Age- and Phenotype-Dependent Changes in Circulating MMP-2 and MMP-9 Activities in Normotensive and Hypertensive Rats
Abstract
:1. Introduction
2. Results
2.1. Basic Characteristics of Experimental Animals—Body Weight, Systolic Blood Pressure and Heart Rate
2.2. Markers of Oxidative Stress
2.2.1. Markers of Oxidative Damage of Proteins and Lipids
2.2.2. Carbonyl Stress
2.2.3. Antioxidant Capacity
2.3. N-Terminal Pro-Brain Natriuretic Peptide Concentration
2.4. Circulating MMPs Activities
2.4.1. Phenotype-Dependent Analyses
2.4.2. Age-Dependent Analyses
3. Discussion
3.1. Biometric and Cardiovascular Parameters
3.2. Oxidative Stress Parameters
3.3. NT-proBNP
3.4. MMPs
3.5. Conclusion
4. Materials and Methods
4.1. Animals
4.2. Measurements of Systolic Blood Pressure and Heart Rate
4.3. Biochemical Analysis of Oxidative Stress and Antioxidant Status
4.4. Analysis of NT-proBNP
4.5. Analysis of MMPs Activity
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGEs | Advanced glycation end-products |
ANOVA | Analysis of variance |
AOPP | Advanced oxidation protein products |
BP | Blood pressure |
bpm | Beats per minute |
BW | Body weight |
CVD | Cardiovascular diseases |
ECM | Extracellular matrix |
FRAP | Ferric reducing antioxidant power |
GSH | Reduced glutathione |
GSSG | Oxidized glutathione |
HR | Heart rate |
MMPs | Matrix metalloproteinases |
NP | Natriuretic peptide |
NT-proBNP | N-terminal pro-brain natriuretic peptide |
SD | Standard deviation |
SHR | Spontaneously hypertensive rats |
TBARS | Thiobarbituric acid reactive substances |
VSMCs | Vascular smooth muscle cells |
WKY | Wistar-Kyoto rats |
References
- Carretero, O.; Oparil, S. Essential Hypertension Part I: Definition and Etiology Oscar. Circulation 2000, 101, 329–335. [Google Scholar] [CrossRef]
- Mahfoud, F.; Schunkert, H.; Kreutz, R. Kommentar zu den Leitlinien (2018) der Europäischen Gesellschaft für Kardiologie (ESC) und der Europäischen Gesellschaft für Hypertonie (ESH) für das Management der arteriellen Hypertonie. Der Kardiologe 2019, 17–23. [Google Scholar] [CrossRef]
- Patel, R.S.; Masi, S.; Taddei, S. Understanding the role of genetics in hypertension. Eur. Heart J. 2017, 38, 2309–2312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazoki, R.; Dehghan, A.; Evangelou, E.; Warren, H.; Gao, H.; Caulfield, M.; Elliott, P.; Tzoulaki, I. Genetic Predisposition to High Blood Pressure and Lifestyle Factors: Associations With Midlife Blood Pressure Levels and Cardiovascular Events. Circulation 2018, 137, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, D.; Morrison, C.J.; Overall, C.M. Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta Mol. Cell Res. 2010, 1803, 39–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabłońska-Trypuć, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzym. Inhib. Med. Chem. 2016, 31 (Suppl. S1), 177–183. [Google Scholar] [CrossRef] [Green Version]
- Loffek, S.; Schilling, O.; Franzke, C.W. Biological role of matrix metalloproteinases: A critical balance. Eur. Respir. J. 2011, 38, 191–208. [Google Scholar] [CrossRef] [Green Version]
- Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef]
- Radosinska, J.; Barancik, M.; Vrbjar, N. Heart failure and role of circulating MMP-2 and MMP-9. Panminerva Med. 2017, 59, 241–253. [Google Scholar] [CrossRef]
- Yabluchanskiy, A.; Ma, Y.; Iyer, R.P.; Hall, M.E.; Lindsey, M.L. Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiology 2013, 28, 391–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.H.; Clark, L.L.; Pennington, W.R.; Webb, C.S.; Bonnema, D.D.; Leonardi, A.H.; McClure, C.D.; Spinale, F.G.; Zile, M.R. Matrix Metalloproteinases/Tissue Inhibitors of Metalloproteinases. Circulation 2006, 113, 2089–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLeon-Pennell, K.Y.; Meschiari, C.A.; Jung, M.; Lindsey, M.L. Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. Prog. Mol. Biol. Transl. Sci. 2017, 147, 75–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qorri, B.; Kalaydina, R.V.; Velickovic, A.; Kaplya, Y.; Decarlo, A.; Szewczuk, M. Agonist-Biased Signaling via Matrix Metalloproteinase-9 Promotes Extracellular Matrix Remodeling. Cells 2018, 7, 117. [Google Scholar] [CrossRef]
- Nascimento, R.A.; Possomato-Vieira, J.S.; Bonacio, G.F.; Rizzi, E.; Dias-Junior, C.A. Reductions of Circulating Nitric Oxide are Followed by Hypertension during Pregnancy and Increased Activity of Matrix Metalloproteinases-2 and -9 in Rats. Cell 2019, 8, 1402. [Google Scholar] [CrossRef] [Green Version]
- Kuliczkowski, W.; Banaszkiewicz, M.; Mysiak, A.; Makaś, G.; Bil-Lula, I. Does Arterial Hypertension Affect Plasma Levels of Matrix Metalloproteinases and Their Tissue Inhibitors in Patients with Stable Coronary Artery Disease? A Preliminary Study. Cardiol. Res. Pract. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Ritter, A.M.V.; de Faria, A.P.; Barbaro, N.; Sabbatini, A.R.; Corrêa, N.B.; Brunelli, V.; Amorim, R.; Modolo, R.; Moreno, H. Crosstalk between obesity and MMP-9 in cardiac remodelling—A cross-sectional study in apparent treatment-resistant hypertension. Blood Press. 2017, 26, 122–129. [Google Scholar] [CrossRef]
- Okamoto, T.; Akaike, T.; Sawa, T.; Miyamoto, Y.; van der Vliet, A.; Maeda, H. Activation of Matrix Metalloproteinases by Peroxynitrite-induced Protein S-Glutathiolation via Disulfide S-Oxide Formation. J. Biol. Chem. 2001, 276, 29596–29602. [Google Scholar] [CrossRef] [Green Version]
- International Consortium for Blood Pressure Genome-Wide Association Studies; Ehret, G.B.; Munroe, P.B.; Rice, K.M.; Bochud, M.; Johnson, A.D.; Chasman, D.I.; Smith, A.V.; Tobin, M.D.; Verwoert, G.C.; et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011, 478, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, S.; Wang, B.; Liu, J.; Tang, Q. Matrix metalloproteinase-9 is a predictive factor for systematic hypertension and heart dysfunction in patients with obstructive sleep apnea syndrome. BioMed Res. Int. 2018. [Google Scholar] [CrossRef]
- Yang, W.; Lu, J.; Yang, L.; Zhang, J. Association of matrix metalloproteinase-9 gene -1562C/T polymorphism with essential hypertension: A systematic review and meta-analysis article. Iran. J. Public Health 2015, 44, 1445–1452. [Google Scholar] [PubMed]
- Tayebjee, M.; Nadar, S.; Macfadyen, R.; Lip, G. Tissue Inhibitor of Metalloproteinase-1 and Matrix Metalloproteinase-9 Levels in Patients With Hypertension. Am. J. Hypertens. 2004, 17, 770–774. [Google Scholar] [CrossRef]
- Puzserova, A.; Kopincova, J.; Bernathova, I. Endothelial (dys) function in the experimental model of primary hypertension. Československá Fyziologie. 2010, 59, 4–14. [Google Scholar] [PubMed]
- Nakshi, S.; Kumar, D.P. Oxidative Stress and Antioxidants in Hypertension–A Current Review. Curr. Hypertens. Rev. 2015, 11, 132–142. [Google Scholar] [CrossRef]
- Mecocci, P.; Boccardi, V.; Cecchetti, R.; Bastiani, P.; Scamosci, M.; Ruggiero, C.; Baroni, M. A Long Journey into Aging, Brain Aging, and Alzheimer’s Disease Following the Oxidative Stress Tracks. J. Alzheimers Dis. JAD 2018, 62, 1319–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabha, L.; Garbern, J.C.; Buller, C.L.; Charpie, J.R. Vascular oxidative stress precedes high blood pressure in spontaneously hypertensive rats. Clin. Exp. Hypertens. 2005, 27, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Roberts, L.J. Measurement of lipid peroxidation. Free Radic. Res. 1998, 28, 659–671. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F.; Tripepi, G. AGEs and carbonyl stress: Potential pathogenetic factors of long-term uraemic complications. Nephrol. Dial. Transplant. 2000, 15 (Suppl. S2), 7–11. [Google Scholar] [CrossRef]
- Yavuzer, H.; Yavuzer, S.; Cengiz, M.; Erman, H.; Doventas, A.; Balci, H.; Erdincler, D.S.; Uzun, H. Biomarkers of lipid peroxidation related to hypertension in aging. Hypertens. Res. 2016, 39, 342–348. [Google Scholar] [CrossRef]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Mel’nikova, T.I.; Porozov, Y.B.; Terentiev, A.A. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxidative Med. Cell. Longev. 2019, 2019, 3085756. [Google Scholar] [CrossRef] [Green Version]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Med. Cell. Longev. 2017, 2017, 6501046. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, K.L.; Oliveira, A.R.; Werner, A.; Bock, P.; Belló-Klein, A.; Fernandes, T.G.; Belló, A.A.; Irigoyen, M.C. Exercise training in aging: Hemodynamic, metabolic, and oxidative stress evaluations. Hypertension 1997, 30 Pt 2, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Cantini, C.; Kieffer, P.; Corman, B.; Limiñana, P.; Atkinson, J.; Lartaud-Idjouadiene, I. Aminoguanidine and aortic wall mechanics, structure, and composition in aged rats. Hypertension 2001, 38, 943–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadiasl, N.; Soufi, F.G.; Alipour, M.; Bonyadi, M.; Sheikhzadeh, F.; Vatankhah, A.; Salehi, I.; Mesgari, M. Effects of age increment and 36-week exercise training on antioxidant enzymes and apoptosis in rat heart tissue. J. Sports Sci. Med. 2007, 6, 243–249. [Google Scholar]
- Hall, C. NT-ProBNP: The mechanism behind the marker. J. Card. Fail. 2005, 11 (Suppl. S5), S81–S83. [Google Scholar] [CrossRef]
- Fu, M.; Zhou, J.; Qian, J.; Jin, X.; Zhu, H.; Zhong, C.; Fu, M.; Zou, Y.; Ge, J. Adiponectin through its biphasic serum level is a useful biomarker during transition from diastolic dysfunction to systolic dysfunction-an experimental study. Lipids Health Dis. 2012, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, A.; Prado, A.F.; Antonio, R.C.; Issa, J.P.; Gerlach, R.F. Matrix Metalloproteinases are Involved in Cardiovascular Diseases. Basic Clin. Pharmacol. Toxicol. 2014, 115, 301–314. [Google Scholar] [CrossRef]
- De Almeida Belo, V.; Parente, J.M.; Tanus-Santos, J.E.; Castro, M.M. Matrix metalloproteinase (MMP)-2 decreases calponin-1 levels and contributes to arterial remodeling in early hypertension. Biochem. Pharmacol. 2016, 118, 50–58. [Google Scholar] [CrossRef]
- Giannakos, E.; Vardali, E.; Bartekova, M.; Fogarassyova, M.; Barancik, M.; Radosinska, J. Changes in activities of circulating MMP-2 and MMP-9 in patients suffering from heart failure in relation to gender, hypertension and treatment: A cross-sectional study. Physiol. Res. 2016, 65 (Suppl. S1), 149–152. [Google Scholar] [CrossRef]
- Hopps, E.; Caimi, G. Matrix metalloproteases as a pharmacological target in cardiovascular diseases. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 2583–2589. [Google Scholar]
- Gyurászová, M.; Kovalčíková, A.; Janšáková, K.; Šebeková, K. Markers of Oxidative Stress and Antioxidant Status in the Plasma, Urine and Saliva of Healthy Mice. Physiol. Res. 2018, 8408, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Tóthová, Ľ.; Hodosy, J.; Mettenburg, K.; Fábryová, H.; Wagnerová, A.; Bábíčková, J.; Okuliarová, M.; Zeman, M.; Celec, P. No harmful effect of different Coca-cola beverages after 6 months of intake on rat testes. Food Chem. Toxicol. 2013, 62, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Bencsik, P.; Bartekova, M.; Görbe, A.; Kiss, K.; Pálóczi, J.; Radosinska, J.; Szűcs, G.; Ferdinandy, P. MMP Activity Detection in Zymograms. Methods Mol. Biol. 2017, 1626, 53–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kollarova, M.; Puzserova, A.; Balis, P.; Radosinska, D.; Tothova, L.; Bartekova, M.; Barancik, M.; Radosinska, J. Age- and Phenotype-Dependent Changes in Circulating MMP-2 and MMP-9 Activities in Normotensive and Hypertensive Rats. Int. J. Mol. Sci. 2020, 21, 7286. https://doi.org/10.3390/ijms21197286
Kollarova M, Puzserova A, Balis P, Radosinska D, Tothova L, Bartekova M, Barancik M, Radosinska J. Age- and Phenotype-Dependent Changes in Circulating MMP-2 and MMP-9 Activities in Normotensive and Hypertensive Rats. International Journal of Molecular Sciences. 2020; 21(19):7286. https://doi.org/10.3390/ijms21197286
Chicago/Turabian StyleKollarova, Marta, Angelika Puzserova, Peter Balis, Dominika Radosinska, Lubomira Tothova, Monika Bartekova, Miroslav Barancik, and Jana Radosinska. 2020. "Age- and Phenotype-Dependent Changes in Circulating MMP-2 and MMP-9 Activities in Normotensive and Hypertensive Rats" International Journal of Molecular Sciences 21, no. 19: 7286. https://doi.org/10.3390/ijms21197286
APA StyleKollarova, M., Puzserova, A., Balis, P., Radosinska, D., Tothova, L., Bartekova, M., Barancik, M., & Radosinska, J. (2020). Age- and Phenotype-Dependent Changes in Circulating MMP-2 and MMP-9 Activities in Normotensive and Hypertensive Rats. International Journal of Molecular Sciences, 21(19), 7286. https://doi.org/10.3390/ijms21197286