The Potential Role of Irisin in Vascular Function and Atherosclerosis: A Review
Abstract
:1. Introduction
2. Circulating Irisin Expression in Health and Disease
3. The Potential Role of Irisin in Vascular Reactivity and Atherosclerosis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACh | acetylcholine |
BMI | body mass index |
CAD | coronary artery disease |
CVD | cardiovascular diseases |
ELISA | enzyme-linked immunosorbent assay |
FNDC5 | fibronectin type III domain containing protein 5 |
MS | metabolic syndrome |
PGC-1α | peroxisome proliferator-activated receptor-gamma coactivator-1α |
PVAT | perivascular adipose tissue |
SHR | spontaneously-hypertensive rat |
T2D | type 2 diabetes mellitus |
WAT | white adipose tissue |
References
- Bostrom, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Bostrom, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, A.; Venojarvi, M.; Wasenius, N.; Manderoos, S.; Deruisseau, K.C.; Gidlund, E.K.; Heinonen, O.J.; Lindholm, H.; Aunola, S.; Eriksson, J.G.; et al. Plasma irisin is increased following 12 weeks of Nordic walking and associates with glucose homoeostasis in overweight/obese men with impaired glucose regulation. Eur. J. Sport Sci. 2019, 19, 258–266. [Google Scholar] [CrossRef]
- Martinez-Huenchullan, S.F.; Tam, C.S.; Ban, L.A.; Ehrenfeld-Slater, P.; McLennan, S.V.; Twigg, S.M. Skeletal muscle adiponectin induction in obesity and exercise. Metabolism 2020, 102, 154008. [Google Scholar] [CrossRef] [Green Version]
- Nygaard, H.; Slettalokken, G.; Vegge, G.; Hollan, I.; Whist, J.E.; Strand, T.; Ronnestad, B.R.; Ellefsen, S. Irisin in blood increases transiently after single sessions of intense endurance exercise and heavy strength training. PLoS ONE 2015, 10, e0121367. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Yang, J.; Rao, J.; Wang, H.; Zhang, J.; Wang, S.; Chen, X.; Dong, X. Time-Dependent Changes in Increased Levels of Plasma Irisin and Muscle PGC-1alpha and FNDC5 after Exercise in Mice. Tohoku J. Exp. Med. 2018, 244, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Kim, D.Y. Aquarobic exercises improve the serum blood irisin and brain-derived neurotrophic factor levels in elderly women. Exp. Gerontol. 2018, 104, 60–65. [Google Scholar] [CrossRef]
- Shimba, Y.; Togawa, H.; Senoo, N.; Ikeda, M.; Miyoshi, N.; Morita, A.; Miura, S. Skeletal Muscle-specific PGC-1alpha Overexpression Suppresses Atherosclerosis in Apolipoprotein E-Knockout Mice. Sci. Rep. 2019, 9, 4077. [Google Scholar] [CrossRef]
- Wu, J.; Bostrom, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Wang, H.; Zhang, J.; Zhang, X.; Xin, C.; Zhang, F.; Lee, Y.; Zhang, L.; Lian, K.; Yan, W.; et al. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J. Mol. Cell. Cardiol. 2015, 87, 138–147. [Google Scholar] [CrossRef]
- Han, F.; Zhang, S.; Hou, N.; Wang, D.; Sun, X. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1501–H1508. [Google Scholar] [CrossRef] [Green Version]
- Shoukry, A.; Shalaby, S.M.; El-Arabi Bdeer, S.; Mahmoud, A.A.; Mousa, M.M.; Khalifa, A. Circulating serum irisin levels in obesity and type 2 diabetes mellitus. IUBMB Life 2016, 68, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Hou, N.; Han, F.; Sun, X. The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clin. Endocrinol. (Oxf.) 2015, 83, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.H.; Ahn, S.V.; Choi, J.H.; Koh, S.B.; Chung, C.H. High Serum Irisin Level as an Independent Predictor of Diabetes Mellitus: A Longitudinal Population-Based Study. Medicine 2016, 95, e3742. [Google Scholar] [CrossRef]
- Huh, J.Y.; Siopi, A.; Mougios, V.; Park, K.H.; Mantzoros, C.S. Irisin in response to exercise in humans with and without metabolic syndrome. J. Clin. Endocrinol. Metab. 2015, 100, E453–E457. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Cai, X.; Yin, H.; Zugel, M.; Sun, Z.; Steinacker, J.M.; Schumann, U. Association between circulating irisin and insulin resistance in non-diabetic adults: A meta-analysis. Metabolism 2016, 65, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.Q.; Huang, Y.Y.; Gusdon, A.M.; Qu, S. Irisin: A new molecular marker and target in metabolic disorder. Lipids Health Dis. 2015, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- Park, K.H.; Zaichenko, L.; Brinkoetter, M.; Thakkar, B.; Sahin-Efe, A.; Joung, K.E.; Tsoukas, M.A.; Geladari, E.V.; Huh, J.Y.; Dincer, F.; et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab. 2013, 98, 4899–4907. [Google Scholar] [CrossRef]
- Li, D.J.; Li, Y.H.; Yuan, H.B.; Qu, L.F.; Wang, P. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism 2017, 68, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Sesti, G.; Andreozzi, F.; Fiorentino, T.V.; Mannino, G.C.; Sciacqua, A.; Marini, M.A.; Perticone, F. High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol. 2014, 51, 705–713. [Google Scholar] [CrossRef]
- Wu, H.; Guo, P.; Jin, Z.; Li, X.; Yang, X.; Tang, C.; Wang, Y.; Ke, J. Serum levels of irisin predict short-term outcomes in ischemic stroke. Cytokine 2019, 122, 154303. [Google Scholar] [CrossRef]
- Zugel, M.; Qiu, S.; Laszlo, R.; Bosnyak, E.; Weigt, C.; Muller, D.; Diel, P.; Steinacker, J.M.; Schumann, U. The role of sex, adiposity, and gonadectomy in the regulation of irisin secretion. Endocrine 2016, 54, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Zhang, R.; Jiang, F.; Wang, J.; Chen, M.; Peng, D.; Yan, J.; Wang, S.; Bao, Y.; Hu, C.; et al. Circulating irisin levels are associated with lipid and uric acid metabolism in a Chinese population. Clin. Exp. Pharmacol. Physiol. 2015, 42, 896–901. [Google Scholar] [CrossRef]
- Liu, J.J.; Wong, M.D.; Toy, W.C.; Tan, C.S.; Liu, S.; Ng, X.W.; Tavintharan, S.; Sum, C.F.; Lim, S.C. Lower circulating irisin is associated with type 2 diabetes mellitus. J. Diabetes Complicat. 2013, 27, 365–369. [Google Scholar] [CrossRef]
- Wang, H.H.; Zhang, X.W.; Chen, W.K.; Huang, Q.X.; Chen, Q.Q. Relationship between serum irisin levels and urinary albumin excretion in patients with type 2 diabetes. J. Diabetes Complicat. 2015, 29, 384–389. [Google Scholar] [CrossRef]
- Alis, R.; Sanchis-Gomar, F.; Pareja-Galeano, H.; Hernandez-Mijares, A.; Romagnoli, M.; Victor, V.M.; Rocha, M. Association between irisin and homocysteine in euglycemic and diabetic subjects. Clin. Biochem. 2014, 47, 333–335. [Google Scholar] [CrossRef]
- Choi, Y.K.; Kim, M.K.; Bae, K.H.; Seo, H.A.; Jeong, J.Y.; Lee, W.K.; Kim, J.G.; Lee, I.K.; Park, K.G. Serum irisin levels in new-onset type 2 diabetes. Diabetes Res. Clin. Pract. 2013, 100, 96–101. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Zhang, H.; Xu, Y.; Wang, G. Exenatide treatment increases serum irisin levels in patients with obesity and newly diagnosed type 2 diabetes. J. Diabetes Complicat. 2016, 30, 1555–1559. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Zhu, Y.J.; Li, C.G.; Tang, Y.Z.; Jiang, Z.H.; Yang, M.; Ni, C.L.; Chen, L.M.; Niu, W.Y. The relationship between circulating irisin levels and tissues AGE accumulation in type 2 diabetes patients. Biosci. Rep. 2017, 37, BSR20170213. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, J.; Song, M.; Zhou, F.; Fu, D.; Ruan, G.; Zhu, X.; Bai, Y.; Huang, L.; Pang, R.; et al. Irisin Increased the Number and Improved the Function of Endothelial Progenitor Cells in Diabetes Mellitus Mice. J Cardiovasc Pharm. 2016, 68, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Deng, W. Association of Serum Irisin Concentrations with Presence and Severity of Coronary Artery Disease. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 4193–4197. [Google Scholar] [CrossRef] [Green Version]
- Hisamatsu, T.; Miura, K.; Arima, H.; Fujiyoshi, A.; Kadota, A.; Kadowaki, S.; Zaid, M.; Miyagawa, N.; Satoh, A.; Kunimura, A.; et al. Relationship of serum irisin levels to prevalence and progression of coronary artery calcification: A prospective, population-based study. Int. J. Cardiol. 2018, 267, 177–182. [Google Scholar] [CrossRef]
- Crujeiras, A.B.; Pardo, M.; Arturo, R.R.; Navas-Carretero, S.; Zulet, M.A.; Martinez, J.A.; Casanueva, F.F. Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am. J. Hum. Biol. 2014, 26, 198–207. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Kountouras, J.; Anastasilakis, A.D.; Geladari, E.V.; Mantzoros, C.S. Irisin in patients with nonalcoholic fatty liver disease. Metabolism 2014, 63, 207–217. [Google Scholar] [CrossRef]
- Waluga, M.; Kukla, M.; Kotulski, R.; Zorniak, M.; Boryczka, G.; Kajor, M.; Ciupinska-Kajor, M.; Lekstan, A.; Olczyk, P.; Waluga, E. Omentin, vaspin and irisin in chronic liver diseases. J. Physiol. Pharm. 2019, 70, 277–285. [Google Scholar]
- Calan, M.; Demirpence, M. Increased circulating levels of irisin are associated with cardiovascular risk factors in subjects with acromegaly. Hormones (Athens) 2019, 18, 435–442. [Google Scholar] [CrossRef]
- Anaszewicz, M.; Wawrzenczyk, A.; Czerniak, B.; Banas, W.; Socha, E.; Lis, K.; Zbikowska-Gotz, M.; Bartuzi, Z.; Budzynski, J. Leptin, adiponectin, tumor necrosis factor alpha, and irisin concentrations as factors linking obesity with the risk of atrial fibrillation among inpatients with cardiovascular diseases. Kardiol. Pol. 2019, 77, 1055–1061. [Google Scholar]
- Yasar, H.Y.; Demirpence, M.; Colak, A.; Yurdakul, L.; Zeytinli, M.; Turkon, H.; Ekinci, F.; Gunaslan, A.; Yasar, E. Serum irisin and apelin levels and markers of atherosclerosis in patients with subclinical hypothyroidism. Arch. Endocrinol. Metab. 2019, 63, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Zhang, J.; Ren, Y.; Du, Z.; Zhang, Y.; Liu, C.; Wang, Y.; Zhang, L.; Shi, Z.; Wu, Z.; et al. Exercise hormone irisin mitigates endothelial barrier dysfunction and microvascular leakage-related diseases. JCI Insight 2020, 5. [Google Scholar] [CrossRef]
- Brunner, H.; Cockcroft, J.R.; Deanfield, J.; Donald, A.; Ferrannini, E.; Halcox, J.; Kiowski, W.; Luscher, T.F.; Mancia, G.; Natali, A.; et al. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J. Hypertens. 2005, 23, 233–246. [Google Scholar] [CrossRef]
- Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 168–175. [Google Scholar] [CrossRef]
- Lee, S.; Park, Y.; Dellsperger, K.C.; Zhang, C. Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H306–H314. [Google Scholar] [CrossRef] [Green Version]
- Halvorson, B.D.; Whitehead, S.N.; McGuire, J.J.; Wiseman, R.W.; Frisbee, J.C. Endothelium-dependent impairments to cerebral vascular reactivity with type 2 diabetes mellitus in the Goto-Kakizaki rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 317, R149–R159. [Google Scholar] [CrossRef]
- Nguyen-Tu, M.S.; Nivoit, P.; Orea, V.; Lemoine, S.; Acquaviva, C.; Pagnon-Minot, A.; Fromy, B.; Sethi, J.K.; Sigaudo-Roussel, D. Inflammation-linked adaptations in dermal microvascular reactivity accompany the development of obesity and type 2 diabetes. Int. J. Obes. (Lond.) 2019, 43, 556–566. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Xiang, G.; Yue, L.; Zhang, J.; Zhao, L. Circulating irisin levels are positively associated with endothelium-dependent vasodilation in newly diagnosed type 2 diabetic patients without clinical angiopathy. Atherosclerosis 2014, 235, 328–333. [Google Scholar] [CrossRef]
- Jiang, M.; Wan, F.; Wang, F.; Wu, Q. Irisin relaxes mouse mesenteric arteries through endothelium-dependent and endothelium-independent mechanisms. Biochem. Biophys. Res. Commun. 2015, 468, 832–836. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, L.; Zhang, C.; Zhang, R.; Li, Z.; Chai, B.; Li, J.; Chen, E.; Mulholland, M. Central and peripheral irisin differentially regulate blood pressure. Cardiovasc. Drugs Ther. 2015, 29, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Xu, M.; Hu, M.; Zhang, H.; Tan, X.; Li, Q.; Shen, B.; Huang, J. TRPV4 is involved in irisin-induced endothelium-dependent vasodilation. Biochem. Biophys. Res. Commun. 2018, 495, 41–45. [Google Scholar] [CrossRef]
- Hou, N.; Du, G.; Han, F.; Zhang, J.; Jiao, X.; Sun, X. Irisin Regulates Heme Oxygenase-1/Adiponectin Axis in Perivascular Adipose Tissue and Improves Endothelial Dysfunction in Diet-Induced Obese Mice. Cell. Physiol. Biochem. 2017, 42, 603–614. [Google Scholar] [CrossRef]
- Hou, N.; Liu, Y.; Han, F.; Wang, D.; Hou, X.; Hou, S.; Sun, X. Irisin improves perivascular adipose tissue dysfunction via regulation of the heme oxygenase-1/adiponectin axis in diet-induced obese mice. J. Mol. Cell. Cardiol. 2016, 99, 188–196. [Google Scholar] [CrossRef]
- Lu, J.; Xiang, G.; Liu, M.; Mei, W.; Xiang, L.; Dong, J. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice. Atherosclerosis 2015, 243, 438–448. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, Q.; Zhou, Z.; Song, H.; Zhang, Y.; Wu, F.; Jiang, M.; Wang, F.; Zhang, W.; Li, L.; et al. Protective Effect of Irisin on Atherosclerosis via Suppressing Oxidized Low Density Lipoprotein Induced Vascular Inflammation and Endothelial Dysfunction. PLoS ONE 2016, 11, e0158038. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, H.; Zhang, Y.; Wu, F.; Mu, Q.; Jiang, M.; Wang, F.; Zhang, W.; Li, L.; Shao, L.; et al. Irisin Inhibits Atherosclerosis by Promoting Endothelial Proliferation Through microRNA126-5p. J. Am. Heart Assoc. 2016, 5, e004031. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Han, Y.; Wang, J.; Liu, Y.; Zheng, S.; Zhou, L.; Jose, P.A.; Zeng, C. Irisin Lowers Blood Pressure by Improvement of Endothelial Dysfunction via AMPK-Akt-eNOS-NO Pathway in the Spontaneously Hypertensive Rat. J. Am. Heart Assoc. 2016, 5, e003433. [Google Scholar] [CrossRef] [Green Version]
- Aydogdu, N.; Yalcinkaya Yavuz, O.; Tastekin, E.; Tayfur, P.; Kaya, O.; Kandemir, N. The Effects of Irisin on Nomega-Nitro-L-arginine Methyl Ester Hydrochloride-Induced Hypertension in Rats. Balk. Med. J. 2019, 36, 337–346. [Google Scholar]
- Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J.D.; Greenberg, M.E.; Spiegelman, B.M. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab. 2013, 18, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Colaianni, G.; Cuscito, C.; Mongelli, T.; Pignataro, P.; Buccoliero, C.; Liu, P.; Lu, P.; Sartini, L.; Di Comite, M.; Mori, G.; et al. The myokine irisin increases cortical bone mass. Proc. Natl. Acad. Sci. USA 2015, 112, 12157–12162. [Google Scholar] [CrossRef] [Green Version]
Subject or Animal Model | Disease Condition | Method to Diagnose Disease | Conclusion | Method to Detect Irisin | Refs |
---|---|---|---|---|---|
Human | Males and females with T2D | WHO criteria - fasting glucose ≥ 126 mg/dL - or HbA1c ≥ 6.5% - or taking antidiabetic medication | - ↑serum irisin (2.378 vs. control, 1.456 μg/mL) | ELISA (Phoenix Pharmaceuticals, EK-067-52) | [13] |
Human | Males and females with MS | National Heart, Lung, and Blood Institute/AHA criteria - The presence of at least three of MS risk factors (central obesity, elevated triglyceride, low HDL cholesterol, high fasting glucose or high blood pressure) | - ↑serum irisin (214.4. vs. control, 162.2 ng/mL) | ELISA (Phoenix Pharmaceuticals, EK-067-52) | [17] |
Human | Males and females with T2D | - fasting glucose level ≥ 126 mg/dL (7.0 mmol/L) - or 2 h postprandial blood glucose level ≥ 200 mg/dL (11.1 mmol/L) - or HbA1c ≥ 6.5% | - ↓serum irisin (237.06 ± 21.22 vs. control, 377.81 ± 27.16 ng/mL) | ELISA (BioVision) | [11] |
Human | Males and females with obesity | BMI ≥ 30 kg/m2 | - ↑serum irisin (399.84 ± 16.12 vs. control, 340.87 ± 8.40 ng/mL) | ELISA (BioVision) | [11] |
Human | Males and females with obesity | BMI ≥ 25 kg/m2 | - ↓serum irisin (180.5 ± 22.4 vs. control 194.8 ± 19.9 ng/mL) | ELISA (Phoenix Pharmaceuticals) | [12] |
Human | CAD | Angiographic evidence of stenosis ≥ 50% in at least one major coronary artery | - ↓ irisin (119.55 vs. control, 146.22 ng/mL) | ELISA (Phoenix Pharmaceuticals) | [30] |
Human | Males and females with IGR or T2D | - T2D ∙ fasting plasma glucose ≥ 7.0 mmol/L ∙ 2 h post-challenge plasma glucose ≥ 11.1 mmol/L - IGR ∙ 6.1 mmol/L ≤ fasting plasma glucose ≤ 7.0 mmol/L ∙ 7.8 mmol/L ≤ 2 h post-challenge plasma glucose < 11.1 mmol/L | - No difference in serum irisin (6.75 vs. 7.36 vs. 7.08 ng/mL) | ELISA (Phonenix Pharmaceuticals, EK-067-29) | [22] |
Human | Males and females with T2D | means of HbA1c, 8.3 ± 1.9% | - ↓circulating irisin (204 ± 72 vs. control, 257 ± 24 ng/mL) | ELISA (USCN Life Science) | [23] |
Human | Males and females with T2D | ADA criteria | - ↓serum irisin (14.12 ± 3.93 vs. control, 28.98 ± 2.56 ng/mL) | ELISA (A Viscera Bioscience) | [24] |
Human | Males and females with T2D | ADA criteria | - ↓serum irisin (279 ± 58 vs. control, 263 ± 38 ng/mL) | ELISA (Phoenix Pharmaceuticals) | [25] |
Human | Males and females with T2D | WHO criteria - fasting plasma glucose ≥ 126 mg/dL - or 2 h post-bad plasma glucose ≥ 200 mg/dL - or HbA1c ≥ 6.5% | - ↓serum irisin (24.53 ± 3.53 vs. control, 38.86 ± 2.48 pg/mL) | ELISA (USCN Life Science) | [26] |
Human | Males and females with T2D | ADA criteria - HbA1c ≥ 7% | - ↓serum irisin (38.06 vs. control, 58.01 ng/mL) | ELISA (Aviscera Bioscience) | [27] |
Human | Males and females with T2D | WHO criteria - fasting plasma glucose ≥ 7.0 mmol/l - 2 h post-load plasma glucose ≥ 11.1 mmol/l | - ↓serum irisin (16.24 ± 5.16 vs. controls 24.35 ± 2.76 ng/mL) | ELISA (Aviscera Bioscience) | [28] |
Human | Morbidly obese men and women | - 5 women (BW, 128.7 ± 37.1 kg) - 5 men (BW, 158.8 ± 26.9 kg) | - ↑serum irisin (30% higher than normal weight) | ELISA (Phoenix, EK-067-52) | [21] |
Human | Male and female subject with acromegaly | GH and IGF-1 concentration | - ↑serum irisin in active acromegaly | ELISA (Sunred Biological Technology, 201-12-5328) | [35] |
Human | Male and female subjects with chronic liver disease | Abdominal ultrasound and laboratory tests | - ↓serum irisin in primary biliary cholangitis (5.82 ± 2.41), nonalcoholic fatty liver disease (4.98 ± 2.017) and alcoholic cirrhosis (3.13 ± 1.96) compared to control (29.67 ± 19.9 μg/mL) | ELISA (BioVendor) | [34] |
Human | Male and female subjects with obesity or nonalcoholic fatty liver disease | Liver biopsy and NSFLD Activity Score | - ↓serum irisin in obese controls (34.2 ± 2.0), NAFL (31.4 ± 2.8) and NASH (37.9 ± 3.0) compared to lean control (47.3 ± 2.6 ng/mL) | ELISA (Phoenix Pharmaceuticals) | [33] |
Human | Male and female patients with atrial fibrillation | Patients hospitalized due to paroxysmal or persistent AF | - No difference in serum irisin | ELISA (BioVendor, RAG018R) | [36] |
Human | Male and female patients with subclinical hypothyroidism | Autoimmune thyroiditis and anti-Microsome antibody | - No difference in serum irisin | ELISA (Sunred Biological Technology, 201-12-5328) | [37] |
Human | Male with coronary artery calcification | Electron-beam computed tomography | Higher serum irisin were associated with less burden of coronary atherosclerosis. | ELISA (Adipogen, AG-45A-0046EK-k101) | [31] |
Human | Patients with ARDS | Chest x-ray or computed tomography and mechanical ventilation | - ↓serum irisin compared to control | ELISA (USCN Life Science) | [38] |
Mouse (Male C57 BL/6) | T2D (high-fat diet, 60% fat for 8 weeks) | IPGTT | - ↓serum irisin | ELISA (NeoBioscience Technology) | [9] |
Mouse | Obesity (high-fat diet, 50.1% fat for 8 weeks) | BW↑ 26.4 ± 1.8 vs. 35.3 ± 2.6 | - ↓serum irisin (29.12 ± 3.04 vs. control, 35.87 ± 3.95 ng/mL) | ELISA (Not specified) | [10] |
Mouse (Male C57BL/6J) | Cerebral ischemia stroke (Middle cerebral artery occlusion model) | 70% ↓ in blood flow perfusion | - ↓serum irisin (~37 vs. sham ~70 ng/mL) | ELISA (Phoenix) | [18] |
Mouse (Male C57/BL6) | T1D (STZ, 35 mg/kg BW + HFD for 8 weeks) | Plasma glucose level by glucose oxidase method | - ↓serum irisin (30.7 ± 3.5 vs. control, 37.4 ± 4.2 ng/mL) | ELISA (Phoenix Pharmaceuticals) | [29] |
Subject or Animal Model | Disease Condition | Irisin Treatment or Involvement | Conclusion | Vessels Used | Potential Mechanisms Involved | Refs |
---|---|---|---|---|---|---|
Human | Males and females with obesity | Correlation of circulating irisin and EDV | Positive correlation (r = 0.388) | Brachial artery | Endothelium-dependent pathway | [12] |
Human | Males and females with T2D | Correlation of circulating irisin and FMD | Positive correlation (r = 0.51) | Brachial artery | Endothelium-dependent pathway | [24] |
Human | Males and females with CAD | Correlation of circulating irisin and CAI score | Negative correlation (r = −0.340) | Coronary artery | - | [30] |
Mice (male C57 BL/6J) | High fat diet (60% fat) for 8 weeks | IP injection 0.5 mg/kg BW Once a day for 2 weeks | ↑ACh-mediated relaxation | Aorta | PKC-β/NADPH oxidase and NF-κB/iNOS | [9] |
Mice (male C57 BL/6J) | High fat diet (50.1% fat) for 8 weeks to induce T2D | IP injection 0.5 μg/g−1∙day−1 for 8 weeks | ↑ACh-mediated relaxation | Aorta | AMPK-eNOS pathway | [10] |
Mice (male C57 BL/6) | High fat diet for 12 weeks to induce obesity | IP injection 0.5 μg/g−1∙day−1 for 12 weeks | ↑ACh-mediated relaxation | Aortas with and without PVAT | HO-1/adiponectin axis | [48] |
Mice (male C57BL/6) | High fat diet for 8 weeks to induce obesity | IP injection 0.5 μg/g−1∙day−1 for 8 weeks Once daily | ↓PE-induced vasoconstriction | Aorta | HO-1/adiponectin axis | [49] |
Mice (male C57 BL/6J) | 10–12 weeks old | Irisin-induced relaxation (0.1~100 μM) | relaxes in dose-dependent manner in endothelium-intact and denuded mesenteric arteries | Mesenteric arteries (2nd order) | NO-cGMP-dependent pathway Voltage-dependent Ca2+ channel Intracellular Ca2+ release | [45] |
Mice (Apo E + STZ) | STZ injected to induce T1D | Tail-vein injection 0.2 μg/g BW for 12 weeks | - ↑ACh-mediated relaxation - ↓Aortic Plaque Area | Aorta | AMPK-PI3K-Akt-eNOS signaling pathway | [50] |
Mice (ApoE KO) | Atherosclerosis | IP injection 0.5 μg/g BW for 8 weeks | ↓Aortic lesion area | Aorta | ROS-p38 MAPK-NF-κB signaling pathway | [51] |
Mice (Male ApoE KO) | High cholesterol diet + partial ligation of the left common carotid artery | IP injection 0.5 μg/kg BW for 4 weeks | ↓Carotid lesion area | Carotid artery | ERK signaling pathway(miroRNA126-5p) | [52] |
Male SD rats (200–250 g) | - | Irisin-induced relaxation (10 nM~100 μM) | ↑Relaxation in dose-dependent manner | Mesenteric arteries (2nd order) | ATP-sensitive K+ channel | [46] |
Male SD rat | - | - Irisin-induced relaxation (100 nM) | ↑Relaxation | Mesenteric arteries | Endothelium-dependent pathway (TRPV4) | [47] |
Male Wistar-Kyoto (control) and SHR (hypertension) rats (16–18 weeks old) | Hypertension | 3000 ng/mL pre-incubation (1 h) | - ↑ACh-mediated relaxation - ↓PHE-mediated vasoconstriction - No-direct dilation | Mesentery arteries (3rd order) | AMPK–Akt–eNOS–NO signaling pathway | [53] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byun, K.; Lee, S. The Potential Role of Irisin in Vascular Function and Atherosclerosis: A Review. Int. J. Mol. Sci. 2020, 21, 7184. https://doi.org/10.3390/ijms21197184
Byun K, Lee S. The Potential Role of Irisin in Vascular Function and Atherosclerosis: A Review. International Journal of Molecular Sciences. 2020; 21(19):7184. https://doi.org/10.3390/ijms21197184
Chicago/Turabian StyleByun, Kyeongho, and Sewon Lee. 2020. "The Potential Role of Irisin in Vascular Function and Atherosclerosis: A Review" International Journal of Molecular Sciences 21, no. 19: 7184. https://doi.org/10.3390/ijms21197184
APA StyleByun, K., & Lee, S. (2020). The Potential Role of Irisin in Vascular Function and Atherosclerosis: A Review. International Journal of Molecular Sciences, 21(19), 7184. https://doi.org/10.3390/ijms21197184