Role of Neuroendocrine, Immune, and Autonomic Nervous System in Anorexia Nervosa-Linked Cardiovascular Diseases
Abstract
:1. Introduction
2. Neuroendocrine System—The Role in AN-Linked Cardiovascular Diseases
2.1. Anorexia Nervosa-Linked Hypothalamic–Pituitary–Adrenal (HPA) Axis Dysfunction
2.2. Abnormalities in the Hypothalamic–Pituitary–Gonadal (HPG) Axis Related to Anorexia Nervosa
2.3. Hypothalamic–Pituitary–Thyroid (HPT) Axis Dysregulation in Anorexia Nervosa
2.4. Growth Hormone (GH)/Insulin-Like Growth Factor 1 (Igf-1) Axis
2.5. Adipokines And Appetite-Regulating Hormones—Leptin, Adiponectin, Ghrelin, Peptide YY (PYY)
3. Immune System Abnormalities Related to Cardiovascular Risk in Anorexia Nervosa
3.1. Cytokines—Their Role in AN Psychopathology
- (1)
- TH1 cytokines (IL-2, IL-12, IFN-γ) promoting the TH1 branch of the immune system and leading to cytotoxic cell contacts,
- (2)
- TH2 cytokines (IL-4, IL-5, IL-13) stimulating the TH2 branch and induction of antibodies production,
- (3)
- The proinflammatory cytokines (IL-1, IL-6, IL-8, IL-17, IL-21, IL-22, IFN-α, TNF-α) that promote inflammation,
- (4)
- The anti-inflammatory cytokines (IL-10, TGF-ß) that are influenced by regulatory T cells, preventing inflammatory processes.
3.2. Cytokines—The Role in AN-Linked Increased Cardiovascular Risk
4. Autonomic Nervous System Dysregulation as A Potential Mechanism Leading to Cardiovascular Diseases in Anorexia Nervosa
4.1. Heart Rate Variability—An Index of Cardiac Vagal Regulation
4.2. Blood Pressure Variability—An Index of Sympathetic Vascular Regulation in Anorexia Nervosa
5. Clinical Application
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AN | Anorexia nervosa |
ANS | Autonomic nervous system |
HPA | Hypothalamic–pituitary–adrenal |
CRH | Corticotropin-releasing hormone |
ACTH | Adrenocorticotropic hormone |
HPG | Hypothalamic–pituitary–gonadal |
FHA | Functional hypothalamic amenorrhea |
GnRH | Gonadotropin-releasing hormone |
FSH | Follicle stimulating hormone |
LH | Luteinizing hormone |
CVD | Cardiovascular disease |
HPT | Hypothalamic–pituitary–thyroid |
T3 | Triiodothyronine |
T4 | thyroxine |
GH | Growth hormone |
IGF-1 | Insulin-like growth factor 1 |
PYY | Peptide YY |
BMI | Body mass index |
IFN | Interferon |
IL | Interleukin |
TNF | Tumour necrosis factor |
NTS | Nucleus tractus solitarii |
α7nAChRs | α7 subunits of containing acetylcholine receptors |
HR | Heart rate |
HRV | Heart rate variability |
CAN | Central autonomic network |
HF-HRV | High frequency band of heart rate variability |
RSA | Respiratory sinus arrhythmia |
BP | Blood pressure |
BPV | Blood pressure variability |
LF-BPV | Low frequency band of blood pressure variability |
BRS | Baroreflex sensitivity |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Press: Washington, DC, USA, 2013. [Google Scholar]
- Hoek, H.W.; van Hoeken, D. Review of the prevalence and incidence of eating disorders. Int. J. Eat. Disord. 2003, 34, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Schorr, M.; Miller, K.K. The endocrine manifestations of anorexia nervosa: Mechanisms and management. Nat. Rev. Endocrinol. 2017, 13, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Dalton, B.; Bartholdy, S.; Robinson, L.; Solmi, M.; Ibrahim, M.A.; Breen, G.; Schmidt, U.; Himmerich, H. A meta-analysis of cytokine concentrations in eating disorders. J. Psychiatr. Res. 2018, 103, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovinazzo, S.; Sukkar, S.G.; Rosa, G.M.; Zappi, A.; Bezante, G.P.; Balbi, M.; Brunelli, C. Anorexia nervosa and heart disease: A systematic review. Eat. Weight Disord. 2018, 24, 199–207. [Google Scholar] [CrossRef]
- Spaulding-Barclay, M.A.; Stern, J.; Mehler, P.S. Cardiac changes in anorexia nervosa. Cardiol. Young 2016, 26, 623–628. [Google Scholar] [CrossRef]
- Mazurak, N.; Enck, P.; Muth, E.; Teufel, M.; Zipfel, S. Heart rate variability as a measure of cardiac autonomic function in anorexia nervosa: A review of the literature. Eur. Eat. Disord. Rev. 2011, 19, 87–99. [Google Scholar] [CrossRef]
- DiVasta, A.D.; Walls, C.E.; Feldman, H.A.; Quach, A.E.; Woods, E.R.; Gordon, C.M.; Alexander, M.E. Malnutrition and hemodynamic status in adolescents hospitalized for anorexia nervosa. Arch. Pediatr. Adolesc. Med. 2010, 164, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Demorrow, S. Role of the hypothalamic–pituitary–adrenal axis in health and disease. Int. J. Mol. Sci. 2018, 19, 986. [Google Scholar] [CrossRef] [Green Version]
- Het, S.; Vocks, S.; Wolf, J.M.; Hammelstein, P.; Herpertz, S.; Wolf, O.T. Blunted neuroendocrine stress reactivity in young women with eating disorders. J. Psychosom. Res. 2015, 78, 260–267. [Google Scholar] [CrossRef]
- Misra, M.; Klibanski, A. Anorexia nervosa and its associated endocrinopathy in young people. Horm. Res. Paediatr. 2016, 85, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Burford, N.; Webster, N.; Cruz-Topete, D. Hypothalamic-pituitary-adrenal axis modulation of glucocorticoids in the cardiovascular system. Int. J. Mol. Sci. 2017, 18, 2150. [Google Scholar] [CrossRef] [Green Version]
- Shufelt, C.L.; Torbati, T.; Dutra, E. Hypothalamic amenorrhea and the long-term health consequences. Semin. Reprod. Med. 2017, 35, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Solomon, C.G.; Hu, F.B.; Dunaif, A.; Rich-Edwards, J.E.; Stampfer, M.J.; Willett, W.C.; Speizer, F.E.; Manson, J.E. Menstrual cycle irregularity and risk for future cardiovascular disease. J. Clin. Endocrinol. Metab. 2002, 87, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Ortiga-Carvalho, T.M.; Chiamolera, M.I.; Pazos-Moura, C.C.; Wondisford, F.E. Hypothalamus-pituitary-thyroid axis. Compr. Physiol. 2016, 6, 1387–1428. [Google Scholar] [CrossRef] [PubMed]
- Estour, B.; Germain, N.; Diconne, E.; Frere, D.; Cottet-Emard, J.M.; Carrot, G.; Lang, F.; Galusca, B. Hormonal profile heterogeneity and short-term physical risk in restrictive anorexia nervosa. J. Clin. Endocrinol. Metab. 2010, 95, 2203–2210. [Google Scholar] [CrossRef] [PubMed]
- Von Hafe, M.; Neves, J.S.; Vale, C.; Borges-Canha, M.; Leite-Moreira, A. The impact of thyroid hormone dysfunction on ischemic heart disease. Endocr. Connect. 2019, 8, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Olarescu, N.C.; Gunawardane, K.; Krarup Hansen, T.; Sandahl Christiansen, J.; Lunde Jorgensen, J.O. Normal physiology of growth hormone in adults. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J., Hofland, H., Kaltsas, G., Koch, C.A., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000; Available online: https://www.ncbi.nlm.nih.gov/books/NBK279056/.pro (accessed on 27 April 2020).
- Isgaard, J.; Arcopinto, M.; Karason, K.; Cittadini, A. GH and the cardiovascular system: An update on a topic at heart. Endocrine 2014, 48, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Stroe-Kunold, E.; Buckert, M.; Friederich, H.C.; Wesche, D.; Kopf, S.; Herzog, W.; Wild, B. Time course of leptin in patients with anorexia nervosa during inpatient treatment: Longitudinal relationships to BMI and psychological factors. PLoS ONE 2016, 11, e0166843. [Google Scholar] [CrossRef]
- Hebebrand, J.; Muller, T.D.; Holtkamp, K.; Herpertz-Dahlmann, B. The role of leptin in anorexia nervosa: Clinical implications. Mol. Psychiatry 2007, 12, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Procaccini, C.; La Rocca, C.; Carbone, F.; De Rosa, V.; Galgani, M.; Matarese, G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. Dev. Comp. Immunol. 2017, 66, 120–129. [Google Scholar] [CrossRef]
- Haluzik, M.; Papezova, M.; Nedvidkova, J.; Kabrt, J. Serum leptin levels in patients with anorexia nervosa before and after partial refeeding, relationships to serum lipids and biochemical nutritional parameters. Physiol. Res. 1999, 48, 197–202. [Google Scholar]
- Tortorella, A.; Brambilla, F.; Fabrazzo, M.; Volpe, U.; Monteleone, A.M.; Mastromo, D.; Monteleone, P. Central and peripheral peptides regulating eating behaviour and energy homeostasis in anorexia nervosa and bulimia nervosa: A literature review. Eur. Eat. Disord. Rev. 2014, 22, 307–320. [Google Scholar] [CrossRef]
- Haas, V.; Onur, S.; Paul, T.; Nutzinger, D.O.; Bosy-Westphal, A.; Hauer, M.; Brabant, G.; Klein, H.; Müller, M.J. Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery. Am. J. Clin. Nutr. 2005, 81, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Esmaili, S.; Hemmati, M.; Karamian, M. Physiological role of adiponectin in different tissues: A review. Arch. Physiol. Biochem. 2020, 126, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Miller, K.K.; Cord, J.; Prabhakaran, R.; Herzog, D.B.; Goldstein, M.; Katzman, D.K.; Klibanski, A. Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J. Clin. Endocrinol. Metab. 2007, 92, 2046–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyszkiewicz-Nwafor, M.; Slopien, A.; Dmitrzak-Węglarz, M.; Rybakowski, F. Adiponectin and resistin in acutely ill and weight-recovered adolescent anorexia nervosa: Association with psychiatric symptoms. World J. Biol. Psychiatry 2018, 20, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Tagami, T.; Satoh, N.; Usui, T.; Yamada, K.; Shimatsu, A.; Kuzuya, H. Adiponectin in anorexia nervosa and bulimia nervosa. J. Clin. Endocrinol. Metab. 2004, 89, 1833–1837. [Google Scholar] [CrossRef] [PubMed]
- Schalla, M.A.; Stengel, A. The role of ghrelin in anorexia nervosa. Int. J. Mol. Sci. 2018, 19, 2117. [Google Scholar] [CrossRef] [Green Version]
- Dostalova, I.; Haluzik, M. The role of ghrelin in the regulation of food intake in patients with obesity and anorexia nervosa. Physiol. Res. 2009, 58, 159–170. [Google Scholar]
- Sedlackova, D.; Kopeckova, J.; Papezova, H.; Vybiral, S.; Kvasnickova, H.; Hill, M.; Nedvidkova, J. Changes of plasma obestatin, ghrelin and NPY in anorexia and bulimia nervosa patients before and after a high-carbohydrate breakfast. Physiol. Res. 2011, 60, 165–173. [Google Scholar] [CrossRef]
- Otto, B.; Cuntz, U.; Fruehauf, E.; Wawarta, R.; Folwaczny, C.; Riepl, R.L.; Heiman, M.L.; Lehnert, P.; Fichter, M.; Tschöp, M. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur. J. Endocrinol. 2001, 145, 669–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, S.; Leichner, P.; Wong, A.C.; Ghatei, M.A.; Kieffer, T.J.; Bloom, S.R.; Chanoine, J.P. Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. J. Clin. Endocrinol. Metab. 2005, 90, 2161–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, M.; Miller, K.K.; Herzog, D.B.; Ramaswamy, K.; Aggarwal, A.; Almazan, C.; Neubauer, G.; Breu, J.; Klibanski, A. Growth hormone and ghrelin responses to an oral glucose load in adolescent girls with anorexia nervosa and controls. J. Clin. Endocrinol. Metab. 2004, 89, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broglio, F.; Gianotti, L.; Destefanis, S.; Fassino, S.; Abbate Daga, G.; Mondelli, V.; Lanfranco, F.; Gottero, C.; Gauna, C.; Hofland, L.; et al. The endocrine response to acute ghrelin administration is blunted in patients with anorexia nervosa, a ghrelin hypersecretory state. Clin. Endocrinol. 2004, 60, 592–599. [Google Scholar] [CrossRef]
- Lawson, E.A.; Eddy, K.T.; Donoho, D.; Misra, M.; Miller, K.K.; Meenaghan, E.; Lydecker, J.; Herzog, D.; Klibanski, A. Appetite-regulating hormones cortisol and peptide YY are associated with disordered eating psychopathology, independent of body mass index. Eur. J. Endocrinol. 2011, 164, 253–261. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, X.; Yang, X.; Esberg, L.B.; Yang, H.; Zhang, Z.; Culver, B.; Ren, J. Impaired cardiac contractile function in ventricular myocytes from leptin-deficient ob/ob obese mice. J. Endocrinol. 2006, 188, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef] [Green Version]
- Skilton, M.R.; Nakhla, S.; Sieveking, D.P.; Caterson, I.D.; Celermajer, D.S. Pathophysiological levels of the obesity related peptides resistin and ghrelin increase adhesion molecule expression on human vascular endothelial cells. Clin. Exp. Pharmacol. Physiol. 2005, 32, 839–844. [Google Scholar] [CrossRef]
- Zhu, X.; Gillespie, D.G.; Jackson, E.K. NPY1–36 and PYY1–36 activate cardiac fibroblasts: An effect enhanced by genetic hypertension and inhibition of dipeptidyl peptidase 4. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, 1528–1542. [Google Scholar] [CrossRef] [Green Version]
- Capuron, L.; Miller, A.H. Immune system to brain signaling. Pharmacol. Ther. 2011, 130, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Dalton, B.; Whitmore, V.; Patsalos, O.; Ibrahim, M.A.; Schmidt, U.; Himmerich, H. A systematic review of in vitro cytokine production in eating disorders. Mol. Cell. Endocrinol. 2018, 497, 110308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, D.; Mehler, P.S. Anorexia rervosa and the immune system—a narrative review. J. Clin. Med. 2019, 8, 1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmerich, H.; Patsalos, O.; Lichtblau, N.; Ibrahim, M.A.; Dalton, B. Cytokine research in depression: Principles, challenges, and open questions. Front. Psychiatry 2019, 10, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalton, B.; Leppanen, J.; Campbell, I.C.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. A longitudinal analysis of cytokines in anorexia nervosa. Brain. Behav. Immun. 2019, 85, 88–95. [Google Scholar] [CrossRef]
- Qin, L.; Wu, X.; Block, M.L.; Liu, Y.; Breese, G.R.; Hong, J.S.; Knapp, D.J.; Crews, F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007, 55, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Najjar, S.; Pearlman, D.M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and psychiatric illness. J. Neuroinflammation 2013, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Belarbi, K.; Jopson, T.; Tweedie, D.; Arellano, C.; Luo, W.; Greig, N.H.; Rosi, S. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J. Neuroinflammation 2012, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.H.; Haroon, E.; Raison, C.L.; Felger, J.C. Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. Depress. Anxiety 2013, 30, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Leonard, B.; Maes, M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci. Biobehav. Rev. 2012, 36, 764–785. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2045–2051. [Google Scholar] [CrossRef] [Green Version]
- Glezeva, N.; Baugh, J.A. Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Fail. Rev. 2014, 19, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Urschel, K.; Cicha, I. TNF-α in the cardiovascular system: From physiology to therapy. Int. J. Interf. Cytokine Mediat. Res. 2015, 7, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Fontes, J.A.; Rose, N.R.; Ciháková, D. The varying faces of IL-6: From cardiac protection to cardiac failure. Cytokine 2015, 74, 62–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tracey, K.J. The inflammatory reflex. Nature 2002, 420, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.A.; Tracey, K.J. The cholinergic anti-inflammatory pathway. Brain. Behav. Immun. 2005, 19, 493–499. [Google Scholar] [CrossRef]
- Benarroch, E.E. Autonomic nervous system and neuroimmune interactions: New insights and clinical implications. Neurology 2019, 92, 377–385. [Google Scholar] [CrossRef]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Tonhajzerova, I.; Ondrejka, I.; Turianikova, Z.; Javorka, K.; Calkovska, A.; Javorka, M. Heart rate variability: An index of the brain-heart interaction. In Tachycardia; Yamada, T., Ed.; InTech: Rijeka, Crotia, 2012; pp. 185–202. [Google Scholar]
- Tonhajzerova, I. Autonomic nervous system: From non-invasive testing to clinical perspective. In Neurological Perspectives of Autonomic Dysfunctions; Freeman, P., Ed.; Nova Science: New York, NY, USA, 2016; pp. 1–60. [Google Scholar]
- Tonhajzerova, I.; Mestanik, M. New perspectives in the model of stress response. Physiol. Res. 2017, 66, 173–185. [Google Scholar] [CrossRef]
- Kollai, M.; Bonyhay, I.; Jokkel, G.; Szonyi, L. Cardiac vagal hyperactivity in adolescent anorexia nervosa. Eur. Heart J. 1994, 15, 1113–1118. [Google Scholar] [CrossRef]
- Koschke, M.; Boettger, M.K.; Macholdt, C.; Schulz, S.; Yeragani, V.K.; Voss, A.; Bär, K.-J. Increased QT variability in patients with anorexia nervosa - an indicator for increased cardiac mortality? Int. J. Eat. Disord. 2010, 43, 743–750. [Google Scholar] [CrossRef]
- Rechlin, T.; Weis, M.; Ott, C.; Bleichner, F.; Joraschky, P. Alterations of autonomic cardiac control in anorexia nervosa. Biol. Psychiatry 1998, 43, 358–363. [Google Scholar] [CrossRef]
- Murialdo, G.; Casu, M.; Falchero, M.; Brugnolo, A.; Patrone, V.; Cerro, P.F.; Ameri, P.; Andraghetti, G.; Briatore, L.; Copello, F.; et al. Alterations in the autonomic control of heart rate variability in patients with anorexia or bulimia nervosa: Correlations between sympathovagal activity, clinical features, and leptin levels. J. Endocrinol. Investig. 2007, 30, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Kalla, A.; Krishnamoorthy, P.; Gopalakrishnan, A.; Garg, J.; Patel, N.C.; Figueredo, V.M. Gender and age differences in cardiovascular complications in anorexia nervosa patients. Int. J. Cardiol. 2017, 227, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Sachs, K.V.; Harnke, B.; Mehler, P.S.; Krantz, M.J. Cardiovascular complications of anorexia nervosa: A systematic review. Int. J. Eat. Disord. 2016, 49, 238–248. [Google Scholar] [CrossRef]
- Buchhorn, R. The impact of nutrition on the autonomic nervous system. Int. J. Food Nutr. Sci. 2016, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Frank, G.K.; Reynolds, J.R.; Shott, M.E.; Jappe, L.; Yang, T.T.; Tregellas, J.R.; O’Reilly, R.C. Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology 2012, 37, 2031–2046. [Google Scholar] [CrossRef]
- Keating, C.; Tilbrook, A.J.; Rossell, S.L.; Enticott, P.G.; Fitzgerald, P.B. Reward processing in anorexia nervosa. Neuropsychologia 2012, 50, 567–575. [Google Scholar] [CrossRef]
- O’Hara, C.B.; Campbell, I.C.; Schmidt, U. A reward-centred model of anorexia nervosa: A focussed narrative review of the neurological and psychophysiological literature. Neurosci. Biobehav. Rev. 2015, 52, 131–152. [Google Scholar] [CrossRef]
- Miles, A.E.; Voineskos, A.N.; French, L.; Kaplan, A.S. Subcortical volume and cortical surface architecture in women with acute and remitted anorexia nervosa: An exploratory neuroimaging study. J. Psychiatr. Res. 2018, 102, 179–185. [Google Scholar] [CrossRef]
- Fuglset, T.S.; Endestad, T.; Hilland, E.; Bang, L.; Tamnes, C.K.; Landrø, N.I.; Rø, Ø. Brain volumes and regional cortical thickness in young females with anorexia nervosa. BMC Psychiatry 2016, 16, 404. [Google Scholar] [CrossRef] [Green Version]
- Gorwood, P.; Blanchet-Collet, C.; Chartrel, N.; Duclos, J.; Dechelotte, P.; Hanachi, M.; Fetissov, S.; Godart, N.; Melchior, J.-C.; Ramoz, N.; et al. New insights in anorexia nervosa. Front. Neurosci. 2016, 10, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.J.; Thayer, J.F. Music and autonomic nervous system (dys)function. Music Percept. 2010, 27, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Makovac, E.; Thayer, J.F.; Ottaviani, C. A meta-analysis of non-invasive brain stimulation and autonomic functioning: Implications for brain-heart pathways to cardiovascular disease. Neurosci. Biobehav. Rev. 2017, 74, 330–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berntson, G.G.; Thomas Bigger, J.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Yasuma, F.; Hayano, J. Respiratory sinus arrhythmia. Chest 2004, 125, 683–690. [Google Scholar] [CrossRef]
- Wehrwein, E.A.; Joyner, M.J. Regulation of blood pressure by the arterial baroreflex and autonomic nervous system. Handb. Clin. Neurol. 2013, 117, 89–102. [Google Scholar] [CrossRef]
- Chadachan, V.M.; Ye, M.T.; Tay, J.C.; Subramaniam, K.; Setia, S. Understanding short-term blood-pressure-variability phenotypes: From concept to clinical practice. Int. J. Gen. Med. 2018, 11, 241–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penaz, J. Instrument for indirect continuous recording of blood pressure. Cs. patent 133205, 1969. [Google Scholar]
- Penaz, J. Photoelectric measurement of blood pressure, volume and flow in the finger. In Digest of the 10th International Conference on Medical and Biological Engineering; The Conference Committee: Dresden, Germany, 1973; p. 104. [Google Scholar]
- Cooke, W.H.; Cox, J.F.; Diedrich, A.M.; Taylor, J.A.; Beightol, L.A.; Ames, J.E.; Hoag, J.B.; Seidel, H.; Eckberg, D.L. Controlled breathing protocols probe human autonomic cardiovascular rhythms. Am. J. Physiol. 1998, 274, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Stauss, H.M. Identification of blood pressure control mechanisms by power spectral analysis. Clin. Exp. Pharmacol. Physiol. 2007, 34, 362–368. [Google Scholar] [CrossRef]
- Julien, C. The enigma of Mayer waves: Facts and models. Cardiovasc. Res. 2006, 70, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Furlan, R.; Porta, A.; Costa, F.; Tank, J.; Baker, L.; Schiavi, R.; Robertson, D.; Malliani, A.; Mosqueda-Garcia, R. Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation 2000, 101, 886–892. [Google Scholar] [CrossRef]
- Swenne, C.A. Baroreflex sensitivity: Mechanisms and measurement. Netherlands Hear. J. 2013, 21, 58–60. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.J.; Malpas, S.C. Problems, possibilities, and pitfalls in studying the arterial baroreflexes’ influence over long-term control of blood pressure. Am. J. Physiol. Integr. Comp. Physiol. 2005, 288, 837–845. [Google Scholar] [CrossRef]
- Benarroch, E.E. The arterial baroreflex: Functional organization and involvement in neurologic disease. Neurology 2008, 71, 1733–1738. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Pinna, G.D.; Raczak, G. Baroreflex sensitivity: Measurement and clinical implications. Ann. Noninvasive Electrocardiol. 2008, 13, 191–207. [Google Scholar] [CrossRef]
- Ishizawa, T.; Yoshiuchi, K.; Takimoto, Y.; Yamamoto, Y.; Akabayashi, A. Heart rate and blood pressure variability and baroreflex sensitivity in patients with anorexia nervosa. Psychosom. Med. 2008, 70, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Takimoto, Y.; Yoshiuchi, K.; Ishizawa, T.; Yamamoto, Y.; Akabayashi, A. Autonomic dysfunction responses to head-up tilt in anorexia nervosa. Clin. Auton. Res. 2014, 24, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Jacoangeli, F.; Mezzasalma, F.S.; Canto, G.; Jacoangeli, F.; Colica, C.; de Lorenzo, A.; Iellamo, F. Baroreflex sensitivity and heart rate variability are enhanced in patients with anorexia nervosa. Int. J. Cardiol. 2013, 162, 263–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brachmann, J.; Scherlag, B.J.; Rosenshtraukh, L.V.; Lazzara, R. Bradycardia-dependent triggered activity: Relevance to drug-induced multiform ventricular tachycardia. Circulation 1983, 68, 846–856. [Google Scholar] [CrossRef] [Green Version]
- Cranefield, P.F.; Aronson, R.S. Torsades de pointes and early afterdepolarizations. Cardiovasc. Drugs Ther. 1991, 5, 531–537. [Google Scholar] [CrossRef]
- Vargas - Upegui, C.; Gómez, J. Electrocardiographic abnormalities in anorexia nervosa: A critical review of the literature. Rev. Colomb. Psiquiatr. 2015, 44, 33–40. [Google Scholar] [CrossRef]
- Yahalom, M.; Spitz, M.; Sandler, L.; Heno, N.; Roguin, N.; Turgeman, Y. The significance of bradycardia in anorexia nervosa. Int. J. Angiol. 2013, 22, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Rubenfire, M.; Rajagopalan, S.; Mosca, L. Carotid artery vasoreactivity in response to sympathetic stress correlates with coronary disease risk and is independent of wall thickness. J. Am. Coll. Cardiol. 2000, 36, 2192–2197. [Google Scholar] [CrossRef] [Green Version]
- Shirai, K.; Song, M.; Suzuki, J.; Kurosu, T.; Oyama, T.; Nagayama, D.; Miyashita, Y.; Yamamura, S.; Takahashi, M. Contradictory effects of β1- and α1- aderenergic receptor blockers on cardio-ankle vascular stiffness index (CAVI)--CAVI independent of blood pressure. J. Atheroscler. Thromb. 2011, 18, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Spronck, B.; Mestanik, M.; Tonhajzerova, I.; Jurko, A.; Jurko, T.; Avolio, A.P.; Butlin, M. Direct means of obtaining CAVI0 - A corrected cardio-ankle vascular stiffness index (CAVI) - from conventional CAVI measurements or their underlying variables. Physiol. Meas. 2017, 38, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Spronck, B.; Heusinkveld, M.H.; Vanmolkot, F.H.; Roodt, J.O.; Hermeling, E.; Delhaas, T.; Kroon, A.A.; Reesink, K.D. Pressure-dependence of arterial stiffness: Potential clinical implications. J. Hypertens. 2015, 33, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Lüscher, T.F.; Shechter, M.; Taddei, S.; et al. The assessment of endothelial function: From research into clinical practice. Circulation 2012, 126, 753–767. [Google Scholar] [CrossRef] [PubMed]
- Palova, S.; Charvat, J.; Chlumsky, J. Flow-mediated vasodilatation in the patients with anorexia nervosa. Bratisl. Lek. Listy 2013, 114, 634–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudero, C.A.; Potts, J.E.; Lam, P.-Y.; De Souza, A.M.; Mugford, G.J.; Sandor, G.G. Doppler echocardiography assessment of aortic stiffness in female adolescents with anorexia nervosa. J. Am. Soc. Echocardiogr. 2018, 31, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Tonhajzerova, I.; Mestanikova, A.; Jurko, A.; Grendar, M.; Langer, P.; Ondrejka, I.; Jurko, T.; Hrtanek, I.; Cesnekova, D.; Mestanik, M. Arterial stiffness and haemodynamic regulation in adolescent anorexia nervosa versus obesity. Appl. Physiol. Nutr. Metab. 2020, 45, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Het, S.; Vocks, S.; Wolf, J.M.; Herpertz, S.; Wolf, O.T. Treatment-resistant blunted HPA activity, but reversible cardiovascular stress reactivity in young women with eating disorders. Front. Psychiatry 2020, 11, 726. [Google Scholar] [CrossRef] [PubMed]
- Aulinas, A.; Marengi, D.A.; Galbiati, F.; Asanza, E.; Slattery, M.; Mancuso, C.J.; Wons, O.; Micali, N.; Bern, E.; Eddy, K.T.; et al. Medical comorbidities and endocrine dysfunction in low-weight females with avoidant/restrictive food intake disorder compared to anorexia nervosa and healthy controls. Int. J. Eat. Disord. 2020, 53, 631–636. [Google Scholar] [CrossRef]
- Mancuso, C.; Izquierdo, A.; Slattery, M.; Becker, K.R.; Plessow, F.; Thomas, J.J.; Eddy, K.T.; Lawson, E.A.; Misra, M. Changes in appetite-regulating hormones following food intake are associated with changes in reported appetite and a measure of hedonic eating in girls and young women with anorexia nervosa. Psychoneuroendocrinology 2020, 113, 104556. [Google Scholar] [CrossRef]
- Elegido, A.; Gheorghe, A.; Sepúlveda, A.R.; Andrés, P.; Díaz-Prieto, L.E.; Graell, M.; Marcos, A.; Nova, E. Adipokines, cortisol and cytokine alterations in recent onset anorexia nervosa. A case–control study. Endocrinol. Diabetes Nutr. 2019, 66, 571–578. [Google Scholar] [CrossRef]
- Paslakis, G.; Agüera, Z.; Granero, R.; Sánchez, I.; Riesco, N.; Jiménez-Murcia, S.; Fernández-García, J.C.; Garrido-Sánchez, L.; Tinahones, F.J.; Casanueva, F.F.; et al. Associations between neuropsychological performance and appetite-regulating hormones in anorexia nervosa and healthy controls: Ghrelin’s putative role as a mediator of decision-making. Mol. Cell. Endocrinol. 2019, 497, 110441. [Google Scholar] [CrossRef]
- Podfigurna, A.; Czyżyk, A.; Męczekalski, B. Serum kisspeptin levels in patients with anorexia nervosa. Pol. Merkur. Lekarski 2018, 45, 24–27. [Google Scholar] [PubMed]
- Brambilla, F.; Santonastaso, P.; Caregaro, L.; Favaro, A. Growth hormone and insulin-like growth factor 1 secretions in eating disorders: Correlations with psychopathological aspects of the disorders. Psychiatry Res. 2018, 263, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Roczniak, W.; Mikołajczak-Będkowska, A.; Świętochowska, E.; Ostrowska, Z.; Ziora, K.; Balcerowicz, S.; Górska-Flak, K.; Milan, M.; Oświęcimska, J. Serum interleukin 15 in anorexia nervosa: Comparison to normal weight and obese girls. World J. Biol. Psychiatry 2020, 21, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Caroleo, M.; Carbone, E.A.; Greco, M.; Corigliano, D.M.; Arcidiacono, B.; Fazia, G.; Rania, M.; Aloi, M.; Gallelli, L.; Segura-Garcia, C.; et al. Brain-behavior-immune interaction: Serum cytokines and growth factors in patients with eating disorders at extremes of the body mass index (bmi) spectrum. Nutrients 2019, 11, 1995. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, S.; Oya-Ito, T.; Murakami, Y.; Saito, K.; Furuta, S.; Yu, Y.; Imaeda, M.; Kunimoto, S.; Ozaki, N. Decline of plasma concentrations of interleukin-18 in severely malnourished patients with anorexia nervosa: Exploratory analysis. Nutrients 2019, 11, 540. [Google Scholar] [CrossRef] [Green Version]
- Dalton, B.; Campbell, I.C.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. Inflammatory markers in anorexia nervosa: An exploratory study. Nutrients 2018, 10, 1573. [Google Scholar] [CrossRef] [Green Version]
- Billeci, L.; Tonacci, A.; Brunori, E.; Raso, R.; Calderoni, S.; Maestro, S.; Morales, M.A. Autonomic nervous system response during light physical activity in adolescents with anorexia nervosa measured by wearable devices. Sensors (Switzerland) 2019, 19, 2820. [Google Scholar] [CrossRef] [Green Version]
- Lachish, M.; Stein, D.; Kaplan, Z.; Matar, M.; Faigin, M.; Korsunski, I.; Cohen, H. Irreversibility of cardiac autonomic dysfunction in female adolescents diagnosed with anorexia nervosa after short- and long-term weight gain. World J. Biol. Psychiatry 2009, 10, 503–511. [Google Scholar] [CrossRef]
- Meule, A.; Vögele, C.; Kübler, A. Restrained eating is related to accelerated reaction to high caloric foods and cardiac autonomic dysregulation. Appetite 2012, 58, 638–644. [Google Scholar] [CrossRef]
- Young, H.A.; Benton, D. Heart-rate variability: A biomarker to study the influence of nutrition on physiological and psychological health? Behav. Pharmacol. 2018, 29, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Ainley, V.; Tajadura-Jiménez, A.; Fotopoulou, A.; Tsakiris, M. Looking into myself: Changes in interoceptive sensitivity during mirror self-observation. Psychophysiology 2012, 49, 1504–1508. [Google Scholar] [CrossRef] [Green Version]
- Attuquayefio, T.; Stevenson, R.J.; Oaten, M.J.; Francis, H.M. A four-day Western-style dietary intervention causes reductions in hippocampal-dependent learning and memory and interoceptive sensitivity. PLoS One 2017, 12, e0172645. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.; Thayer, J.F.; Khalsa, S.S.; Lane, R.D. The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 2017, 75, 274–296. [Google Scholar] [CrossRef]
- Paulus, M.P.; Stein, M.B. Interoception in anxiety and depression. Brain Struct. Funct. 2010, 214, 451–463. [Google Scholar] [CrossRef] [Green Version]
Recent Studies | Measured Parameters | Main Findings |
---|---|---|
Neuroendocrine dysregulation | ||
Het et al., 2020 [111] | Salivary cortisol and sAA were measured before, during, and after exposure to the Trier Social Stress Test pre- and post-treatment. | HPA hyporeactivity, blunted cortisol stress response associated with attenuated sAA levels at pre-treatment were found in ED patients compared to controls. After treatment, the blunted cortisol stress response persisted and sAA responses were normalized in ED patients. |
Aulinas et al., 2020 [112] | Leptin, IGF-1, total T3, total T4, free T4 index, TSH, total T4/ total T3 ratio, and cortisol. | Serum leptin, IGF-1, total T3 levels, and total T3/total T4 ratio were significantly decreased in AN patients compared to that of controls. |
Mancuso et al., 2020 [113] | Ghrelin, PYY, and BDNF levels were assessed before and after standardized breakfast. | Fasting ghrelin and PYY were higher and fasting BDNF was lower in AN patients compared to those of controls. After breakfast (over 120 min), ghrelin and PYY AUC were higher and BDNF AUC was lower in AN patients compared to those of controls. |
Elegido et al., 2019 [114] | Leptin, soluble leptin receptor, adiponectin, and cortisol. | Leptin level was decreased, soluble leptin receptor, cortisol, and adiponectin levels were increased in AN patients compared to those of controls. |
Paslakis et al., 2019 [115] | Ghrelin, leptin, cholecystokinin, PYY, adiponectin, and visfatin. | Leptin was significantly decreased and adiponectin significantly increased in AN patients compared to those of controls. |
Podfigurna et al., 2018 [116] | Kisspeptin, FSH, LH, oestradiol, prolactin, testosterone. | Serum LH and oestradiol concentrations in AN patients were significantly lower compared to those of the control group. |
Brambilla et al., 2018 [117] | GH and IGF-1. | GH was significantly increased and IGF-1 decreased in AN patients compared to those of controls. |
Immune dysregulation | ||
Roczniak et al., 2020 [118] | IL-15. | Serum level of IL-15 was significantly higher in AN patients compared to that of controls. |
Caroleo et al., 2019 [119] | IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ, TNF-α, MCP-1, VEGF, and EGF. | IL-1α, IFNγ, and IL-10 were significantly increased and EGF significantly decreased in AN patients compared to those of controls. |
Tanaka et al., 2019 [120] | IL-18. | IL-18 was significantly decreased in AN patients compared to that of controls. |
Elegido et al., 2019 [114] | IL-1β, IL-2, IL-6, and TNF-α. | Serum TNF-α and IL-2 showed significantly lower and higher values, respectively, in AN patients compared to those of controls. |
Dalton et al., 2018 [121] | BDNF, bFGF, CRP, Eotaxin, Eotaxin-3, sFlt-1, GM-CSF, ICAM-1, IFNγ, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-12p70, IL-13, IL-15, IL-16, IL-17A, IP-10, MCP-1, MCP-4, MIP-1α, MIP-1β, PlGF, SAA, TARC, TYK2, TNF-α, TNF-β, VCAM-1, VEGF-A, VEGF-C, and VEGF-D. | IL-6, IL-15, and VCAM-1 concentrations were significantly elevated and concentrations of BDNF, TNF-β, and VEGF-A were significantly lower in AN patients compared to those of controls. |
Autonomic nervous system dysregulation | ||
Het et al., 2020 [111] | HR and HF-HRV were measured before, during, and after exposure to the Trier Social Stress Test at pre- and post-treatment. | ED patients showed significantly lower HR and higher HF-HRV before treatment compared to those of controls. These changes were reversible after treatment. |
Tonhajzerova et al., 2020 [110] | HRV and BPV. | LF-BPV was significantly lower in AN adolescents compared to that of controls, indicating insufficient sympathetic cardiovascular control in anorexia nervosa already at adolescent age. |
Billeci et al., 2019 [122] | HR and HRV indices were measured at baseline, during light physical exercise, and during recovery. | HR, LF-HRV, and the LF/HF ratio were significantly lower, while SDNN, RMSSD, and HF-HRV were significantly higher in the AN group compared to those of controls at baseline. During light physical exercise, HR, LF-HRV, and the LF/HR ratio significantly increased followed by significant decrease at recovery among the AN group. The opposite trend was found for LF-HRV and HF-HRV associated with no change in the LF/HF ratio in controls. The AN group showed no significant changes in SDNN and RMSSD in contrast to those values in the control group (increased SDNN, RMSSD, during light physical activity followed by a decrease at recovery). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekaninova, N.; Bona Olexova, L.; Visnovcova, Z.; Ondrejka, I.; Tonhajzerova, I. Role of Neuroendocrine, Immune, and Autonomic Nervous System in Anorexia Nervosa-Linked Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 7302. https://doi.org/10.3390/ijms21197302
Sekaninova N, Bona Olexova L, Visnovcova Z, Ondrejka I, Tonhajzerova I. Role of Neuroendocrine, Immune, and Autonomic Nervous System in Anorexia Nervosa-Linked Cardiovascular Diseases. International Journal of Molecular Sciences. 2020; 21(19):7302. https://doi.org/10.3390/ijms21197302
Chicago/Turabian StyleSekaninova, Nikola, Lucia Bona Olexova, Zuzana Visnovcova, Igor Ondrejka, and Ingrid Tonhajzerova. 2020. "Role of Neuroendocrine, Immune, and Autonomic Nervous System in Anorexia Nervosa-Linked Cardiovascular Diseases" International Journal of Molecular Sciences 21, no. 19: 7302. https://doi.org/10.3390/ijms21197302
APA StyleSekaninova, N., Bona Olexova, L., Visnovcova, Z., Ondrejka, I., & Tonhajzerova, I. (2020). Role of Neuroendocrine, Immune, and Autonomic Nervous System in Anorexia Nervosa-Linked Cardiovascular Diseases. International Journal of Molecular Sciences, 21(19), 7302. https://doi.org/10.3390/ijms21197302