Pathway: Mechanisms of Activation and Dysregulation in Cancer. Redox Biol. 2013, 1, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lingappan, K. Nf-Kappab in Oxidative Stress. Curr. Opin. Toxicol. 2018, 7, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, A.A. Effects of Curcumin on Oxidative Stress in Animal Models and Patients with Alzheimer Disease. In Therapeutic Potentials of Curcumin for Alzheimer Disease; Farooqui, A.A., Ed.; Springer: Cham, Switzerland, 2016; pp. 209–257. [Google Scholar]
- Brenman, J.E.; Chao, D.S.; Xia, H.; Aldape, K.; Bredt, D.S. Nitric Oxide Synthase Complexed with Dystrophin and Absent from Skeletal Muscle Sarcolemma in Duchenne Muscular Dystrophy. Cell 1995, 82, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.J.; Iannaccone, S.T.; Lau, K.S.; Masters, B.S.; McCabe, T.J.; McMillan, K.; Padre, R.C.; Spencer, M.J.; Tidball, J.G.; Stull, J.T. Neuronal Nitric Oxide Synthase and Dystrophin-Deficient Muscular Dystrophy. Proc. Natl. Acad. Sci. USA 1996, 93, 9142–9147. [Google Scholar] [CrossRef] [Green Version]
- Wehling, M.; Spencer, M.J.; Tidball, J.G. A Nitric Oxide Synthase Transgene Ameliorates Muscular Dystrophy in Mdx Mice. J. Cell. Biol. 2001, 155, 123–131. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Tidball, J.G. Interactions between Neutrophils and Macrophages Promote Macrophage Killing of Rat Muscle Cells in Vitro. J. Physiol. 2003, 547, 125–132. [Google Scholar] [CrossRef]
- Rando, T.A. Oxidative Stress and the Pathogenesis of Muscular Dystrophies. Am. J. Phys. Med. Rehabil. 2002, 81, S175–S186. [Google Scholar] [CrossRef]
- Tidball, J.G.; Wehling-Henricks, M. The Role of Free Radicals in the Pathophysiology of Muscular Dystrophy. J. Appl. Physiol. 1985 2007, 102, 1677–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, S.; Vita, G.L.; Aguennouz, M.; Sframeli, M.; Romeo, S.; Rodolico, C.; Vita, G. Activation of Nf-Kappab Pathway in Duchenne Muscular Dystrophy: Relation to Age. Acta Myol. 2011, 30, 16–23. [Google Scholar] [PubMed]
- Petrillo, S.; Pelosi, L.; Piemonte, F.; Travaglini, L.; Forcina, L.; Catteruccia, M.; Petrini, S.; Verardo, M.; D’Amico, A.; Musaro, A.; et al. Oxidative Stress in Duchenne Muscular Dystrophy: Focus on the Nrf2 Redox Pathway. Hum. Mol. Genet. 2017, 26, 2781–2790. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, G.; McArdle, B. Vitamins E and B6 in the Treatment of Muscular Dystrophy and Motor Neurone Disease. Brain 1941, 64, 19–42. [Google Scholar] [CrossRef]
- Gebre-Medhin, M.; Gustavson, K.H.; Gamstorp, I.; Plantin, L.O. Selenium Supplementation in X-Linked Muscular Dystrophy. Effects on Erythrocyte and Serum Selenium and on Erythrocyte Glutathione Peroxidase Activity. Acta Paediatr. Scand. 1985, 74, 886–890. [Google Scholar] [CrossRef]
- Stern, L.Z.; Ringel, S.P.; Ziter, F.A.; Menander-Huber, K.B.; Ionasescu, V.; Pellegrino, R.J.; Snyder, R.D. Drug Trial of Superoxide Dismutase in Duchenne’s Muscular Dystrophy. Arch. Neurol. 1982, 39, 342–346. [Google Scholar] [CrossRef]
- Haupenthal, D.P.D.S.; Possato, J.C.; Zaccaron, R.P.; Mendes, C.; Rodrigues, M.S.; Nesi, R.T.; Pinho, R.A.; Feuser, P.E.; Machado-de-Avila, R.A.; Comim, C.M.; et al. Effects of Chronic Treatment with Gold Nanoparticles on Inflammatory Responses and Oxidative Stress in Mdx Mice. J. Drug Target. 2020, 28, 46–54. [Google Scholar] [CrossRef]
- Moraes, L.H.; de Burgos, R.R.; Macedo, A.B.; Hermes, T.d.; de Faria, F.M.; Minatel, E. Reduction of Oxidative Damage and Inflammatory Response in the Diaphragm Muscle of Mdx Mice Using Iron Chelator Deferoxamine. Biol. Trace Elem. Res. 2015, 167, 115–120. [Google Scholar] [CrossRef]
- Zernov, N.; Skoblov, M. Genotype-Phenotype Correlations in Fshd. BMC Med. Genom. 2019, 12, 43. [Google Scholar] [CrossRef]
- Passerieux, E.; Hayot, M.; Jaussent, A.; Carnac, G.; Gouzi, F.; Pillard, F.; Picot, M.C.; Bocker, K.; Hugon, G.; Pincemail, J.; et al. Effects of Vitamin C, Vitamin E, Zinc Gluconate, and Selenomethionine Supplementation on Muscle Function and Oxidative Stress Biomarkers in Patients with Facioscapulohumeral Dystrophy: A Double-Blind Randomized Controlled Clinical Trial. Free Radic. Biol. Med. 2015, 81, 158–169. [Google Scholar] [CrossRef]
- Finsterer, J. Mitochondriopathies. Eur. J. Neurol. 2004, 11, 163–186. [Google Scholar] [CrossRef] [PubMed]
- Molnar, M.J.; Kovacs, G.G. Mitochondrial Diseases. Handb. Clin. Neurol. 2017, 145, 147–155. [Google Scholar] [PubMed]
- Floreani, M.; Napoli, E.; Martinuzzi, A.; Pantano, G.; de Riva, V.; Trevisan, R.; Bisetto, E.; Valente, L.; Carelli, V.; Dabbeni-Sala, F. Antioxidant Defences in Cybrids Harboring Mtdna Mutations Associated with Leber’s Hereditary Optic Neuropathy. FEBS J. 2005, 272, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.Y.; Lee, H.C.; Wei, Y.H. Enhanced Oxidative Damage in Human Cells Harboring A3243g Mutation of Mitochondrial DNA: Implication of Oxidative Stress in the Pathogenesis of Mitochondrial Diabetes. Diabetes Res. Clin. Pract. 2001, 54 (Suppl. 2), S45–S56. [Google Scholar] [CrossRef]
- Vives-Bauza, C.; Gonzalo, R.; Manfredi, G.; Garcia-Arumi, E.; Andreu, A.L. Enhanced Ros Production and Antioxidant Defenses in Cybrids Harbouring Mutations in Mtdna. Neurosci. Lett. 2006, 391, 136–141. [Google Scholar] [CrossRef]
- Sridharan, S.; Varghese, R.; Venkatraj, V.; Datta, A. Hypoxia Stress Response Pathways: Modeling and Targeted Therapy. IEEE J. Biomed. Health Inform. 2017, 21, 875–885. [Google Scholar] [CrossRef]
- Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-Inducible Factors and the Response to Hypoxic Stress. Mol. Cell 2010, 40, 294–309. [Google Scholar] [CrossRef] [Green Version]
- Aravindan, N.; Aravindan, S.; Shanmugasundaram, K.; Shaw, A.D. Periods of Systemic Partial Hypoxia Induces Apoptosis and Inflammation in Rat Skeletal Muscle. Mol. Cell. Biochem. 2007, 302, 51–58. [Google Scholar] [CrossRef]
- de Theije, C.; Costes, F.; Langen, R.C.; Pison, C.; Gosker, H.R. Hypoxia and Muscle Maintenance Regulation: Implications for Chronic Respiratory Disease. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 548–553. [Google Scholar] [CrossRef]
- Trucco, F.; Pedemonte, M.; Fiorillo, C.; Tan, H.L.; Carlucci, A.; Brisca, G.; Tacchetti, P.; Bruno, C.; Minetti, C. Detection of Early Nocturnal Hypoventilation in Neuromuscular Disorders. J. Int. Med. Res. 2018, 46, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Valle-Tenney, R.; Rebolledo, D.; Acuna, M.J.; Brandan, E. Hif-Hypoxia Signaling in Skeletal Muscle Physiology and Fibrosis. J. Cell Commun. Signal. 2020, 14, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A Mitochondrial Specific Stress Response in Mammalian Cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]
- Valera-Alberni, M.; Canto, C. Mitochondrial Stress Management: A Dynamic Journey. Cell Stress 2018, 2, 253–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wortel, I.M.N.; van der Meer, L.T.; Kilberg, M.S.; van Leeuwen, F.N. Surviving Stress: Modulation of Atf4-Mediated Stress Responses in Normal and Malignant Cells. Trends Endocrinol. Metab. 2017, 28, 794–806. [Google Scholar] [CrossRef]
- Adomavicius, T.; Guaita, M.; Zhou, Y.; Jennings, M.D.; Latif, Z.; Roseman, A.M.; Pavitt, G.D. The Structural Basis of Translational Control by Eif2 Phosphorylation. Nat. Commun. 2019, 10, 2136. [Google Scholar] [CrossRef] [Green Version]
- Protter, D.S.W.; Parker, R. Principles and Properties of Stress Granules. Trends Cell Biol. 2016, 26, 668–679. [Google Scholar] [CrossRef] [Green Version]
- Guzikowski, A.R.; Chen, Y.S.; Zid, B.M. Stress-Induced Mrnp Granules: Form and Function of Processing Bodies and Stress Granules. Wiley Interdiscip. Rev. RNA 2019, 10, e1524. [Google Scholar] [CrossRef]
- Buchan, J.R.; Parker, R. Eukaryotic Stress Granules: The Ins and Outs of Translation. Mol. Cell 2009, 36, 932–941. [Google Scholar] [CrossRef] [Green Version]
- Harding, H.P.; Novoa, I.; Zhang, Y.; Zeng, H.; Wek, R.; Schapira, M.; Ron, D. Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Mol. Cell 2000, 6, 1099–1108. [Google Scholar] [CrossRef]
- Palmio, J.; Udd, B. Myofibrillar and Distal Myopathies. Rev. Neurol. 2016, 172, 587–593. [Google Scholar] [CrossRef]
- von Tell, D.; Somer, H.; Udd, B.; Edstrom, L.; Borg, K.; Ahlberg, G. Welander Distal Myopathy Outside the Swedish Population: Phenotype and Genotype. Neuromuscul. Disord. 2002, 12, 544–547. [Google Scholar] [CrossRef]
- Gilks, N.; Kedersha, N.; Ayodele, M.; Shen, L.; Stoecklin, G.; Dember, L.M.; Anderson, P. Stress Granule Assembly Is Mediated by Prion-Like Aggregation of Tia-1. Mol. Biol. Cell 2004, 15, 5383–5398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Jonson, P.H.; Sarparanta, J.; Palmio, J.; Sarkar, M.; Vihola, A.; Evila, A.; Suominen, T.; Penttila, S.; Savarese, M.; et al. Tia1 Variant Drives Myodegeneration in Multisystem Proteinopathy with Sqstm1 Mutations. J. Clin. Investig. 2018, 128, 1164–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensch, A.; Kraya, T.; Koester, F.; Muller, T.; Stoevesandt, D.; Zierz, S. Whole-Body Muscle Mri of Patients with Matr3-Associated Distal Myopathy Reveals a Distinct Pattern of Muscular Involvement and Highlights the Value of Whole-Body Examination. J. Neurol. 2020, 267, 2408–2420. [Google Scholar] [CrossRef] [PubMed]
- Muller, T.J.; Kraya, T.; Stoltenburg-Didinger, G.; Hanisch, F.; Kornhuber, M.; Stoevesandt, D.; Senderek, J.; Weis, J.; Baum, P.; Deschauer, M.; et al. Phenotype of Matrin-3-Related Distal Myopathy in 16 German Patients. Ann. Neurol. 2014, 76, 669–680. [Google Scholar] [CrossRef]
- Johnson, N.E. Myotonic Muscular Dystrophies. Continuum 2019, 25, 1682–1695. [Google Scholar] [CrossRef]
Muscular Disease | Gene | Protein | Reference |
---|---|---|---|
ER-stress/UPR | |||
Muscular dystrophies | |||
Caveolinopathy (LGMD1C/RMD2) | CAV3 | caveolin-3 | [19] |
Duchenne muscular dystrophy (DMD) | DMD | dystrophin | [20,21,22] |
GNE myopathy (hIBM2, Nonaka myopathy) | GNE | Bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase | [23,24] |
Limb girdle muscular dystrophy 1E (LGMD1E/LGMDD1) | DNAJB6 | dnaJ homolog subfamily B member 6 | [25,26,27] |
Limb girdle muscular dystrophy 2I (LGMD2I/LGMDR9) | FKRP | fukutin-related protein | [28,29] |
Tibial muscular dystrophy (TMD, Udd myopathy) | TTN | titin | [30] |
Myofibrillar Myopathies | |||
Myofibrillar myopathy-2 (MFM2) | CRYAB | alpha-crystallin B chain | [25,31] |
Myofibrillar myopathy-6 (MFM6) | BAG3 | BAG family molecular chaperone regulator 3 | [25,32] |
Congenital Myopathies | |||
Congenital myopathy with fiber-type dysproportion | SELENON | selenoprotein N | [33] |
Central core myopathy | RYR1 | ryanodine receptor 1 | [34] |
Metabolic Myopathies | |||
Glycogen storage disease II (GSD2, Pompe disease) | GAA | lysosomal alpha-glucosidase | [35] |
Lipin 1-myopathy (acute recurrent myoglobinuria, autosomal recessive) | LPIN1 | phosphatidate phosphatase LPIN1 | [36] |
Idiopathic inflammatory Myopathies (IIM) | |||
IIM in general | [37,38,39] | ||
Sporadic inclusion body myositis (sIBM) | [40,41,42,43,44,45,46,47,48,49] | ||
Other Muscle Disorders | |||
Myasthenia gravis | [50,51] | ||
Oxidative Stress | |||
Muscular Dystrophies | |||
Duchenne muscular dystrophy (DMD) | DMD | dystrophin | [52,53,54,55,56,57,58,59,60,61] |
Dysferlinopathy (LGMD2B/LGMDR2) | DYSF | dysferlin | [62] |
Facioscapulohumeral muscular dystrophy (FSHD) | D4Z4/DUX4 | – | [63,64,65,66,67] |
GNE myopathy (hIBM2, Nonaka myopathy) | GNE | Bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase | [68] |
Mitochondriopathies | |||
mtDNA-associated diseases (e.g., CPEO, MELAS, MERRF) | mtDNA | - | [69,70,71,72,73,74] |
multiple Acyl-CoA dehydrogenation deficiency (MADD) | ETFDH | electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial | [75] |
short-chain Acyl-CoA dehydrogenase deficiency (SCADD) | ACADS | short-chain specific acyl-CoA dehydrogenase, mitochondrial | [76,77] |
Idiopathic Inflammatory Myopathies (IIM) | |||
IIM in general | [78,79] | ||
Hypoxic Stress | |||
Muscular dystrophies | |||
Duchenne muscular dystrophy (DMD) | DMD | dystrophin | [80,81,82,83,84,85,86] |
Facioscapulohumeral muscular dystrophy (FSHD) | D4Z4/DUX4 | - | [87] |
Idiopathic Inflammatory Myopathies (IIM) | |||
IIM in general | [88,89,90,91,92] | ||
Mitochondrial Stress Response | |||
mtDNA-associated diseases (e.g., CPEO, MELAS, MERRF) | mtDNA | - | [93,94,95] |
Integrated Stress Response | |||
Myotonic dystrophy type I (DM1) | DMPK | myotonin-protein kinase | [96] |
MATR3-associated distal myopathy (MPD2, VCPDM) | MATR3 | matrin-3 | [97] |
VCP-associated distal myopathy | VCP | transitional endoplasmic reticulum ATPase | [98,99] |
Welander distal myopathy (WDM) | TIA1 | nucleolysin TIA-1 isoform p40 | [100] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mensch, A.; Zierz, S. Cellular Stress in the Pathogenesis of Muscular Disorders—From Cause to Consequence. Int. J. Mol. Sci. 2020, 21, 5830. https://doi.org/10.3390/ijms21165830
Mensch A, Zierz S. Cellular Stress in the Pathogenesis of Muscular Disorders—From Cause to Consequence. International Journal of Molecular Sciences. 2020; 21(16):5830. https://doi.org/10.3390/ijms21165830
Chicago/Turabian StyleMensch, Alexander, and Stephan Zierz. 2020. "Cellular Stress in the Pathogenesis of Muscular Disorders—From Cause to Consequence" International Journal of Molecular Sciences 21, no. 16: 5830. https://doi.org/10.3390/ijms21165830
APA StyleMensch, A., & Zierz, S. (2020). Cellular Stress in the Pathogenesis of Muscular Disorders—From Cause to Consequence. International Journal of Molecular Sciences, 21(16), 5830. https://doi.org/10.3390/ijms21165830