The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives
Abstract
:1. Introduction
2. Articular Cartilage
3. Current Clinically Approaches for Cartilage Tissue Engineering
4. Nanomaterials for Cartilage Tissue Engineering
5. Biomaterials for Cartilage Tissue Engineering
6. Natural Materials
6.1. Agarose
6.2. Alginate
6.3. Chitosan
6.4. Hyaluronan
6.5. Collagen
6.6. Fibrin
7. Synthetic Materials
8. The Next Generation Biomaterials for Cartilage Tissue Engineering
9. Clinically Use of New Tissue-Engineered Approaches
10. Conclusions and Future Outlooks
Funding
Acknowledgments
Conflicts of Interest
References
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.J.; Blain, E.J. Cartilage mechanobiology: How chondrocytes respond to mechanical load. In Mechanobiology in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2018; pp. 99–126. [Google Scholar]
- Chang, J.; Wang, W.; Zhang, H.; Hu, Y.; Wang, M.; Yin, Z. The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis. Int. J. Mol. Med. 2013, 32, 1311–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, A.B.; Pineda, M.; Harris, J.D.; Flanigan, D.C. Return to sport after articular cartilage repair in athletes’ knees: A systematic review. Arthrosc. J. Arthrosc. Relat. Surg. 2016, 32, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Brittberg, M. Emerging Technologies in Cartilage Repair. In Cartilage Restoration; Springer: Berlin/Heidelberg, Germany, 2018; pp. 389–400. [Google Scholar]
- Polak, S.; Rustom, L.; Genin, G.; Talcott, M.; Johnson, A.W. A mechanism for effective cell-seeding in rigid, microporous substrates. Acta Biomater. 2013, 9, 7977–7986. [Google Scholar] [CrossRef]
- Duarte Campos, D.F.; Drescher, W.; Rath, B.; Tingart, M.; Fischer, H. Supporting biomaterials for articular cartilage repair. Cartilage 2012, 3, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Shoichet, M.S. Polymer scaffolds for biomaterials applications. Macromolecules 2009, 43, 581–591. [Google Scholar] [CrossRef]
- Martin, J.; Buckwalter, J. The role of chondrocyte–matrix interactions in maintaining and repairing articular cartilage. Biorheology 2000, 37, 129–140. [Google Scholar]
- Behrens, P.; Bitter, T.; Kurz, B.; Russlies, M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)—5-year follow-up. Knee 2006, 13, 194–202. [Google Scholar] [CrossRef]
- Russlies, M.; Behrens, P.; Wünsch, L.; Gille, J.; Ehlers, E.-M. A cell-seeded biocomposite for cartilage repair. Ann. Anat. Anat. Anz. 2002, 184, 317–323. [Google Scholar] [CrossRef]
- Krafts, K.P. Tissue repair: The hidden drama. Organogenesis 2010, 6, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.-H.; Adibkia, K. Physicochemical characterization and antimicrobial evaluation of gentamicin-loaded CaCO3 nanoparticles prepared via microemulsion method. J. Drug Deliv. Sci. Technol. 2016, 35, 16–23. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.-H.; Adibkia, K. Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: Preparation, solid state characterization, and evaluation of antimicrobial effect against Staphylococcus aureus. Artif. Cells Nanomed. Biotechnol. 2017, 45, 535–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeli, M.; Hosainzadegan, H.; Pakzad, I.; Zabihi, F.; Alizadeh, M.; Karimi, F. Preparing starchy foods containing silver nanoparticles and evaluating antimicrobial activitiy. Jundishapur J. Microbiol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Chiu, L.; Waldman, S. Nanomaterials for Cartilage Tissue Engineering; IAPC Publishing: Zagreb, Croatia, 2016. [Google Scholar]
- Chung, C.; Burdick, J.A. Engineering cartilage tissue. Adv. Drug Deliv. Rev. 2008, 60, 243–262. [Google Scholar] [CrossRef] [Green Version]
- Vacanti, J.P. Tissue and organ engineering: Can we build intestine and vital organs? J. Gastrointest. Surg. 2003, 7, 831–835. [Google Scholar] [CrossRef]
- Johnstone, B.; Hering, T.M.; Caplan, A.I.; Goldberg, V.M.; Yoo, J.U. In vitrochondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 1998, 238, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Hoben, G.M.; Willard, V.P.; Athanasiou, K.A. Fibrochondrogenesis of hESCs: Growth factor combinations and cocultures. Stem Cells Dev. 2009, 18, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guess, T.M.; Liu, H.; Bhashyam, S.; Thiagarajan, G. A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Buckwalter, J.; Mankin, H. Articular cartilage: Tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 1998, 47, 477–486. [Google Scholar]
- Miyamura, S.; Oka, K.; Sakai, T.; Tanaka, H.; Shiode, R.; Shimada, S.; Mae, T.; Sugamoto, K.; Yoshikawa, H.; Murase, T. Cartilage wear patterns in severe osteoarthritis of the trapeziometacarpal joint: A quantitative analysis. Osteoarthr. Cartil. 2019, 27, 1152–1162. [Google Scholar] [CrossRef]
- Stuckensen, K.; Schwab, A.; Knauer, M.; Muiños-López, E.; Ehlicke, F.; Reboredo, J.; Granero-Moltó, F.; Gbureck, U.; Prósper, F.; Walles, H. Tissue mimicry in morphology and composition promotes hierarchical matrix remodeling of invading stem cells in osteochondral and meniscus scaffolds. Adv. Mater. 2018, 30, 1706754. [Google Scholar] [CrossRef] [PubMed]
- Javanmard, M.Z.; Asgari, D.; Karimipour, M.; Atabaki, F.; Farjah, G.; Niakani, A. Mesenchymal stem cells inhibit proteoglycan degeneration in a rat model of osteoarthritis. Gene Cell Tissue 2015, 2. [Google Scholar] [CrossRef]
- Cai, L.; Xiong, X.; Kong, X.; Xie, J. The role of the lysyl oxidases in tissue repair and remodeling: A concise review. Tissue Eng. Regen. Med. 2017, 14, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-B.; Lih, E.; Park, K.-S.; Joung, Y.K.; Han, D.K. Biopolymer-based functional composites for medical applications. Prog. Polym. Sci. 2017, 68, 77–105. [Google Scholar] [CrossRef]
- Feng, M.; Betti, M. A novel collagen glycopeptide, Pro-Hyp-CONH-GlcN, stimulates cell proliferation and hyaluronan production in cultured human dermal fibroblasts. J. Funct. Foods 2018, 45, 277–287. [Google Scholar] [CrossRef]
- Maier, F.; Drissi, H.; Pierce, D.M. Shear deformations of human articular cartilage: Certain mechanical anisotropies apparent at large but not small shear strains. J. Mech. Behav. Biomed. Mater. 2017, 65, 53–65. [Google Scholar] [CrossRef]
- Phull, A.-R.; Eo, S.-H.; Abbas, Q.; Ahmed, M.; Kim, S.J. Applications of chondrocyte-based cartilage engineering: An overview. BioMed Res. Int. 2016, 2016, 1879837. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.K.; Li, W.-J.; Tuan, R.S. Cartilage and ligament tissue engineering: Biomaterials, cellular interactions, and regenerative strategies. In Biomaterials Science; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Antons, J.; Marascio, M.G.M.; Nohava, J.; Martin, R.; Applegate, L.; Bourban, P.; Pioletti, D. Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J. Mater. Sci. Mater. Med. 2018, 29, 57. [Google Scholar] [CrossRef] [Green Version]
- Benam, K.H.; Dauth, S.; Hassell, B.; Herland, A.; Jain, A.; Jang, K.-J.; Karalis, K.; Kim, H.J.; MacQueen, L.; Mahmoodian, R. Engineered in vitro disease models. Annu. Rev. Pathol. Mech. Dis. 2015, 10, 195–262. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, L.; Zimmerman, B.K.; Park, M.; Han, L.; Wang, L.; Burris, D.L.; Lu, X.L. Roles of the fibrous superficial zone in the mechanical behavior of TMJ condylar cartilage. Ann. Biomed. Eng. 2015, 43, 2652–2662. [Google Scholar] [CrossRef]
- Chen, S.; Fu, P.; Wu, H.; Pei, M. Meniscus, articular cartilage and nucleus pulposus: A comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res. 2017, 370, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, A.; Van Blitterswijk, C.; Moroni, L. The osteochondral interface as a gradient tissue: From development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Res. Part C Embryo Today Rev. 2015, 105, 34–52. [Google Scholar] [CrossRef] [PubMed]
- López-Ruiz, E.; Jiménez, G.; García, M.Á.; Antich, C.; Boulaiz, H.; Marchal, J.A.; Perán, M. Polymers, scaffolds and bioactive molecules with therapeutic properties in osteochondral pathologies: What’s new? Expert Opin. Ther. Pat. 2016, 26, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Balko, S.; Weber, J.F.; Waldman, S.D. Mechanical Stimulation Methods for Cartilage Tissue Engineering. In Orthopedic Biomaterials; Springer: Berlin/Heidelberg, Germany, 2018; pp. 123–147. [Google Scholar]
- Parate, D.A.; Zhang, S.; Hui, J.H.P.; Toh, W.S. Stem Cells for Articular Cartilage Repair and Regeneration. In Bone and Cartilage Regeneration; Springer: Berlin/Heidelberg, Germany, 2016; pp. 119–147. [Google Scholar]
- Zhang, W.; Ouyang, H.; Dass, C.R.; Xu, J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 2016, 4, 15040. [Google Scholar] [CrossRef] [PubMed]
- Everhart, J.S.; Jiang, E.X.; Poland, S.G.; Du, A.; Flanigan, D.C. Failures, Reoperations, and Improvement in Knee Symptoms Following Matrix-Assisted Autologous Chondrocyte Transplantation: A Meta-Analysis of Prospective Comparative Trials. Cartilage 2019. [Google Scholar] [CrossRef]
- Pfeifer, C.G.; Berner, A.; Koch, M.; Krutsch, W.; Kujat, R.; Angele, P.; Nerlich, M.; Zellner, J. Higher Ratios of Hyaluronic Acid Enhance Chondrogenic Differentiation of Human MSCs in a Hyaluronic Acid-Gelatin Composite Scaffold. Materials 2016, 9, 381. [Google Scholar] [CrossRef] [Green Version]
- Gillogly, S.D.; Wheeler, K.S. Autologous Chondrocyte Implantation with Collagen Membrane. Sports Med. Arthrosc. Rev. 2015, 23, 118–124. [Google Scholar] [CrossRef]
- Johnstone, B.; Alini, M.; Cucchiarini, M.; Dodge, G.R.; Eglin, D.; Guilak, F.; Madry, H.; Mata, A.; Mauck, R.L.; Semino, C.E.; et al. Tissue engineering for articular cartilage repair—The state of the art. Eur. Cell. Mater. 2013, 25, 248–267. [Google Scholar] [CrossRef]
- Ma, C.; Jiang, L.; Wang, Y.; Gang, F.; Xu, N.; Li, T.; Liu, Z.; Chi, Y.; Wang, X.; Zhao, L.; et al. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. Materials 2019, 12, 2491. [Google Scholar] [CrossRef] [Green Version]
- Barabaschi, G.D.; Manoharan, V.; Li, Q.; Bertassoni, L.E. Engineering Pre-vascularized Scaffolds for Bone Regeneration. Adv. Exp. Med. Biol. 2015, 881, 79–94. [Google Scholar]
- Yim, E.K.; Darling, E.M.; Kulangara, K.; Guilak, F.; Leong, K.W. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 2010, 31, 1299–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Fan, T.; Chen, J.; Su, J.; Zhi, X.; Pan, P.; Zou, L.; Zhang, Q. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf. B Biointerfaces 2019, 174, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Kuang, H.; You, Z.; Morsi, Y.; Mo, X. Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics 2019, 11, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, C.; Kumari, P.; Anuvrat, K.; Sahu, S.K.; Chakraborty, J.; Garai, S. Synthesis and characterization of mechanically strong carboxymethyl cellulose–gelatin–hydroxyapatite nanocomposite for load-bearing orthopedic application. J. Mater. Sci. 2018, 53, 230–246. [Google Scholar] [CrossRef]
- Engel, E.; Michiardi, A.; Navarro, M.; Lacroix, D.; Planell, J.A. Nanotechnology in regenerative medicine: The materials side. Trends Biotechnol. 2008, 26, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakhorst, G.; Ploeg, R. Biomaterials in Modern Medicine: The Groningen Perspective; World Scientific Publishing Company: Singapore, 2008. [Google Scholar]
- Williams, D.F. Definitions in biomaterials. In Proceedings of the A Consensus Conference of the European Society for Biomaterials, Chester, UK, 3–5 March 1986; Volume 4. [Google Scholar]
- Von Recum, A.F.; Laberge, M. Educational goals for biomaterials science and engineering: Prospective view. J. Appl. Biomater. 1995, 6, 137–144. [Google Scholar] [CrossRef]
- Lammi, M.J.; Piltti, J.; Prittinen, J.; Qu, C. Challenges in fabrication of tissue-engineered cartilage with correct cellular colonization and extracellular matrix assembly. Int. J. Mol. Sci. 2018, 19, 2700. [Google Scholar] [CrossRef] [Green Version]
- Budhwani, K.I.; Oliver, P.G.; Buchsbaum, D.J.; Thomas, V. Novel Biomimetic Microphysiological Systems for Tissue Regeneration and Disease Modeling. In Novel Biomaterials for Regenerative Medicine; Springer: Berlin/Heidelberg, Germany, 2018; pp. 87–113. [Google Scholar]
- Olszewski, R.; Frison, L.; Schoenarts, N.; Khonsari, R.; Odri, G.; Zech, F.; Reychler, H. Reproducibility of three-dimensional posterior cranial base angles using low-dose computed tomography. Clin. Oral Investig. 2017, 21, 2407–2414. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Manouchehri, S.; Ahmadi, Z.; Saeb, M.R.; Urbanska, A.M.; Kaplan, D.L.; Mozafari, M. Agarose-based biomaterials for tissue engineering. Carbohydr. Polym. 2018, 187, 66–84. [Google Scholar] [CrossRef]
- Lubiatowski, P.; Kruczynski, J.; Gradys, A.; Trzeciak, T.; Jaroszewski, J. Articular cartilage repair by means of biodegradable scaffolds. In Transplantation Proceedings; Elsevier: Amsterdam, The Netherlands, 2006; pp. 320–322. [Google Scholar]
- Hoemann, C.D.; Sun, J.; Legare, A.; McKee, M.D.; Buschmann, M.D. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr. Cartil. 2005, 13, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Marijnissen, A.; Lafeber, F. Re: EB Hunziker. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage 2002; 10: 432–63. Osteoarthr. Cartil. 2003, 11, 300–301. [Google Scholar] [CrossRef] [Green Version]
- Bonaventure, J.; Kadhom, N.; Cohen-Solal, L.; Ng, K.; Bourguignon, J.; Lasselin, C.; Freisinger, P. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 1994, 212, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Almqvist, K.; Wang, L.; Wang, J.; Baeten, D.; Cornelissen, M.; Verdonk, R.; Veys, E.; Verbruggen, G. Culture of chondrocytes in alginate surrounded by fibrin gel: Characteristics of the cells over a period of eight weeks. Ann. Rheum. Dis. 2001, 60, 781–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudson, W.; Casey, B.; Nishida, Y.; Eger, W.; Kuettner, K.E.; Knudson, C.B. Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2000, 43, 1165–1174. [Google Scholar] [CrossRef]
- Tognana, E.; Padera, R.F.; Chen, F.; Vunjak-Novakovic, G.; Freed, L.E. Development and remodeling of engineered cartilage-explant composites in vitro and in vivo. Osteoarthr. Cartil. 2005, 13, 896–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fussenegger, M.; Meinhart, J.; Höbling, W.; Kullich, W.; Funk, S.; Bernatzky, G. Stabilized autologous fibrin-chondrocyte constructs for cartilage repair in vivo. Ann. Plast. Surg. 2003, 51, 493–498. [Google Scholar] [CrossRef]
- Vinatier, C.; Gauthier, O.; Masson, M.; Malard, O.; Moreau, A.; Fellah, B.; Bilban, M.; Spaethe, R.; Daculsi, G.; Guicheux, J. Nasal chondrocytes and fibrin sealant for cartilage tissue engineering. J. Biomed. Mater. Res. A. 2009, 89, 176–185. [Google Scholar] [CrossRef]
- Peterson, L.; Brittberg, M.; Kiviranta, I.; Åkerlund, E.L.; Lindahl, A. Autologous chondrocyte transplantation: Biomechanics and long-term durability. Am. J. Sports Med. 2002, 30, 2–12. [Google Scholar] [CrossRef]
- Armiento, A.; Stoddart, M.; Alini, M.; Eglin, D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater. 2018, 65, 1–20. [Google Scholar] [CrossRef]
- Sittinger, M.; Reitzel, D.; Dauner, M.; Hierlemann, H.; Hammer, C.; Kastenbauer, E.; Planck, H.; Burmester, G.; Bujia, J. Resorbable polyesters in cartilage engineering: Affinity and biocompatibility of polymer fiber structures to chondrocytes. J. Biomed. Mater. Res. 1996, 33, 57–63. [Google Scholar] [CrossRef]
- Spain, T.; Agrawal, C.; Athanasiou, K. New technique to extend the useful life of a biodegradable cartilage implant. Tissue Eng. 1998, 4, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, F.; Liu, K.; Shen, H.; Zhu, Y.; Zhang, W.; Liu, W.; Wang, S.; Cao, Y.; Zhou, G. The impact of PLGA scaffold orientation on in vitro cartilage regeneration. Biomaterials 2012, 33, 2926–2935. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Haq, M.A.; Su, Y.; Wang, D. Mechanical properties of PNIPAM based hydrogels: A review. Mater. Sci. Eng. 2017, 70, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Celik, C.; Mogal, V.T.; Hui, J.H.P.; Loh, X.J.; Toh, W.S. Injectable Hydrogels for Cartilage Regeneration. In Hydrogels; Springer: Singapore, 2018; pp. 315–337. [Google Scholar]
- Awad, H.A.; Quinn Wickham, M.; Leddy, H.A.; Gimble, J.M.; Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004, 25, 3211–3222. [Google Scholar] [CrossRef]
- Mouw, J.K.; Case, N.D.; Guldberg, R.E.; Plaas, A.H.K.; Levenston, M.E. Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr. Cartil. 2005, 13, 828–836. [Google Scholar] [CrossRef] [Green Version]
- Moutos, F.T.; Freed, L.E.; Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 2007, 6, 162–167. [Google Scholar] [CrossRef]
- Tan, A.R.; Dong, E.Y.; Ateshian, G.A.; Hung, C.T. Response of engineered cartilage to mechanical insult depends on construct maturity. Osteoarthr. Cartil. 2010, 18, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- Walvoort, M.T.; van den Elst, H.; Plante, O.J.; Kröck, L.; Seeberger, P.H.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D. Automated Solid-Phase Synthesis of β-Mannuronic Acid Alginates. Angew. Chem. Int. Ed. 2012, 51, 4393–4396. [Google Scholar] [CrossRef]
- Cohen, D.L.; Lipton, J.I.; Bonassar, L.J.; Lipson, H. Additive manufacturing forin siturepair of osteochondral defects. Biofabrication 2010, 2, 035004. [Google Scholar] [CrossRef] [Green Version]
- Scholten, P.M.; Ng, K.W.; Joh, K.; Serino, L.P.; Warren, R.F.; Torzilli, P.A.; Maher, S.A. A semi-degradable composite scaffold for articular cartilage defects. J. Biomed. Mater. Res. Part A 2011, 97, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomkoria, S.; Masuda, K.; Mao, J. Nanomechanical properties of alginate-recovered chondrocyte matrices for cartilage regeneration. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2007, 221, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Mata, M.; Milian, L.; Oliver, M.; Zurriaga, J.; Sancho-Tello, M.; Llano, J.J.M.D.; Carda, C. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study. Stem Cells Int. 2017, 2017, 8309256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filardo, G.; Perdisa, F.; Gelinsky, M.; Despang, F.; Fini, M.; Marcacci, M.; Parrilli, A.P.; Roffi, A.; Salamanna, F.; Sartori, M.; et al. Novel alginate biphasic scaffold for osteochondral regeneration: An in vivo evaluation in rabbit and sheep models. J. Mater. Sci. Mater. Med. 2018. [Google Scholar] [CrossRef]
- Oryan, A.; Sahvieh, S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 2017, 104, 1003–1011. [Google Scholar] [CrossRef]
- Pace, L.R.; Harrison, Z.L.; Brown, M.N.; Haggard, W.O.; Jennings, J.A.J.M.D. Characterization and Antibiofilm Activity of Mannitol–Chitosan-Blended Paste for Local Antibiotic Delivery System. Mar. Drugs 2019, 17, 517. [Google Scholar] [CrossRef] [Green Version]
- Park, K.M.; Lee, S.Y.; Joung, Y.K.; Na, J.S.; Lee, M.C.; Park, K.D. Thermosensitive chitosan–Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater. 2009, 5, 1956–1965. [Google Scholar] [CrossRef]
- Hao, T.; Wen, N.; Cao, J.K.; Wang, H.B.; Lü, S.H.; Liu, T.; Lin, Q.X.; Duan, C.M.; Wang, C.Y. The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthr. Cartil. 2010, 18, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Alves da Silva, M.L.; Martins, A.; Costa-Pinto, A.R.; Correlo, V.M.; Sol, P.; Bhattacharya, M.; Faria, S.; Reis, R.L.; Neves, N.M. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J. Tissue Eng. Regen. Med. 2011, 5, 722–732. [Google Scholar] [CrossRef]
- Abarrategi, A.; Lópiz-Morales, Y.; Ramos, V.; Civantos, A.; López-Durán, L.; Marco, F.; López-Lacomba, J.L. Chitosan scaffolds for osteochondral tissue regeneration. J. Biomed. Mater. Res. Part A 2010, 95, 1132–1141. [Google Scholar] [CrossRef]
- Lisignoli, G.; Cristino, S.; Piacentini, A.; Toneguzzi, S.; Grassi, F.; Cavallo, C.; Zini, N.; Solimando, L.; Mario Maraldi, N.; Facchini, A. Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials 2005, 26, 5677–5686. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, V.; Kothandaraman, G.P.; Bories, C.; Loiseau, P.M.; Jayakrishnan, A. Synthetic polysaccharides as drug carriers: Synthesis of polyglucose-amphotericin B conjugates and in vitro evaluation of their anti-fungal and anti-leishmanial activities. J. Nanosci. Nanotechnol. 2018, 18, 2405–2414. [Google Scholar] [CrossRef] [PubMed]
- Ramazanzadeh, R.; Rouhi, S.; Hosainzadegan, H.; Shakib, P.; Nouri, B. Co-occurrence of Extended-Spectrum Beta-Lactamases in isolated Enterobacter spp. From patients specimens. Arch. Clin. Infect. Dis. 2016, 11, e26837. [Google Scholar] [CrossRef]
- Samadi, N.; Pakzad, I.; Sefidan, A.M.; Hosainzadegan, H.; Tanomand, A. Study of aminoglycoside resistance genes in enterococcus and salmonella strains isolated from ilam and milad hospitals, Iran. Jundishapur J. Microbiol. 2015, 8, e18102. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.T.; Martins, L.; Picciochi, R.; Malafaya, P.B.; Sousa, R.A.; Neves, N.M.; Mano, J.F.; Reis, R.L. Gellan gum: A new biomaterial for cartilage tissue engineering applications. J. Biomed. Mater. Res. Part A 2009, 93, 852–863. [Google Scholar] [CrossRef] [Green Version]
- Mohan, N.; Mohanan, P.V.; Sabareeswaran, A.; Nair, P. Chitosan-hyaluronic acid hydrogel for cartilage repair. Int. J. Biol. Macromol. 2017, 104, 1936–1945. [Google Scholar] [CrossRef]
- Mueller-Rath, R.; Gavénis, K.; Andereya, S.; Mumme, T.; Albrand, M.; Stoffel, M.; Weichert, D.; Schneider, U. Condensed cellular seeded collagen gel as an improved biomaterial for tissue engineering of articular cartilage. Bio-Med. Mater. Eng. 2010, 20, 317–328. [Google Scholar] [CrossRef]
- Jančář, J.; Slovíková, A.; Amler, E.; Krupa, P.; Kecová, H.; Plánka, L.; Gál, P.; Nečas, A. Mechanical response of porous scaffolds for cartilage engineering. Physiol. Res. 2007, 56, S17–S25. [Google Scholar]
- Chen, W.-C.; Yao, C.-L.; Wei, Y.-H.; Chu, I.M. Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold. Cytotechnology 2010, 63, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Kon, E.; Delcogliano, M.; Filardo, G.; Busacca, M.; Di Martino, A.; Marcacci, M. Novel Nano-composite Multilayered Biomaterial for Osteochondral Regeneration. Am. J. Sports Med. 2011, 39, 1180–1190. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, T.; Guo, L.; Zhang, X. An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. J. Biomed. Mater. Res. Part A 2012, 100, 2717–2725. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Lu, Z.; Wu, H.; Liu, H.; Li, M.; Lei, D.; Zheng, L.; Zhao, J. Collagen, agarose, alginate, and Matrigel hydrogels as cell substrates for culture of chondrocytes in vitro: A comparative study. J. Cell. Biochem. 2018, 119, 7924–7933. [Google Scholar] [CrossRef] [PubMed]
- Peretti, G.M.; Xu, J.W.; Bonassar, L.J.; Kirchhoff, C.H.; Yaremchuk, M.J.; Randolph, M.A. Review of injectable cartilage engineering using fibrin gel in mice and swine models. Tissue Eng. 2006, 12, 1151–1168. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.M.; Singergy, A.A.E.; Sabry, D.; Atta, H.M.; Rashed, L.A.; Chu, C.R.; Shewy, M.T.; Azzam, A.; Aziz, M.T. The clinical use of human culture—Expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: A pilot study and preliminary results. Cartilage 2010, 1, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Rampichová, M.; Filová, E.; Varga, F.; Lytvynets, A.; Prosecká, E.; Koláčná, L.; Motlík, J.; Nečas, A.; Vajner, L.; Uhlík, J.; et al. Fibrin/Hyaluronic Acid Composite Hydrogels as Appropriate Scaffolds for In Vivo Artificial Cartilage Implantation. Asaio J. 2010, 56, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Iseki, T.; Rothrauff, B.B.; Kihara, S.; Yoshiya, S.; Fu, F.H.; Tuan, R.S.; Gottardi, R. Early Weight-Bearing Improves Cartilage Repair in an in vitro Model of Microfracture: Comparison of Two Mechanical Loading Regimens on Simulated Microfracture Based onFibrin Gel Scaffolds Encapsulating Bone Marrow Mesenchymal Stem Cells. Orthop. J. Sports Med. 2019, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Krug, C.; Beer, A.; Hartmann, B.; Prein, C.; Clause-Schaumann, H.; Holzbach, T.; Aszodi, A.; Giunta, R.E.; Saller, M.M.; Volkmer, E. Fibrin glue displays promising in vitro characteristics as a potential carrier of adipose progenitor cells for tissue regeneration. J. Tissue Eng. Regen. Med. 2019, 13, 359–368. [Google Scholar] [CrossRef]
- Meyer, U.; Wiesmann, H.P. Bone and Cartilage Engineering; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Fedorovich, N.E.; Alblas, J.; de Wijn, J.R.; Hennink, W.E.; Verbout, A.J.; Dhert, W.J. Hydrogels as extracellular matrices for skeletal tissue engineering: State-of-the-art and novel application in organ printing. Tissue Eng. 2007, 13, 1905–1925. [Google Scholar] [CrossRef]
- Oldinski, R.A.; Ruckh, T.T.; Staiger, M.P.; Popat, K.C.; James, S.P. Dynamic mechanical analysis and biomineralization of hyaluronan–polyethylene copolymers for potential use in osteochondral defect repair. Acta Biomater. 2011, 7, 1184–1191. [Google Scholar] [CrossRef]
- Rakovsky, A.; Marbach, D.; Lotan, N.; Lanir, Y. Poly (ethylene glycol)-based hydrogels as cartilage substitutes: Synthesis and mechanical characteristics. J. Appl. Polym. Sci. 2009, 112, 390–401. [Google Scholar] [CrossRef]
- Scholz, B.; Kinzelmann, C.; Benz, K.; Mollenhauer, J.; Wurst, H.; Schlosshauer, B. Suppression of adverse angiogenesis in an albumin-based hydrogel for articular cartilage and intervertebral disc regeneration. Eur. Cells Mater. 2010, 20, 2010–2018. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Tian, Q.; Hedrick, J.L.; Hui, J.H.P.; Ee, P.L.R.; Yang, Y.Y. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 2010, 31, 7298–7307. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Healy, K.E. Synthesis and characterization of injectable poly (N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 2003, 4, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Ibusuki, S.; Fujii, Y.; Iwamoto, Y.; Matsuda, T. Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: Fabrication and in vitro performance. Tissue Eng. 2003, 9, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.P.; Cheng, T.H. Thermo-responsive chitosan-graft-poly (N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol. Biosci. 2006, 6, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-H.; Lee, D.H.; Na, K. Transplantation of poly (N-isopropylacrylamide-co-vinylimidazole) hydrogel constructs composed of rabbit chondrocytes and growth factor-loaded nanoparticles for neocartilage formation. Biotechnol. Lett. 2009, 31, 337–346. [Google Scholar] [CrossRef]
- Capito, R.M.; Spector, M. Scaffold-based articular cartilage repair. IEEE Eng. Med. Biol. Mag. 2003, 22, 42–50. [Google Scholar] [CrossRef]
- Tanaka, Y.; Yamaoka, H.; Nishizawa, S.; Nagata, S.; Ogasawara, T.; Asawa, Y.; Fujihara, Y.; Takato, T.; Hoshi, K. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials 2010, 31, 4506–4516. [Google Scholar] [CrossRef]
- Chen, J.-P.; Su, C.-H. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater. 2011, 7, 234–243. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, L.; Gong, Y.; Gao, C.; Shen, J. A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: Fabrication and an in vitro evaluation. J. Mater. Sci. Mater. Med. 2009, 20, 135–143. [Google Scholar] [CrossRef]
- Shin, H.J.; Lee, C.H.; Cho, I.H.; Kim, Y.-J.; Lee, Y.-J.; Kim, I.A.; Park, K.-D.; Yui, N.; Shin, J.-W. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: Mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J. Biomater. Sci. Polym. Ed. 2006, 17, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Temenoff, J.S.; Mikos, A.G. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 2000, 21, 2405–2412. [Google Scholar] [CrossRef]
- Adhikari, R.; Danon, S.J.; Bean, P.; Le, T.; Gunatillake, P.; Ramshaw, J.A.; Werkmeister, J.A. Evaluation of in situ curable biodegradable polyurethanes containing zwitterion components. J. Mater. Sci. Mater. Med. 2010, 21, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Werkmeister, J.; Adhikari, R.; White, J.; Tebb, T.; Le, T.; Taing, H.; Mayadunne, R.; Gunatillake, P.; Danon, S.; Ramshaw, J. Biodegradable and injectable cure-on-demand polyurethane scaffolds for regeneration of articular cartilage. Acta Biomater. 2010, 6, 3471–3481. [Google Scholar] [CrossRef] [PubMed]
- Grad, S.; Kupcsik, L.; Gorna, K.; Gogolewski, S.; Alini, M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: Potential and limitations. Biomaterials 2003, 24, 5163–5171. [Google Scholar] [CrossRef]
- Charlton, D.C.; Peterson, M.G.; Spiller, K.; Lowman, A.; Torzilli, P.A.; Maher, S.A. Semi-degradable scaffold for articular cartilage replacement. Tissue Eng. Part A 2008, 14, 207–213. [Google Scholar] [CrossRef]
- Bichara, D.A.; Zhao, X.; Hwang, N.S.; Bodugoz-Senturk, H.; Yaremchuk, M.J.; Randolph, M.A.; Muratoglu, O.K. Porous poly (vinyl alcohol)-alginate gel hybrid construct for neocartilage formation using human nasoseptal cells. J. Surg. Res. 2010, 163, 331–336. [Google Scholar] [CrossRef]
- Mohan, N.; Nair, P.D.; Tabata, Y. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly (vinyl alcohol)–poly (caprolactone) scaffolds. J. Biomed. Mater. Res. Part A 2010, 94, 146–159. [Google Scholar] [CrossRef]
- Tran, S.C.; Cooley, A.J.; Elder, S.H. Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage. Biotechnol. Bioeng. 2011, 108, 1421–1429. [Google Scholar] [CrossRef]
- Bartlett, W.; Skinner, J.; Gooding, C.; Carrington, R.; Flanagan, A.; Briggs, T.; Bentley, G. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: A prospective, randomised study. J. Bone Jt. Surg. Br. Vol. 2005, 87, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Manfredini, M.; Zerbinati, F.; Gildone, A.; Faccini, R. Autologous chondrocyte implantation: A comparison between an open periosteal-covered and an arthroscopic matrix-guided technique. Acta Orthop. Belg. 2007, 73, 207. [Google Scholar] [PubMed]
- Marcacci, M.; Kon, E.; Zaffagnini, S.; Filardo, G.; Delcogliano, M.; Neri, M.P.; Iacono, F.; Hollander, A.P. Arthroscopic second generation autologous chondrocyte implantation. Knee Surg. Sports Traumatol. Arthrosc. 2007, 15, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Choi, S.W.; Kim, S.R.; Oh, I.S.; Won, M.H. Autologous chondrocyte implantation in the knee using fibrin. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Ossendorf, C.; Kaps, C.; Kreuz, P.C.; Burmester, G.R.; Sittinger, M.; Erggelet, C. Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results. Arthritis Res. Ther. 2007, 9, R41. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.-Y.; Nukavarapu, S. Scaffolds for cartilage tissue engineering. In Handbook of Tissue Engineering Scaffolds: Volume One; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–244. [Google Scholar]
- Li, T.; Song, X.; Weng, C.; Wang, X.; Gu, L.; Gong, X.; Wei, Q.; Duan, X.; Yang, L.; Chen, C. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Int. J. Biol. Macromol. 2019, 137, 382–391. [Google Scholar] [CrossRef]
- MacEwan, S.R.; Chilkoti, A. Elastin-like polypeptides: Biomedical applications of tunable biopolymers. Pept. Sci. Orig. Res. Biomol. 2010, 94, 60–77. [Google Scholar] [CrossRef]
- Hartgerink, J.D.; Beniash, E.; Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684–1688. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171. [Google Scholar] [CrossRef]
- Bolaños, R.V.; Cokelaere, S.; McDermott, J.E.; Benders, K.; Gbureck, U.; Plomp, S.; Weinans, H.; Groll, J.; van Weeren, P.; Malda, J. The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: The importance of long-term studies in a large animal model. Osteoarthr. Cartil. 2017, 25, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Elisseeff, J.; Anseth, K.; Sims, D.; McIntosh, W.; Randolph, M.; Langer, R. Transdermal photopolymerization for minimally invasive implantation. Proc. Natl. Acad. Sci. USA 1999, 96, 3104–3107. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Hunt, J.A. Biomimetic materials processing for tissue-engineering processes. J. Mater. Chem. 2007, 17, 3974–3979. [Google Scholar] [CrossRef]
- Hwang, N.S.; Varghese, S.; Li, H.; Elisseeff, J. Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. Cell Tissue Res. 2011, 344, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J. Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facchini, A.; Lisignoli, G.; Cristino, S.; Roseti, L.; De Franceschi, L.; Marconi, E.; Grigolo, B. Human chondrocytes and mesenchymal stem cells grown onto engineered scaffold. Biorheology 2006, 43, 471–480. [Google Scholar] [PubMed]
- Park, J.Y.; Gao, G.; Jang, J.; Cho, D.W. 3D printed structures for delivery of biomolecules and cells: Tissue repair and regeneration. J. Mater. Chem. 2016, 4, 7521–7539. [Google Scholar] [CrossRef]
- Erickson, I.E.; Huang, A.H.; Chung, C.; Li, R.T.; Burdick, J.A.; Mauck, R.L. Differential maturation and structure—Function relationships in mesenchymal stem cell-and chondrocyte-seeded hydrogels. Tissue Eng. Part A 2008, 15, 1041–1052. [Google Scholar] [CrossRef] [Green Version]
- Erickson, I.E.; Kestle, S.R.; Zellars, K.H.; Farrell, M.J.; Kim, M.; Burdick, J.A.; Mauck, R.L. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater. 2012, 8, 3027–3034. [Google Scholar] [CrossRef] [Green Version]
- Burdick, J.A.; Chung, C.; Jia, X.; Randolph, M.A.; Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 2005, 6, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Smeds, K.A.; Grinstaff, M.W. Photocrosslinkable polysaccharides for in situ hydrogel formation. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. 2001, 54, 115–121. [Google Scholar] [CrossRef]
- Mortisen, D.; Peroglio, M.; Alini, M.; Eglin, D. Tailoring thermoreversible hyaluronan hydrogels by “click” chemistry and RAFT polymerization for cell and drug therapy. Biomacromolecules 2010, 11, 1261–1272. [Google Scholar] [CrossRef]
- Akram, M.; Hussain, R. Nanohydrogels: History, Development, and Applications in Drug Delivery. Nanocellulose Nanohydrogel Matrices Biotechnol. Biomed. Appl. 2017, 297–330. [Google Scholar] [CrossRef]
- Wu, E.C.; Zhang, S.; Hauser, C.A. Self-assembling peptides as cell-interactive scaffolds. Adv. Funct. Mater. 2012, 22, 456–468. [Google Scholar] [CrossRef]
- Aggeli, A.; Bell, M.; Carrick, L.M.; Fishwick, C.W.; Harding, R.; Mawer, P.J.; Radford, S.E.; Strong, A.E.; Boden, N. pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and isotropic phases. J. Am. Chem. Soc. 2003, 125, 9619–9628. [Google Scholar] [CrossRef] [PubMed]
- Ozbas, B.; Rajagopal, K.; Haines-Butterick, L.; Schneider, J.P.; Pochan, D.J. Reversible stiffening transition in β-hairpin hydrogels induced by ion complexation. J. Phys. Chem. 2007, 111, 13901–13908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’leary, L.E.; Fallas, J.A.; Bakota, E.L.; Kang, M.K.; Hartgerink, J.D. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 2011, 3, 821. [Google Scholar] [CrossRef]
- Hauser, C.A.; Zhang, S. Designer Self-Assembling Peptide Materials for Diverse Applications. In Proceedings of the Macromolecular Symposia; WILEY-VCH Verlag: Weinheim, Germany, September 2010; pp. 30–48. [Google Scholar]
- Liu, J.; Song, H.; Zhang, L.; Xu, H.; Zhao, X. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro. Macromol. Biosci. 2010, 10, 1164–1170. [Google Scholar] [CrossRef]
- Quintana, L.; Muiños, T.F.; Genové, E.; Del Mar Olmos, M.; Borros, S.; Semino, C.E. Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment. Tissue Eng. Part A 2008, 15, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.N.; Shah, N.A.; Lim, M.M.D.R.; Hsieh, C.; Nuber, G.; Stupp, S.I. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 3293–3298. [Google Scholar] [CrossRef] [Green Version]
- Mauck, R.L.; Baker, B.M.; Nerurkar, N.L.; Burdick, J.A.; Li, W.-J.; Tuan, R.S.; Elliott, D.M. Engineering on the straight and narrow: The mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng. Part B Rev. 2009, 15, 171–193. [Google Scholar] [CrossRef] [Green Version]
- Li, W.J.; Danielson, K.G.; Alexander, P.G.; Tuan, R.S. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly (ϵ-caprolactone) scaffolds. J. Biomed. Mater. Res. Part A 2003, 67, 1105–1114. [Google Scholar] [CrossRef]
- Thorvaldsson, A.; Stenhamre, H.; Gatenholm, P.; Walkenström, P. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 2008, 9, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Kohl, B.; Sauter, T.; Kratz, K.; Lendlein, A.; Ertel, W.; Schulze-Tanzil, G. Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes. Clin. Hemorheol. Microcirc. 2012, 52, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-J.; Jiang, Y.J.; Tuan, R.S. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng. 2006, 12, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Chiang, H.; Kuo, T.F.; Lee, H.S.; Jiang, C.C.; Tuan, R.S. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: A pilot study. J. Tissue Eng. Regen. Med. 2009, 3, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, J.; Qu, Y.; Chu, B.; Zhang, X.; Qian, Z. Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci. Rep. 2015, 5, 9879. [Google Scholar] [CrossRef]
- Wang, K.; Fu, S.Z.; Gu, Y.C.; Xu, X.; Dong, P.W.; Guo, G.; Zhao, X.; Wei, Y.Q.; Qian, Z.Y. Synthesis and characterization of biodegradable pH-sensitive hydrogels based on poly (ε-caprolactone), methacrylic acid, and poly (ethylene glycol). Polym. Degrad. Stab. 2009, 94, 730–737. [Google Scholar] [CrossRef]
- McCullen, S.D.; Autefage, H.; Callanan, A.; Gentleman, E.; Stevens, M.M. Anisotropic fibrous scaffolds for articular cartilage regeneration. Tissue Eng. Part A 2012, 18, 2073–2083. [Google Scholar] [CrossRef] [Green Version]
- Ávila, H.M.; Schwarz, S.; Rotter, N.; Gatenholm, P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting 2016, 1, 22–35. [Google Scholar] [CrossRef]
- Fermor, H.; McLure, S.; Taylor, S.; Russell, S.; Williams, S.; Fisher, J.; Ingham, E. Biological, biochemical and biomechanical characterisation of articular cartilage from the porcine, bovine and ovine hip and knee. Bio-Med. Mater. Eng. 2015, 25, 381–395. [Google Scholar] [CrossRef]
- Kowalsky, M.S. Minimally Invasive Treatment of Elbow Articular Cartilage Injury. In Minimally Invasive Surgery in Orthopedics; Scuderi, G.R., Tria, A.J., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Vijayan, S.; Bentley, G. Combined autologous chondrocyte implantation (ACI) and mosaicplasty for “Kissing” osteochondral defects of the patellofemoral joint. Int. J. Orthop. 2015, 1, 06–08. [Google Scholar]
- Paek, H.; Courtney, K.; Tuan, R. Stem Cell-Based Repair and Regeneration of Articular Cartilage. J. Stem Cell Res. 2017, 2, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Trzeciak, T.; Richter, M.; Suchorska, W.; Augustyniak, E.; Lach, M.; Kaczmarek, M.; Kaczmarczyk, J. Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries. Int. Orthop. 2016, 40, 615–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, L.; Huang, X.; Rodrigues, E.; Leijten, J.; Verrips, T.; El Khattabi, M.; Karperien, M.; Post, J. DKK1 AND FRZB are necessary for chondrocyte (RE) differentiation and prevention of cell hypertrophy in 3D cultures of human chondrocytes and human mesenchymal stem cells. Osteoarthr. Cartil. 2016, 24, S142. [Google Scholar] [CrossRef]
- Armiento, A.R.; Alini, M.; Stoddart, M.J. Articular fibrocartilage-Why does hyaline cartilage fail to repair? Adv. Drug Deliv. Rev. 2019, 146, 289–305. [Google Scholar] [CrossRef]
Preparation Source | Advantages | Disadvantages | Ref. | |
---|---|---|---|---|
Natural materials | ||||
Agarose | Highly purified polysaccharide derived from agar | High water absorbance capacity which is beneficial for cell growth, differentiation and proliferation. Similarity to the ECM which supports cell adhesion with chemical modifications. | Non-degradability because of the absence of suitable enzyme in the body. The addition of agarose had no destructive effect on cartilage tissue and no changes were detected on collagen and DNA content. | [58] |
Collagen | Decellularization and demineralization of tissues | Biocompatible, reservoir for growth factor delivery in the ECM. Collagen improve the spontaneous repair process of osteochondral defects in vivo. | Immunoreactivity related to its bovine source and other non-human species. | [59] |
Chitosan | Deacetylation of chitin | Biocompatibility, biodegradability, low toxicity, and controlled degradation by enzymes such as lysozyme. Chitosan is capable to improve repair of cartilage, promote chondrogenic activity of chondrocytes and synthesis of ECM proteins in vitro. Chitosan-based matrices stimulate the formation of a hyaline-like repair tissue in articular cartilage defects In vivo. | Poor solubility in neutral aqueous solutions and organic solvents because of the presence of amino groups and its high crystallinity. | [60,61] |
Alginate | Brown algae | Biocompatibility and non-immunogenicity. Alginate allows the maintenance of the chondrocytic phenotype and the synthesis of ECM proteins. | Poor cell adhesion, low mechanical strength, and low degradability. Alginate alone prevents spontaneous repair in vivo and when associated with chondrocytes, it did not repair osteochondral defects partly because of severe immunological reactions. | [62,63] |
Hyaluronic acid | Rooster cockscomb or from microbial fermentation. | Good bioactivity, biodegradability, biocompatibility, and act as a reservoir of growth factors with chemically modified. Hyaluronic acid based matrices enhance the synthesis of ECM by chondrocytes in vitro and in vivo. | Structural complexity, possibility of immunoreactivity. Hyaluronic acid is degraded naturally by hyaluronidases but its products of degradation are capable to stimulate chondrolysis. Under an unmodified form, HA is not appropriate for cartilage repair and requests crosslinking to improve its biocompatibility. | [64,65] |
Fibrin Glue | Polymerization of fibrinogen in the attendance of thrombin. | It stimulates the spontaneous repair action of articular cartilage but also has a pro-inflammatory effect. Fibrin induces its own degradation by the components of ECM into nontoxic endpoint components. The utilizing of fibrin glue and chondrocytes improve the repair of cartilage in vivo. | Low mechanical strength and less controllable biodegradability. In human, its application is limited to seal off the periosteal flap in the ACI method. | [66,67,68] |
Synthetic materials | ||||
PEG | Chemical synthesis | Non-immunogenicity, good biocompatibility, Low toxicity, great hydrophilicity and solubility in organic solvents, and anti-fouling property. | Non-biodegradable | [69] |
PLA | Hydrolysis, or specific cleavage of oligopeptides | High mechanical strength | It stimulate immunological reactions partially and it is cytotoxic. | [70] |
PGA | Hydrolysis, or specific cleavage of oligopeptides | High strength and modulus | It stimulate immunological reactions partially and it is cytotoxic. | [71,72] |
PLGA | Chemical synthesis | Biocompatibility, and biodegradability rate. In vivo studies displayed the improve cartilage regeneration with application of PLGA caffolds and microspheres with and without loaded drugs. | Expensive and weak cell adhesive ability. | [72] |
PCL | Chemical synthesis | PCL can maintain phenotype and promote chondrocytes proliferation. It has slow degradation rate and high drug permeability. | poor hydrophilicity and acidic degradation products which may cause inflammation. | [73] |
PNIPAM | Chemical synthesis | It is thermoresponsive polymer which is very important because of its well defined structure and property specially its temperature response is closed to human body and can be finetuned as well. | Non-biodegradable and its monomer and cross-linker may lead to toxic, teratogenic and carcinogenic effects. | [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eftekhari, A.; Maleki Dizaj, S.; Sharifi, S.; Salatin, S.; Rahbar Saadat, Y.; Zununi Vahed, S.; Samiei, M.; Ardalan, M.; Rameshrad, M.; Ahmadian, E.; et al. The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 536. https://doi.org/10.3390/ijms21020536
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, Samiei M, Ardalan M, Rameshrad M, Ahmadian E, et al. The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. International Journal of Molecular Sciences. 2020; 21(2):536. https://doi.org/10.3390/ijms21020536
Chicago/Turabian StyleEftekhari, Aziz, Solmaz Maleki Dizaj, Simin Sharifi, Sara Salatin, Yalda Rahbar Saadat, Sepideh Zununi Vahed, Mohammad Samiei, Mohammadreza Ardalan, Maryam Rameshrad, Elham Ahmadian, and et al. 2020. "The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives" International Journal of Molecular Sciences 21, no. 2: 536. https://doi.org/10.3390/ijms21020536
APA StyleEftekhari, A., Maleki Dizaj, S., Sharifi, S., Salatin, S., Rahbar Saadat, Y., Zununi Vahed, S., Samiei, M., Ardalan, M., Rameshrad, M., Ahmadian, E., & Cucchiarini, M. (2020). The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. International Journal of Molecular Sciences, 21(2), 536. https://doi.org/10.3390/ijms21020536