LAMP-2 Is Involved in Surface Expression of RANKL of Osteoblasts In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Microscopy
2.3. Volume Density Determination of Intracellular Vesicles
2.4. Micro Computed Tomography (µCT)
2.5. Bone Marrow Cell Isolation
2.6. Osteoclast Generation Using M-CSF and RANKL
2.7. Bone Resorption
2.8. Isolation of Osteoblast-Like Cells
2.9. Co-Culture
2.10. Tartrate Resistant Acid Phosphatase (TRAcP) Staining
2.11. Quantitative RT-PCR
2.12. Immunolocalization of LAMP-2 and RANKL
2.13. FACS Analysis of RANKL
2.14. Statistics
3. Results
3.1. LAMP-2 Is Present in Osteoclasts and Osteoblasts
3.2. Osteoclasts Are Present in LAMP-2-/y Mice
3.3. Bone Volume Is Not Affected in LAMP-2-/y
3.4. Osteoclasts Are Readily Formed from LAMP-2-/y Bone Marrow Precursors
3.5. Vacuoles Are Abundantly Present in LAMP-2-/y Osteoblasts
3.6. Osteoblastic LAMP-2 Is Essential for Osteoclastogenesis
3.7. Expression of Osteoclast-Related Genes Is Affected in the Co-Cultures
3.8. Expression of Osteoclastogenesis-Related Genes Is Affected in the Co-Cultures
3.9. Lower RANKL Surface Expression of LAMP-2-/y Osteoblasts
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Appelqvist, H.; Wäster, P.; Kågedal, K.; OLlinger, K. The lysosome: From waste bag to potential therapeutic target. J. Mol. Cell Biol. 2013, 5214–5226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luzio, J.P.; Pryor, P.R.; Bright, N.A. Lysosomes: Fusion and function. Nat. Rev. Mol. Cell Biol. 2007, 8, 622–632. [Google Scholar] [CrossRef]
- Eskelinen, E.L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Asp. Med. 2006, 27, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Andrejewski, N.; Punnonen, E.L.; Guhde, G.; Tanaka, Y.; Lüllmann-Rauch, R.; Hartmann, D.; von Figura, K.; Saftig, P. Normal lysosomal morphology and function in LAMP-1-deficient mice. J. Biol. Chem. 1999, 274, 12692–12701. [Google Scholar] [CrossRef] [Green Version]
- Hunziker, W.; Simmen, T.; Höning, S. Trafficking of lysosomal membrane proteins in polarized kidney cells. Nephrologie 1996, 17, 347–350. [Google Scholar] [PubMed]
- Saftig, P.; Schröder, B.; Blanz, J. Lysosomal membrane proteins: Life between acid and neutral conditions. Biochem. Soc. Trans. 2010, 38, 1420–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, D.; Li, P.; Lin, Y.; Lott, J.M.; Hislop, A.D.; Canaday, D.H.; Brutkiewicz, R.R.; Blum, J.S. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 2005, 22, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Crotzer, V.L.; Glosson, N.; Zhou, D.; Nishino, I.; Blum, J.S. LAMP-2-deficient human B cells exhibit altered MHC class II presentation of exogenous antigens. Immunology 2010, 131, 318–330. [Google Scholar] [CrossRef]
- Dell’angelica, E.C. Lysosome-related organelles. FASEB J. 2000, 14, 1265–1278. [Google Scholar] [CrossRef]
- Luzio, J.P.; Poupon, V.; Lindsay, M.R.; Mullock, B.M.; Piper, R.C.; Pryor, P.R. Membrane dynamics and the biogenesis of lysosomes. Mol. Membr. Biol. 2003, 20, 141–154. [Google Scholar] [CrossRef]
- Janvier, K.; Bonifacino, J.S. Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins. Mol. Biol. Cell 2005, 16, 4231–4242. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, E.L.; Schmidt, C.K.; Neu, S.; Willenborg, M.; Fuertes, G.; Salvador, N.; Tanaka, Y.; Lüllmann-Rauch, R.; Hartmann, D.; Heeren, J.; et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol. Biol. Cell 2004, 15, 3132–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saftig, P.; von Figura, K.; Tanaka, Y.; Lüllmann-Rauch, R. Disease model: LAMP-2 enlightens Danon disease. Trends Mol. Med. 2001, 7, 37–39. [Google Scholar] [CrossRef]
- Tanaka, Y.; Guhde, G.; Suter, A.; Eskelinen, E.L.; Hartmann, D.; Lüllmann-Rauch, R.; Janssen, P.M.L.; Blanz, J.; von Figura, K.; Saftig, P. Accumulation of autophagic vacuoles and cardiomyopathy LAMP-2-deficient mice. Nature 2000, 406, 902–906. [Google Scholar] [CrossRef]
- Beertsen, W.; Willenborg, M.; Everts, V.; Zirogianni, A.; Podschun, R.; Schröder, B.; Eskelinen, E.-L.; Saftig, P. Impaired Phagosomal Maturation in Neutrophils Leads to Periodontitis in Lysosomal-Associated Membrane Protein-2 Knockout Mice. J. Immunol. 2008, 180, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, K.; Irie, N. Osteoclast-osteoblast communication. Arch. Biochem. Biophys. 2008, 473, 201–209. [Google Scholar] [CrossRef]
- Nakashima, T.; Hayashi, M.; Fukunaga, T.; Kurata, K.; Oh-Hora, M.; Feng, J.Q.; Bonewald, L.F.; Kodama, T.; Wutz, A.; Wagner, E.F.; et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 2011, 17, 1231–1234. [Google Scholar] [CrossRef]
- Honma, M.; Ikebuchi, Y.; Kariya, Y.; Suzuki, H. Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr. Osteoporos. Rep. 2014, 12, 115–120. [Google Scholar] [CrossRef]
- Aoki, S.; Honma, M.; Kariya, Y.; Nakamichi, Y.; Ninomiya, T.; Takahashi, N.; Udagawa, N.; Suzuki, H. Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis. J. Bone Miner. Res. 2010, 25, 1907–1921. [Google Scholar] [CrossRef]
- Honma, M.; Ikebuchi, Y.; Kariya, Y.; Hayashi, M.; Hayashi, N.; Aoki, S.; Suzuki, H. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J. Bone Miner. Res. 2013, 28, 1936–1949. [Google Scholar] [CrossRef]
- Everts, V.; Korper, W.; Jansen, D.C.; Steinfort, J.; Lammerse, I.; Heera, S.; Docherty, A.J.P.; Beertsen, W. Functional heterogeneity of osteoclasts: Matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J. 1999, 13, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.D.C.; Mardones, P.; Lecanda, F.; Vries, T.J.; Recalde, S.; Hoeben, K.A.; Schoenmaker, T.; Ravesloot, J.-H.; Borren, M.M.G.J.; Eijden, T.M.; et al. Ae2a,b-Deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J. 2009, 23, 3470–3481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everts, V.; de Vries, T.J.; Helfrich, M.H. Osteoclast heterogeneity: Lessons from osteopetrosis and inflammatory conditions. Biochim. et Biophys. Acta Mol. Basis Dis. 2009, 1792, 757–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everts, V.; Korper, W.; Hoeben, K.A.; Jansen, I.D.C.; Bromme, D.; Cleutjens, K.B.J.M.; Heeneman, S.; Peters, C.; Reinheckel, T.; Saftig, P.; et al. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: Differences between calvaria and long bone. J. Bone Miner. Res. 2006, 21, 1399–1408. [Google Scholar] [CrossRef]
- Wan, Q.; Schoenmaker, T.; Jansen, I.D.C.; Bian, Z.; de Vries, T.J.; Everts, V. Osteoblasts of calvaria induce higher numbers of osteoclasts than osteoblasts from long bone. Bone 2016, 86, 10–21. [Google Scholar] [CrossRef]
- Weibel, E.R. Stereological Principles for Morphometry in Electron Microscopic Cytology. Int. Rev. Cytol. 1969, 26, 235–302. [Google Scholar] [CrossRef]
- Giesen, E.B.W.; Ding, M.; Dalstra, M.; van Eijden, T.M.G.J. Architectural measures of the cancellous bone of the mandibular condyle identified by principal components analysis. Calcif. Tissue Int. 2003, 73, 225–231. [Google Scholar] [CrossRef]
- de Vries, T.J.; Schoenmaker, T.; Beertsen, W.; van der Neut, R.; Everts, V. Effect of CD44 deficiency on in vitro and in vivo osteoclast formation. J. Cell. Biochem. 2005, 94, 954–966. [Google Scholar] [CrossRef]
- Bakker, A.D.; Klein-Nulend, J. Osteoblast isolation from murine calvaria and long bones. Methods Mol. Biol. 2012, 816, 19–29. [Google Scholar] [CrossRef]
- Beek, E.M.; Vries, T.J.; Mulder, L.; Schoenmaker, T.; Hoeben, K.A.; Matozaki, T.; Langenbach, G.E.J.; Kraal, G.; Everts, V.; Berg, T.K. Inhibitory regulation of osteoclast bone resorption by signal regulatory protein α. FASEB J. 2009, 23, 4081–4090. [Google Scholar] [CrossRef] [Green Version]
- Wada, T.; Nakashima, T.; Hiroshi, N.; Penninger, J.M. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 2006, 12, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Lacey, D.L.; Timms, E.; Tan, H.L.; Kelley, M.J.; Dunstan, C.R.; Burgess, T.; Elliott, R.; Colombero, A.; Elliott, G.; Scully, S.; et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Endo, Y.; Furuta, A.; Nishino, I. Danon disease: A phenotypic expression of LAMP-2 deficiency. Acta Neuropathol. 2015, 129, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Huang, Y.; Collin-Osdoby, P.; Osdoby, P. Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2003, 18, 1404–1418. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J.I.; et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 2002, 3, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Yagi, M.; Ninomiya, K.; Fujita, N.; Suzuki, T.; Iwasaki, R.; Morita, K.; Hosogane, N.; Matsuo, K.; Toyama, Y.; Suda, T.; et al. Induction of DC-STAMP by alternative activation and downstream signaling mechanisms. J. Bone Miner. Res. 2007, 22, 992–1001. [Google Scholar] [CrossRef]
- Hubert, V.; Peschel, A.; Langer, B.; Gröger, M.; Rees, A.; Kain, R. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol. Open 2016, 5, 1516–1529. [Google Scholar] [CrossRef] [Green Version]
- Kariya, Y.; Honma, M.; Aoki, S.; Chiba, A.; Suzuki, H. Vps33a mediates RANKL storage in secretory lysosomes in osteoblastic cells. J. Bone Miner. Res. 2009, 24, 1741–1752. [Google Scholar] [CrossRef]
- Ostrowski, M.C. A new role for OPG: Putting RANKL in its place. J. Bone Miner. Res. 2010, 25, 1905–1906. [Google Scholar] [CrossRef]
- Dar, A.; Kollet, O.; Lapidot, T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp. Hematol. 2006, 34, 967–975. [Google Scholar] [CrossRef]
- Graves, D.T.; Alshabab, A.; Albiero, M.L.; Mattos, M.; Corrêa, J.D.; Chen, S.; Yang, Y. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J. Clin. Periodontol. 2018, 45, 285–292. [Google Scholar] [CrossRef]
- Ikebuchi, Y.; Aoki, S.; Honma, M.; Hayashi, M.; Sugamori, Y.; Khan, M.; Kariya, Y.; Kato, G.; Tabata, Y.; Penninger, J.M.; et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature 2018, 561, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Metzger, C.E.; Narayanan, S.A. The Role of Osteocytes in Inflammatory Bone Loss. Front. Endocrinol. 2019, 10, 285. [Google Scholar] [CrossRef] [PubMed]
- Tilkeridis, K.; Kiziridis, G.; Ververidis, A.; Papoutselis, M.; Kotsianidis, I.; Kitsikidou, G.; Tousiaki, N.E.; Drosos, G.; Kapetanou, A.; Rechova, K.V.; et al. Immunoporosis: A New Role for Invariant Natural Killer T (NKT) Cells Through Overexpression of Nuclear Factor-κB Ligand (RANKL). Med Sci. Monit. Int. Med J. Exp. Clin. Res. 2019, 25, 2151–2158. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence 5′–3′ |
---|---|
HPRT | Fw: CCTAAgATgAgCgCAAgTTgAA Rv:CCACAggACTAgAACACCTgCTAA |
RANKL | Fw: CTgAggCCCAgCCATTTg RV: ggAACCCgATgggATgCT |
DC-STAMP | Fw: TgTATCggCTCATCTCCTCCAT Rv: gACTCCTTgggTTCCTTgCTT |
v-ATPase(d2) | Fw: TggAACTAgCTCCTAACCACCT Rv: AgTTgTAAgCAgACCCTgTtgg |
OPG | Fw: TCCggCgTggTgCAA Rv: ATACAgggTgCTTTCgATgAAgTC |
CXCL12 | FW: TgTgCATTgACCCgAAATTA RV: TCTCACATCTTgAgCCTCTTgT |
TRAcP | FW: gACAAgAggTTCCAggAgACC RV: gggCTggggAAgTTCCAg |
Osteoblasts | % Low-Labeled Cells (L) | % High-Labeled Cells (R) |
---|---|---|
WT | 42 ± 2 | 58 ± 17 * |
LAMP-2-/y | 77 ± 6 * | 23 ± 6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jansen, I.D.C.; Tigchelaar-Gutter, W.; Hogervorst, J.M.A.; de Vries, T.J.; Saftig, P.; Everts, V. LAMP-2 Is Involved in Surface Expression of RANKL of Osteoblasts In Vitro. Int. J. Mol. Sci. 2020, 21, 6110. https://doi.org/10.3390/ijms21176110
Jansen IDC, Tigchelaar-Gutter W, Hogervorst JMA, de Vries TJ, Saftig P, Everts V. LAMP-2 Is Involved in Surface Expression of RANKL of Osteoblasts In Vitro. International Journal of Molecular Sciences. 2020; 21(17):6110. https://doi.org/10.3390/ijms21176110
Chicago/Turabian StyleJansen, Ineke D.C., Wikky Tigchelaar-Gutter, Jolanda M. A. Hogervorst, Teun J. de Vries, Paul Saftig, and Vincent Everts. 2020. "LAMP-2 Is Involved in Surface Expression of RANKL of Osteoblasts In Vitro" International Journal of Molecular Sciences 21, no. 17: 6110. https://doi.org/10.3390/ijms21176110
APA StyleJansen, I. D. C., Tigchelaar-Gutter, W., Hogervorst, J. M. A., de Vries, T. J., Saftig, P., & Everts, V. (2020). LAMP-2 Is Involved in Surface Expression of RANKL of Osteoblasts In Vitro. International Journal of Molecular Sciences, 21(17), 6110. https://doi.org/10.3390/ijms21176110