Recent Progress in Carbon Nanotube Polymer Composites in Tissue Engineering and Regeneration
Abstract
:1. Introduction
2. CNTs in Tissue Engineering and Regenerative Medicine
2.1. CNTs in Tissue Engineering
2.2. CNTs in Regenerative Medicine
3. CNT–Polymer Composites for Tissue Engineering and Regenerative Medicine
3.1. Formation and Properties of CNT–Polymer Composites
3.1.1. Natural Polymers
3.1.2. Synthetic Polymers
3.2. Applications
4. Challenges and Prospects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nobile, S.; Nobile, L. Nanotechnology for biomedical applications: Recent advances in neurosciences and bone tissue engineering. Polym. Eng. Sci. 2017. [Google Scholar] [CrossRef]
- Dvir, T.; Timko, B.P.; Kohane, D.S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2011, 6, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Zorlutuna, P.; Vrana, N.E.; Khademhosseini, A. The Expanding World of Tissue Engineering: The Building Blocks and New Applications of Tissue Engineered Constructs. IEEE Rev. Biomed. Eng. 2013, 6, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Wrzesinski, S.H.; Stern, E.; Look, M.; Criscione, J.; Ragheb, R.; Jay, S.M.; Demento, S.L.; Agawu, A.; Licona Limon, P.; et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 2012, 11, 895–905. [Google Scholar] [CrossRef]
- Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized bone matrix in bone repair: History and use. Adv. Drug Deliv. Rev. 2012, 64, 1063–1077. [Google Scholar] [CrossRef]
- Cheng, C.J.; Tietjen, G.T.; Saucier-Sawyer, J.K.; Saltzman, W.M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 2015, 14, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Bahal, R.; Ali McNeer, N.; Quijano, E.; Liu, Y.; Sulkowski, P.; Turchick, A.; Lu, Y.-C.; Bhunia, D.C.; Manna, A.; Greiner, D.L.; et al. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nat. Commun. 2016, 7, 13304. [Google Scholar] [CrossRef]
- Mi, P.; Kokuryo, D.; Cabral, H.; Wu, H.; Terada, Y.; Saga, T.; Aoki, I.; Nishiyama, N.; Kataoka, K. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 2016, 11, 724–730. [Google Scholar] [CrossRef]
- Colson, Y.; Grinstaff, M. Biologically Responsive Polymeric Nanoparticles for Drug Delivery. Adv. Mater. 2012, 24, 3878–3886. [Google Scholar] [CrossRef]
- Supronowicz, P.; Ajayan, P.; Ullmann, K.; Arulanandam, B.; Metzger, D.; Bizios, R. Novel current-conducting composite substrates for exposing osteoblasts alternating current stimulation. J. Biomed. Mater. Res. 2002, 59, 499–506. [Google Scholar] [CrossRef]
- Sotome, S.; Ae, K.; Okawa, A.; Ishizuki, M.; Morioka, H.; Matsumoto, S.; Nakamura, T.; Abe, S.; Beppu, Y.; Shinomiya, K. Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone regeneration: A randomized controlled study. J. Orthop. Sci. 2016, 21, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, N.; Haniu, H.; Usui, Y.; Aoki, K.; Hara, K.; Takanashi, S.; Shimizu, M.; Narita, N.; Okamoto, M.; Kobayashi, S.; et al. Safe Clinical Use of CNTs as Innovative Biomaterials. Chem. Rev. 2014, 114, 6040–6079. [Google Scholar] [CrossRef] [PubMed]
- Saito, N.; Usui, Y.; Aoki, K.; Narita, N.; Shimizu, M.; Ogiwara, N.; Nakamura, K.; Ishigaki, N.; Kato, H.; Taruta, S.; et al. CNTs for Biomaterials in Contact with Bone. Curr. Med. Chem. 2008, 15, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, P.; Khang, D.; Webster, T.J. Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane. Int. J. Nanomed. 2006, 1, 361–365. [Google Scholar]
- Lin, C.; Wang, Y.; Lai, Y.; Yang, W.; Jiao, F.; Zhang, H.; Ye, S.; Zhang, Q. Incorporation of carboxylation multiwalled CNTs into biodegradable poly (lactic-co-glycolic acid) for bone tissue engineering. Colloids Surf. B Biointerfaces 2011, 83, 367–375. [Google Scholar] [CrossRef]
- Niu, L.; Kua, H.; Chua, D.H.C. Bonelike Apatite Formation Utilizing CNTs as Template. Langmuir 2010, 26, 4069–4073. [Google Scholar] [CrossRef]
- Raphey, V.R.; Henna, T.K.; Nivitha, K.P.; Mufeedha, P.; Sabu, C.; Pramod, K. Advanced biomedical applications of CNT. Mater. Sci. Eng. C 2019, 100, 616–630. [Google Scholar] [CrossRef]
- Ahadian, S.; Obregon, R.; Ramón-Azcón, J.; Salazar, G.; Shiku, H.; Ramalingam, M.; Matsue, T. CNTs and Graphene-Based Nanomaterials for Stem Cell Differentiation and Tissue Regeneration. J. Nanosci. Nanotechnol. 2016, 16, 8862–8880. [Google Scholar] [CrossRef]
- Anthony, D.B.; Sui, X.; Kellersztein, I.; De Luca, H.G.; White, E.R.; Wagner, H.D.; Greenhalgh, E.S.; Bismarck, A.; Shaffer, M.S.P. Continuous CNT synthesis on charged carbon fibers. Compos. Part A Appl. Sci. Manuf. 2018, 112, 525–538. [Google Scholar] [CrossRef]
- Namgung, S.; Baik, K.Y.; Park, J.; Hong, S. Controlling the Growth and Differentiation of Human Mesenchymal Stem Cells by the Arrangement of Individual CNTs. ACS Nano 2011, 5, 7383–7390. [Google Scholar] [CrossRef]
- Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Hu, Y.; Ye, M. Covalent attaching protein to graphene oxide via diimide-activated amidation. Colloids Surf. B Biointerfaces 2010, 81, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.P.; Buerki-Thurnherr, T.; Wick, P. Influence of single walled CNTs at subtoxical concentrations on cell adhesion and other cell parameters of human epithelial cells. J. King Saud Univ. Sci. 2013, 25, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, H.; Niu, X.; Yu, B.; Fan, Y.; Feng, Q.; Cui, F.-Z.; Watari, F. The use of CNTs to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials 2012, 33, 4818–4827. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Khang, D. Conformational changes of fibrinogen in dispersed CNTs. Int. J. Nanomed. 2012, 7, 4325–4333. [Google Scholar]
- Hilder, T.; Hill, J. Maximum Velocity for a Single Water Molecule Entering a CNT. J. Nanosci. Nanotechnol. 2009, 9, 1403–1407. [Google Scholar] [CrossRef]
- Mahmood, N.; Islam, M.; Hameed, A.; Saeed, S.; Khan, A.N. Polyamide-6-based composites reinforced with pristine or functionalized multi-walled CNTs produced using melt extrusion technique. J. Compos. Mater. 2013, 48, 1197–1207. [Google Scholar] [CrossRef]
- Mwangi, J.; Wang, N.; Ingersoll, C.; Hardesty, D.; Brunson, E.; Li, H.; Deng, B. Toxicity of CNTs to freshwater aquatic invertebrates. Environ. Toxicol. Chem. SETAC 2012, 31, 1823–1830. [Google Scholar] [CrossRef]
- Sinar, A.A.; Nur Azni, M.A.; Zainuddin, F.; Hazizan, M.A.; Siti Shuhadah, M.S.; Sahrim, H.A. Treatment Method for Dispersion of CNTs: A Review. Mater. Sci. Forum 2015, 803, 299–304. [Google Scholar] [CrossRef]
- Ko, H.; Peleshanko, S.; Tsukruk, V.V. Combing and Bending of CNT Arrays with Confined Microfluidic Flow on Patterned Surfaces. J. Phys. Chem. B 2004, 108, 4385–4393. [Google Scholar] [CrossRef]
- Homma, Y.; Chiashi, S.; Yamamoto, T.; Kono, K.; Matsumoto, D.; Shitaba, J.; Sato, S. Photoluminescence Measurements and Molecular Dynamics Simulations of Water Adsorption on the Hydrophobic Surface of a CNT in Water Vapor. Phys. Rev. Lett. 2013, 110, 157402. [Google Scholar] [CrossRef]
- Feng, Y.; Li, S.H.; Li, Y.; Li, H.J.; Zhang, L.; Zhai, J.; Song, Y.L.; Liu, B.Q.; Jiang, L.; Zhu, D.B. Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater. 2003, 14, 1857–1860. [Google Scholar] [CrossRef]
- Saleh, N.B.; Pfefferle, L.D.; Elimelech, M. Aggregation Kinetics of Multiwalled CNTs in Aquatic Systems: Measurements and Environmental Implications. Environ. Sci. Technol. 2008, 42, 7963–7969. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Saltiel, C.; Manickavasagam, S.; Schadler, L.S.; Siegel, R.W.; Yang, H. Aggregation behavior of single-walled CNTs in dilute aqueous suspension. J. Colloid Interface Sci. 2004, 280, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Yao, J.M.; Qin, Z.; Liu, L.; Yang, X.G. Comparison of Covalent and Noncovalent Interactions of CNTs on the Crystallization Behavior and Thermal Properties of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate). J. Appl. Polym. Sci. 2013, 130. [Google Scholar] [CrossRef]
- Niroula, J.; Premaratne, G.; Ali Shojaee, S.; Lucca, D.A.; Krishnan, S. Combined covalent and noncovalent carboxylation of CNTs for sensitivity enhancement of clinical immunosensors. Chem. Commun. 2016, 52, 13039–13042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usrey, M.L.; Strano, M.S. Controlling Single-Walled CNT Surface Adsorption with Covalent and Noncovalent Functionalization. J. Phys. Chem. C 2009, 113, 12443–12453. [Google Scholar] [CrossRef]
- Clavé, G.; Delport, G.; Roquelet, C.; Lauret, J.-S.; Deleporte, E.; Vialla, F.; Langlois, B.; Parret, R.; Voisin, C.; Roussignol, P.; et al. Functionalization of CNTs through Polymerization in Micelles: A Bridge between the Covalent and Noncovalent Methods. Chem. Mater. 2013, 25, 2700–2707. [Google Scholar] [CrossRef]
- Liu, J.Q.; Xiao, T.; Liao, K.; Wu, P. Interfacial design of CNT polymer composites: A hybrid system of noncovalent and covalent functionalizations. Nanotechnology 2007, 18, 165701. [Google Scholar] [CrossRef]
- Tu, W.; Lei, J.; Ju, H. Noncovalent nanoassembly of porphyrin on single-walled CNTs for electrocatalytic reduction of nitric oxide and oxygen. Electrochem. Commun. 2008, 10, 766–769. [Google Scholar] [CrossRef]
- Rajarajeswari, M.; Iyakutti, K.; Kawazoe, Y. Noncovalent and covalent functionalization of a (5, 0) single-walled CNT with alanine and alanine radicals. J. Mol. Model. 2012, 18, 771–781. [Google Scholar] [CrossRef]
- Singh, M.K.; Marques, P.A.; Sousa, A.C.; Gracio, J.; Silva, V.; Goncalves, P.; Ferreira, J.; Olhero, S. Biotoxicity study of bone cement based on a functionalized multi-walled CNT-reinforced PMMA/HAp nanocomposite. Int. J. Nano Biomater. 2009, 2, 442–453. [Google Scholar] [CrossRef]
- Liu, B.; Campo, E.; Bossing, T. Drosophila Embryos as Model to Assess Cellular and Developmental Toxicity of Multi-Walled CNTs (MWCNT) in Living Organisms. PLoS ONE 2014, 9, e88681. [Google Scholar]
- Sun, H.; Zhou, J.; Huang, Z.; Qu, L.; Lin, N.; Liang, C.; Dai, R.; Tang, L.; Tian, F. CNT-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Int. J. Nanomed. 2017, 12, 3109–3120. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Naskar, S.; Kuotsu, K. A review on CNTs: Influencing toxicity and emerging carrier for platinum based cytotoxic drug application. J. Drug Deliv. Sci. Technol. 2019, 51, 708–720. [Google Scholar] [CrossRef]
- Liang, X.; Cheng, Q. Synergistic reinforcing effect from graphene and CNTs. Compos. Commun. 2018, 10, 122–128. [Google Scholar] [CrossRef]
- Che Abdullah, C.A.; Lewis Azad, C.; Ovalle-Robles, R.; Fang, S.; Lima, M.D.; Lepró, X.; Collins, S.; Baughman, R.H.; Dalton, A.B.; Plant, N.J.; et al. Primary Liver Cells Cultured on CNT Substrates for Liver Tissue Engineering and Drug Discovery Applications. ACS Appl. Mater. Interfaces 2014, 6, 10373–10380. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Guo, X.; Zong, X.; Du, L.; Zhao, J.; Lai, C.; Jin, X. Toxicity of functionalized multi-walled CNTs on bone mesenchymal stem cell in rats. Dent. Mater. J. 2019, 38, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, J.; Ryu, B.; Sudha, P.N.; Kim, S.-K. Preparation and characterization of chitosan–CNT scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2012, 50, 393–402. [Google Scholar] [CrossRef]
- Di Martino, A.; Sittinger, M.; Risbud, M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005, 26, 5983–5990. [Google Scholar] [CrossRef]
- Venkatesan, J.; Kim, S.-K. Chitosan Composites for Bone Tissue Engineering—An Overview. Mar. Drugs 2010, 8, 2252–2266. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Sun, X.; Wang, Y.; Sun, K.; Bi, J. Properties of reduced graphene/CNTs reinforced calcium phosphate bone cement in a microwave environment. J. Mater. Sci. Mater. Med. 2019, 30, 37. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.; Shen, X.; Tong, H. Synthesis and characterization of chitosan–multiwalled CNTs/hydroxyapatite nanocomposites for bone tissue engineering. J. Mater. Sci. Mater. Med. 2013, 24, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.; Panseri, S.; Iannazzo, D.; Piperno, A.; Pistone, A.; Fazio, M.; Russo, A.; Marcacci, M.; Galvagno, S. Hybrid composites made of multiwalled CNTs functionalized with Fe3O4 nanoparticles for tissue engineering applications. Nanotechnology 2012, 23, 465102. [Google Scholar] [CrossRef] [PubMed]
- Mikael, P.; Nukavarapu, S. Functionalized CNT Composite Scaffolds for Bone Tissue Engineering: Prospects and Progress. J. Biomater. Tissue Eng. 2011, 1, 76–85. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.; Chen, X.; Ismail, A.; Aziz, M.; Abdolahi, E.; Mahmoodiyan, F. Improved antibacterial properties of an Mg-Zn-Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall CNTs for bone implants. Polym. Adv. Technol. 2019, 30. [Google Scholar] [CrossRef]
- Moreira, P.L.; An, Y.; Santos, J.A.; Genari, S. In vitro analysis of anionic collagen scaffolds for bone repair. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Q.; Gu, Y.; Zhu, Y.; Chen, L.; Chen, Y. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration. Med. Sci. Monit. 2017, 23, 5311–5320. [Google Scholar] [CrossRef] [Green Version]
- Krishnakumar, G.S.; Gostynska, N.; Campodoni, E.; Dapporto, M.; Montesi, M.; Panseri, S.; Tampieri, A.; Kon, E.; Marcacci, M.; Sprio, S.; et al. Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies. Mater. Sci. Eng. C 2017, 77, 594–605. [Google Scholar] [CrossRef]
- Castro-Ceseña, A.B.; Camacho-Villegas, T.A.; Lugo-Fabres, P.H.; Novitskaya, E.E.; McKittrick, J.; Licea-Navarro, A. Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry. Carbohydr. Polym. 2016, 148, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Twomey, J.; Guo, D.; Madhavan, K.; Li, M. Evaluation of Nanostructural, Mechanical, and Biological Properties of Collagen–Nanotube Composites. IEEE Trans. Nanobiosci. 2010, 9, 111–120. [Google Scholar] [CrossRef]
- White, A.; Best, S.; Kinloch, I. Hydroxyapatite–CNT Composites for Biomedical Applications: A Review. Int. J. Appl. Ceram. Technol. 2007, 4, 1–13. [Google Scholar] [CrossRef]
- Da Silva, E.E.; Della Colleta, H.H.; Ferlauto, A.S.; Moreira, R.L.; Resende, R.R.; Oliveira, S.; Kitten, G.T.; Lacerda, R.G.; Ladeira, L.O. Nanostructured 3-D collagen/nanotube biocomposites for future bone regeneration scaffolds. Nano Res. 2009, 2, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Batool, F.; Strub, M.; Petit, C.; Bugueno, I.M.; Bornert, F.; Clauss, F.; Huck, O.; Kuchler-Bopp, S.; Benkirane-Jessel, N. Periodontal Tissues, Maxillary Jaw Bone, and Tooth Regeneration Approaches: From Animal Models Analyses to Clinical Applications. Nanomaterials 2018, 8, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, I.; Kumar, A.; Joddar, B. A Bioactive Hydrogel and 3D Printed Polycaprolactone System for Bone Tissue Engineering. Gels 2017, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.-M.; Choi, D.-Y.; Jung, S.-C.; Kim, B.-H. Characteristics of Plasma Treated Electrospun Polycaprolactone (PCL) Nanofiber Scaffold for Bone Tissue Engineering. J. Nanosci. Nanotechnol. 2015, 15. [Google Scholar] [CrossRef]
- Tarafder, S.; Bose, S. Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis. ACS Appl. Mater. Interfaces 2014, 6, 9955–9965. [Google Scholar] [CrossRef]
- Mattioli-Belmonte, M.; Vozzi, G.; Whulanza, Y.; Seggiani, M.; Fantauzzi, V.; Orsini, G.; Ahluwalia, A. Tuning polycaprolactone–CNT composites for bone tissue engineering scaffolds. Mater. Sci. Eng. C 2012, 32, 152–159. [Google Scholar] [CrossRef]
- Flores-Cedillo, M.L.; Alvarado-Estrada, K.N.; Pozos-Guillén, A.J.; Murguía-Ibarra, J.S.; Vidal, M.A.; Cervantes-Uc, J.M.; Rosales-Ibáñez, R.; Cauich-Rodríguez, J.V. Multiwall CNTs/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. J. Mater. Sci. Mater. Med. 2015, 27, 35. [Google Scholar] [CrossRef]
- Huang, B.; Vyas, C.; Roberts, I.; Poutrel, Q.-A.; Chiang, W.-H.; Blaker, J.J.; Huang, Z.; Bártolo, P. Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Mater. Sci. Eng. C 2019, 98, 266–278. [Google Scholar] [CrossRef]
- Mikael, P.E.; Amini, A.R.; Basu, J.; Josefina Arellano-Jimenez, M.; Laurencin, C.T.; Sanders, M.M.; Barry Carter, C.; Nukavarapu, S.P. Functionalized CNT reinforced scaffolds for bone regenerative engineering: Fabrication, in vitro and in vivo evaluation. Biomed. Mater. 2014, 9, 035001. [Google Scholar] [CrossRef]
- Zhou, Y.; Lei, L.; Yang, B.; Li, J.; Ren, J. Preparation and characterization of polylactic acid (PLA) CNT nanocomposites. Polym. Test. 2018, 68, 34–38. [Google Scholar] [CrossRef]
- Martínez de Arenaza, I.; Obarzanek-Fojt, M.; Sarasua, J.R.; Meaurio, E.; Meyer, F.; Raquez, J.M.; Dubois, P.; Bruinink, A. Pyrene-end-functionalized poly(L-lactide) as an efficient CNT dispersing agent in poly(L-lactide): Mechanical performance and biocompatibility study. Biomed. Mater. 2015, 10, 045003. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wei, B.; Ma, D. Energy Storage and Management System with CNT Supercapacitor and Multidirectional Power Delivery Capability for Autonomous Wireless Sensor Nodes. IEEE Trans. Power Electron. 2010, 25, 2897–2909. [Google Scholar] [CrossRef]
- Nivethaa, E.A.K.; Dhanavel, S.; Narayanan, V.; Stephen, A. Fabrication of chitosan/MWCNT nanocomposite as a carrier for 5-fluorouracil and a study of the cytotoxicity of 5-fluorouracil encapsulated nanocomposite towards MCF-7. Polym. Bull. 2016, 73, 3221–3236. [Google Scholar] [CrossRef]
- Riggio, C.; Ciofani, G.; Raffa, V.; Cuschieri, A.; Micera, S. Combination of Polymer Technology and CNT Array for the Development of an Effective Drug Delivery System at Cellular Level. Nanoscale Res. Lett. 2009, 4, 668. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.-Z.; Huang-Fu, M.-Y.; Liu, H.-N.; Wang, X.-R.; Sheng, X.; Gao, J.-Q. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with CNTs and silk fibroin. Int. J. Nanomed. 2016, 11, 6181–6194. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wu, Y.; Yu, D.; Li, R.; Luo, W.; Ma, G.; Zhang, C. Isoniazid-loaded chitosan/CNTs microspheres promote secondary wound healing of bone tuberculosis. J. Biomater. Appl. 2018, 33, 989–996. [Google Scholar] [CrossRef]
- Fatouros, D.; Power, K.; Kadir, O.; Dekany, I.; Yannopoulos, S.; Bouropoulos, N.; Bakandritsos, A.; Antonijevic, M.; Zouganelis, G.; Roldo, M. Stabilisation of SWNTs by alkyl-sulfate chitosan derivatives of different molecular weight: Towards the preparation of hybrids with anticoagulant properties. Nanoscale 2011, 3, 1218–1224. [Google Scholar] [CrossRef]
- Costantini, L.; Bouropoulos, N.; Fatouros, D.G.; Kontopoulou, I.; Roldo, M. Synthesis of CNTs loaded hydroxyapatite: Potential for controlled drug release from bone implants. J. Adv. Ceram. 2016, 5, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.Y.; Qiu, T.; Wang, X.F.; Zhang, M.; Gao, X.L.; Li, R.X.; Lu, X.; Weng, J. Preparation of foam-like CNTs/hydroxyapatite composite scaffolds with superparamagnetic properties. Appl. Surf. Sci. 2012, 262, 227–230. [Google Scholar] [CrossRef]
- Aryaei, A.; Jayatissa, A.; Jayasuriya, A. Mechanical and biological properties of chitosan/CNT nanocomposite films. J. Biomed. Mater. Res. Part A 2014, 102. [Google Scholar] [CrossRef]
- Abarrategi, A.; Gutiérrez, M.C.; Moreno-Vicente, C.; Hortigüela, M.J.; Ramos, V.; López-Lacomba, J.L.; Ferrer, M.L.; Del Monte, F. Multiwall CNT scaffolds for tissue engineering purposes. Biomaterials 2008, 29, 94–102. [Google Scholar] [CrossRef]
- Hirata, E.; Uo, M.; Takita, H.; Akasaka, T.; Watari, F.; Yokoyama, A. Multiwalled CNT-coating of 3D collagen scaffolds for bone tissue engineering. Carbon 2011, 49, 3284–3291. [Google Scholar] [CrossRef]
- Gutiérrez-Hernández, J.M.; Escobar-García, D.M.; Escalante, A.; Flores, H.; González, F.J.; Gatenholm, P.; Toriz, G. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled CNTs as scaffold for bone regeneration. Mater. Sci. Eng. C 2017, 75, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Yun, Y.S.; Kim, E.; Kim, M.; Jin, H.-J. Stem Cell Response to Multiwalled CNT-Incorporated Regenerated Silk Fibroin Films. J. Nanosci. Nanotechnol. 2011, 11, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Wu, Y.; Su, W.; Tian, M.; Jiang, W.; Cao, L.; Zhao, L.; Zhao, Z. CNT Reinforced Collagen/Hydroxyapatite Scaffolds Improve Bone Tissue Formation In Vitro and In Vivo. Ann. Biomed. Eng. 2017, 45, 2075–2087. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hu, X.; Jiang, S.; Wang, Y.; Parungao, R.; Zheng, S.; Nie, Y.; Liu, T.; Song, K. The Application of Multi-Walled CNTs in Bone Tissue Repair Hybrid Scaffolds and the Effect on Cell Growth In Vitro. Polymers 2019, 11, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhao, Q.; Li, B.; Kang, J.; Yu, Z.; Li, Y.; Song, X.; Liang, C.; Wang, H. Fabrication and properties of CNT-reinforced hydroxyapatite composites by a double in situ synthesis process. Carbon 2016, 101, 159–167. [Google Scholar] [CrossRef]
- Mukherjee, S.; Nandi, S.K.; Kundu, B.; Chanda, A.; Sen, S.; Das, P.K. Enhanced bone regeneration with CNT reinforced hydroxyapatite in animal model. J. Mech. Behav. Biomed. Mater. 2016, 60, 243–255. [Google Scholar] [CrossRef]
- Park, J.-E.; Jang, Y.-S.; Bae, T.-S.; Lee, M.-H. Biocompatibility Characteristics of Titanium Coated with Multi Walled CNTs—Hydroxyapatite Nanocomposites. Materials 2019, 12, 224. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, F.; Mohammadi, H.; Azimi, M.; Hafezi, M.; Abu Osman, N.A. Synthesis and characterization of β-TCP/CNT nanocomposite: Morphology, microstructure and in vitro bioactivity. Ceram. Int. 2017, 43, 7573–7580. [Google Scholar] [CrossRef]
- Shao, S.; Zhou, S.; Li, L.; Li, J.; Luo, C.; Wang, J.; Li, X.; Weng, J. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 2011, 32, 2821–2833. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Rutledge, K.; Jabbarzadeh, E. CNT–Poly (lactide-co-glycolide) Composite Scaffolds for Bone Tissue Engineering Applications. Ann. Biomed. Eng. 2013, 41, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Pei, X.; He, R.; Wan, Q.; Wang, J. Multiwall CNTs/polycaprolactone composites for bone tissue engineering application. Colloids Surf. B Biointerfaces 2012, 93, 226–234. [Google Scholar] [CrossRef] [PubMed]
No. | Materials Used | Uses of CNTs | Significance | Ref. |
---|---|---|---|---|
Natural Polymers | ||||
1 | Chitosan | Nanocomposite films and jaw skin scaffolds | Enhanced biologically active characteristics, tensile strength, and cell proliferation | [48,81,82] |
2 | Collagen | Three-dimensional CNT covered jaw and jaw repair biological materials | Improved functionality and mechanical stability | [60,83] |
3 | Microbial cellulose | Bone tissue scaffolds | Enhanced mechanical characteristics and proliferation | [84] |
4 | Silk fibroin | Nanocomposite films | Supports jaw cell adhesion and development | [85] |
5 | Collagen–hydroxyapatite and gelatin–chitosan | Jaw scaffold materials | Enhanced stiffness, elastic modulus, elongation rate, and cell viability | [86,87] |
Calcium Phosphate | ||||
1 | Hydroxyapatite | Jaw implant materials | Enhanced jaw integration, mechanical features, and novel bone materialization | [88,89,90] |
2 | Calcium phosphate | Injectable jaw substitutes | Enhanced compressive strength and hydroxyapatite (HA) crystal formation | [51] |
3 | β-tricalcium phosphate | Jaw repair materials | Enhanced HA and apatite formation | [91] |
Synthetic Polymers | ||||
1 | Polylactic acid | NC materials and jaw tissue engineering | Enhanced tensile strength and thermal solidity and possesses electrical conductivity | [71,92] |
2 | Poly(lactide-co-glycolide) | Jaw repair and tissue scaffolds | Exhibits better tissue and cell compatibility, enhanced mechanical strength and proliferation | [15,70,93] |
3 | Polycaprolactone | Three-dimensional jaw scaffolds | Enhanced cell proliferation and tensile strength | [69,94] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lekshmi, G.; Sana, S.S.; Nguyen, V.-H.; Nguyen, T.H.C.; Nguyen, C.C.; Le, Q.V.; Peng, W. Recent Progress in Carbon Nanotube Polymer Composites in Tissue Engineering and Regeneration. Int. J. Mol. Sci. 2020, 21, 6440. https://doi.org/10.3390/ijms21176440
Lekshmi G, Sana SS, Nguyen V-H, Nguyen THC, Nguyen CC, Le QV, Peng W. Recent Progress in Carbon Nanotube Polymer Composites in Tissue Engineering and Regeneration. International Journal of Molecular Sciences. 2020; 21(17):6440. https://doi.org/10.3390/ijms21176440
Chicago/Turabian StyleLekshmi, Gangadhar, Siva Sankar Sana, Van-Huy Nguyen, Thi Hong Chuong Nguyen, Chinh Chien Nguyen, Quyet Van Le, and Wanxi Peng. 2020. "Recent Progress in Carbon Nanotube Polymer Composites in Tissue Engineering and Regeneration" International Journal of Molecular Sciences 21, no. 17: 6440. https://doi.org/10.3390/ijms21176440
APA StyleLekshmi, G., Sana, S. S., Nguyen, V. -H., Nguyen, T. H. C., Nguyen, C. C., Le, Q. V., & Peng, W. (2020). Recent Progress in Carbon Nanotube Polymer Composites in Tissue Engineering and Regeneration. International Journal of Molecular Sciences, 21(17), 6440. https://doi.org/10.3390/ijms21176440