Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus
Abstract
:1. Introduction
2. Results
2.1. Expression, Purification, and Characterization of Full-Length Porcine Deltacoronavirus (PDCoV) Recombinant N Protein (rNP)
2.2. Production and Screening of PDCoV rNP mAbs
2.3. Epitope Mapping of PDCoV NP
2.4. Identification of the Minimal Epitope
2.5. Cross-Reactivity Analysis
2.6. Homology Analysis
2.7. Distructure of EP-4E88
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Virus and Cells
4.3. Construction of Full-Length and Truncated Recombinant N-Protein
4.4. Western Blotting
4.5. Production of Anti-rNP mAbs
4.6. Denatured Protein
4.7. IFA
4.8. ELISA
4.9. Dot-Blot Analysis
4.10. Identification of the Minimal 4E88 Epitope
4.11. Sequence Homology
4.12. Three-Dimensional Structure Prediction
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Woo, P.C.Y.; Lau, S.K.P.; Lam, C.S.F.; Lau, C.C.Y.; Tsang, A.K.L.; Lau, J.H.N.; Bai, R.; Teng, J.L.L.; Tsang, C.C.C.; Wang, M.; et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012, 86, 3995–4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, P.C.; Lau, S.K.; Tsang, C.-C.; Lau, C.C.; Wong, P.-C.; Chow, F.W.; Fong, J.Y.; Yuen, K.-Y. Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 5′-untranslated region. Emerg. Microbes Infect. 2017, 6, e53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Chen, Q.; Harmon, K.M.; Yoon, K.-J.; Schwartz, K.J.; Hoogland, M.J.; Gauger, P.C.; Main, R.G.; Zhang, J. Full-Length Genome Sequence of Porcine Deltacoronavirus Strain USA/IA/2014/8734. Genome Announc. 2014, 2, e00278-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marthaler, D.; Jiang, Y.; Collins, J.; Rossow, K. Complete Genome Sequence of Strain SDCV/USA/Illinois121/2014, a Porcine Deltacoronavirus from the United States. Genome Announc. 2014, 2, 00218-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Byrum, B.; Zhang, Y. Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014. Emerg. Infect. Dis. 2014, 20, 1227–1230. [Google Scholar] [CrossRef]
- Wang, L.; Byrum, B.; Zhang, Y. Porcine coronavirus HKU15 detected in 9 US states, 2014. Emerg. Infect. Dis. 2014, 20, 1594–1595. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C. Complete Genome Characterization of Korean Porcine Deltacoronavirus Strain KOR/KNU14-04/2014. Genome Announc. 2014, 2, e01191-14. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Zhou, X.; Peng, Q.; Chen, Y.; Zhang, F.; Huang, T.; Zhang, T.; Li, A.; Huang, D.; Wu, Q.; et al. Newly Emerged Porcine Deltacoronavirus Associated With Diarrhoea in Swine in China: Identification, Prevalence and Full-Length Genome Sequence Analysis. Transbound. Emerg. Dis. 2015, 62, 575–580. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Yue, H.; Fang, W.; Huang, Y.-W. Complete Genome Sequence of Porcine Deltacoronavirus Strain CH/Sichuan/S27/2012 from Mainland China. Genome Announc. 2015, 3, e00945-15. [Google Scholar] [CrossRef] [Green Version]
- Janetanakit, T.; Lumyai, M.; Bunpapong, N.; Boonyapisitsopa, S.; Chaiyawong, S.; Nonthabenjawan, N.; Kesdaengsakonwut, S.; Amonsin, A. Porcine Deltacoronavirus, Thailand, 2015. Emerg. Infect. Dis. 2016, 22, 757–759. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hayes, J.; Sarver, C.; Byrum, B.; Zhang, Y. Porcine deltacoronavirus: Histological lesions and genetic characterization. Arch. Virol. 2016, 161, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Hu, H.; Saif, L.J. Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis. Virus Res. 2016, 226, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution. Virus Res. 2016, 226, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qu, H.; Hu, J.; Fu, J.; Chen, R.; Li, C.; Cao, S.; Wen, Y.; Wu, R.; Zhao, Q.; et al. Characterization and Pathogenicity of the Porcine Deltacoronavirus Isolated in Southwest China. Viruses 2019, 11, 1074. [Google Scholar] [CrossRef] [Green Version]
- Fang, P.; Fang, L.; Hong, Y.; Liu, X.; Dong, N.; Ma, P.; Bi, J.; Wang, D.; Xiao, S. Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus. J. Gen. Virol. 2017, 98, 173–178. [Google Scholar] [CrossRef]
- Chen, R.; Fu, J.; Hu, J.; Li, C.; Zhao, Y.; Qu, H.; Wen, X.; Cao, S.; Wen, Y.; Wu, R.; et al. Identification of the immunodominant neutralizing regions in the spike glycoprotein of porcine deltacoronavirus. Virus Res. 2020, 276, 197834. [Google Scholar] [CrossRef]
- Hsin, W.-C.; Chang, C.-H.; Chang, C.-Y.; Peng, W.-H.; Chien, C.-L.; Chang, M.-F.; Chang, S.C. Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus. J. Biomed. Sci. 2018, 25, 47. [Google Scholar] [CrossRef]
- Chang, C.-K.; Sue, S.-C.; Yu, T.-H.; Hsieh, C.-M.; Tsai, C.-K.; Chiang, Y.-C.; Lee, S.-J.; Hsiao, H.-H.; Wu, W.-J.; Chang, W.-L.; et al. Modular organization of SARS coronavirus nucleocapsid protein. J. Biomed. Sci. 2006, 13, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.-L.; Yu, L.-Y.; Liu, J. Development and evaluation of enzyme-linked immunosorbent assay based on recombinant nucleocapsid protein for detection of porcine epidemic diarrhea (PEDV) antibodies. Vet. Microbiol. 2007, 123, 86–92. [Google Scholar] [CrossRef]
- Wang, K.; Xie, C.; Zhang, J.; Zhang, W.; Yang, D.; Yu, L.; Jiang, Y.; Yang, S.; Gao, F.; Yang, Z.; et al. The Identification and Characterization of Two Novel Epitopes on the Nucleocapsid Protein of the Porcine Epidemic Diarrhea Virus. Sci. Rep. 2016, 6, 39010. [Google Scholar] [CrossRef] [Green Version]
- Su, M.; Li, C.; Guo, D.; Wei, S.; Wang, X.; Geng, Y.; Yao, S.; Gao, J.; Wang, E.; Zhao, X.; et al. A recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay to detect antibodies against porcine deltacoronavirus. J. Vet. Med. Sci. 2016, 78, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zúñiga, S.; Sola, I.; Moreno, J.L.; Sabella, P.; Plana-Durán, J.; Enjuanes, L. Coronavirus nucleocapsid protein is an RNA chaperone. Virology 2007, 357, 215–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okda, F.; Lawson, S.; Liu, X.; Singrey, A.; Clement, T.; Hain, K.; Nelson, J.; Christopher-Hennings, J.; Nelson, E.A. Development of monoclonal antibodies and serological assays including indirect ELISA and fluorescent microsphere immunoassays for diagnosis of porcine deltacoronavirus. BMC Vet. Res. 2016, 12, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-M.; Gao, X.; Oka, T.; Vlasova, A.N.; Esseili, M.A.; Wang, Q.; Saif, L.J. Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains. J. Virol. 2015, 89, 3332–3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimenez-Lirola, L.G.; Zhang, J.; Carrillo-Avila, J.A.; Chen, Q.; Magtoto, R.; Poonsuk, K.; Baum, D.H.; Piñeyro, P.; Zimmerman, J. Reactivity of Porcine Epidemic Diarrhea Virus Structural Proteins to Antibodies against Porcine Enteric Coronaviruses: Diagnostic Implications. J. Clin. Microbiol. 2017, 55, 1426–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, W.; Ao, C.; Yang, Y.; Liu, Y.; Liang, R.; Zeng, Z.; Ye, G.; Xiao, S.; Fu, Z.F.; Dong, W.; et al. Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus. J. Gen. Virol. 2019, 100, 206–216. [Google Scholar] [CrossRef]
- Bernard, S.; Bottreau, E.; Aynaud, J.M.; Have, P.; Szymansky, J. Natural infection with the porcine respiratory coronavirus induces protective lactogenic immunity against transmissible gastroenteritis. Vet. Microbiol. 1989, 21, 1–8. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, X.; Qin, P.; Wang, B.; Zhao, P.; Yang, Y.-L.; Wang, L.; Wang, D.; Song, Y.; Zhang, X.; et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet. Microbiol. 2017, 211, 15–21. [Google Scholar] [CrossRef]
- Wang, X.; Fang, L.; Liu, S.; Ke, W.; Wang, D.; Peng, G.; Xiao, S. Susceptibility of porcine IPI-2I intestinal epithelial cells to infection with swine enteric coronaviruses. Vet. Microbiol. 2019, 233, 21–27. [Google Scholar] [CrossRef]
- Marthaler, D.; Raymond, L.; Jiang, Y.; Collins, J.; Rossow, K.; Rovira, A. Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus. Emerg. Infect. Dis. 2014, 20, 1347–1350. [Google Scholar] [CrossRef] [Green Version]
- Cong, Y.; Ulasli, M.; Schepers, H.; Mauthe, M.; V’Kovski, P.; Kriegenburg, F.; Thiel, V.; de Haan, C.A.M.; Reggiori, F. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. J. Virol. 2019, JVI, 01925-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, D.T.M.; Tam, F.C.H.; Ma, C.H.; Chan, P.K.S.; Cheung, J.L.K.; Niu, H.; Tam, J.S.L.; Lim, P.L. Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. J. Infect. Dis. 2004, 190, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Chen, W.; Huang, J.; Jin, L.; Zhou, Y.; Chen, J.; Zhang, N.; Wu, D.; Sun, E.; Liu, G. Generation, identification, and functional analysis of monoclonal antibodies against porcine epidemic diarrhea virus nucleocapsid. Appl. Microbiol. Biotechnol. 2019, 103, 3705–3714. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-Y.; Cheng, I.-C.; Chang, Y.-C.; Tsai, P.-S.; Lai, S.-Y.; Huang, Y.-L.; Jeng, C.-R.; Pang, V.F.; Chang, H.-W. Identification of Neutralizing Monoclonal Antibodies Targeting Novel Conformational Epitopes of the Porcine Epidemic Diarrhoea Virus Spike Protein. Sci. Rep. 2019, 9, 2529. [Google Scholar] [CrossRef] [PubMed]
- Van Regenmortel, M.H.V. Mapping Epitope Structure and Activity: From One-Dimensional Prediction to Four-Dimensional Description of Antigenic Specificity. Methods 1996, 9, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Barlow, D.J.; Edwards, M.S.; Thornton, J.M. Continuous and discontinuous protein antigenic determinants. Nature 1986, 322, 747–748. [Google Scholar] [CrossRef]
- Potocnakova, L.; Bhide, M.; Pulzova, L.B. An Introduction to B-Cell Epitope Mapping and In Silico Epitope Prediction. J. Immunol. Res. 2016, 2016, 6760830. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Hulswit, R.J.G.; Kenney, S.P.; Widjaja, I.; Jung, K.; Alhamo, M.A.; van Dieren, B.; van Kuppeveld, F.J.M.; Saif, L.J.; Bosch, B.-J. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc. Natl. Acad. Sci. USA 2018, 115, E5135–E5143. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.K.P.; Wong, E.Y.M.; Tsang, C.-C.; Ahmed, S.S.; Au-Yeung, R.K.H.; Yuen, K.-Y.; Wernery, U.; Woo, P.C.Y. Discovery and Sequence Analysis of Four Deltacoronaviruses from Birds in the Middle East Reveal Interspecies Jumping with Recombination as a Potential Mechanism for Avian-to-Avian and Avian-to-Mammalian Transmission. J. Virol. 2018, 92, e00265-18. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Bai, X.; Meng, R.; Shaozhou, W.; Zhang, Q.; Hua, R.; Liu, J.-H.; Liu, M.; Zhang, Y. Identification of a New Broadly Cross-reactive Epitope within Domain III of the Duck Tembusu Virus E Protein. Sci. Rep. 2016, 6, 36288. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Wang, L.; Yang, C.; Zheng, Y.; Gauger, P.C.; Anderson, T.; Harmon, K.M.; Zhang, J.; Yoon, K.-J.; Main, R.G.; et al. The emergence of novel sparrow deltacoronaviruses in the United States more closely related to porcine deltacoronaviruses than sparrow deltacoronavirus HKU17. Emerg. Microbes Infect. 2018, 7, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Fan, H.; Lan, T.; Yang, X.-L.; Shi, W.-F.; Zhang, W.; Zhu, Y.; Zhang, Y.-W.; Xie, Q.-M.; Mani, S.; et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 2018, 556, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, H.; Bi, Z.; Song, D.; Zhang, F.; Lei, D.; Luo, S.; Li, Z.; Gong, W.; Huang, D.; et al. Significant inhibition of re-emerged and emerging swine enteric coronavirus in vitro using the multiple shRNA expression vector. Antivir. Res. 2019, 166, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, Y.; Liang, X.; Oglesbee, M.; Krakowka, S.; Niehaus, A.; Wang, G.; Jia, A.; Song, H.; Li, J. Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus. Vet. Microbiol. 2016, 186, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhou, E.M.; Sun, Z.F.; Meng, X.J.; Halbur, P.G. Identification of B-cell epitopes in the capsid protein of avian hepatitis E virus (avian HEV) that are common to human and swine HEVs or unique to avian HEV. J. Gen. Virol. 2006, 87, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Chang, C.-Y. Peptide Scanning-assisted Identification of a Monoclonal Antibody-recognized Linear B-cell Epitope. J. Vis. Exp. JoVE 2017, 121, e55417. [Google Scholar] [CrossRef]
- Chen, C.-W.; Wu, M.-S.; Huang, Y.-J.; Cheng, C.-A.; Chang, C.-Y. Recognition of Linear B-Cell Epitope of Betanodavirus Coat Protein by RG-M18 Neutralizing mAB Inhibits Giant Grouper Nervous Necrosis Virus (GGNNV) Infection. PLoS ONE 2015, 10, e0126121. [Google Scholar] [CrossRef]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 2015, 12, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef] [Green Version]
Segment | Sequences (5′-3′) | Positions (Amino Acids) | |
---|---|---|---|
N1 | N1-F | CGGGATCC ATGGCCGCACCAGTAGTC | 1-124 |
N1-R | CCCTCGAG TAGCAGCTGATGTTTAGGATT | ||
N2 | N2-F | CGGGATCC TCGGGAGCTGACACTTCTATTA | 113-240 |
N2-R | CCCTCGAG TGCCCCTGCCTGAAAGTTG | ||
N3 | N3-F | CGGGATCC AAGACGGGTATGGCTGATCC | 221-342 |
N3-R | CCCTCGAG CTACGCTGCTGATTCCTGCT | ||
N3-1 | N3-1-F | CGGGATCC TCTCGTACTGGTGCCAATGTCG | 221-267 |
N3-1-R | CCCTCGAG GAGCGCATCCTTAAGTCTCTCATAG | ||
N3-2 | N3-2-F | CGGGATCC TTCTCTTACTCAATCACAGTCAAGG | 261-307 |
N3-2-R | CCCTCGAG GACTGGTCTTGTTTGTCAGGCTT | ||
N3-3 | N3-3-F | CGGGATCC CCTGACAAACAAGACCAGTCTG | 301-342 |
N3-3-R | CCCTCGAG CGCTGCTGATTCCTGCTTTA | ||
N3-3-1 | N3-3-1-F | CGGGATCC CCTGACAAACAAGACCAGTCTGCTA | 301-330 |
N3-3-1-R | CCCTCGAG CCACTCCCAATCCTGTTTGTCTG | ||
N3-3-2 | N3-3-2-F | CGGGATCC GCTAAACCCAAACAGCAGAAGAAAC | 308-342 |
N3-3-2-R | CCCTCGAG CGCTGCTGATTCCTGCTTTAT | ||
N3-3-3 | N3-3-3-F | CGGGATCC AAGACGGGTATGGCTGATCC | 221-328 |
N3-3-3-R | CCCTCGAG CCAATCCTGTTTGTCTGCTG | ||
N3-3-4 | N3-3-4-F | CGGGATCC AAGACGGGTATGGCTGATCC | 221-318 |
N3-3-4-R | CCCTCGAG CTTTTTAGGTTTCTTCTGCTGTTTG |
Strains | Country | Collection Date | Accession Number | Lengths of N-Protein (Amino Acid) |
---|---|---|---|---|
PDCoV-CHN-SC2015 | China | 2015 | QDH76192.1 | 342 |
PDCoV-CHN-JXJGS01-2016 | China | 2016 | ASK86338.1 | 342 |
PDCoV-CHN-Tianjin-2016 | China | 2016 | APG38202.1 | 342 |
PDCoV-CHN-HN-2014 | China | 2014 | ALS54090.1 | 342 |
PDCoV-CHGD-2016 | China | 2016 | AYU65238.1 | 342 |
PDCoV-CH-JXNI2-2015 | China | 2015 | ALA13749.1 | 342 |
PDCoV-CHN-AH-2004 | China | 2004 | AKC54432.1 | 342 |
PDCoV-CHN-JS-2014 | China | 2014 | AKC54446.1 | 342 |
PDCoV-CH-Hunan-2014 | China | 2014 | AUG59160.1 | 342 |
PDCoV-SCNC201707 | China | 2017 | AZL30771.1 | 342 |
PDCoV-CH-01 | China | 2016 | AQS99157.1 | 342 |
PDCoV-CHN-LYG-2014 | China | 2014 | AML83920.1 | 342 |
PDCoV-KX710201.1-DH1 | China | 2016 | ASW22235.1 | 342 |
PDCoV-Taiwan36-2016 | China | 2016 | KY586149.1 | 342 |
PDCoV-Thailand-S5025-2015 | Thailand | 2015 | KU051656.1 | 342 |
PDCoV-Vietnam-Binh21-2015 | Vietnam | 2015 | APZ76702.1 | 342 |
PDCoV-USA-Illinois136-2014 | USA | 2014 | AIB07804.1 | 342 |
PDCoV-USA-Iowa136-2015 | USA | 2015 | ANI85829.1 | 342 |
PDCoV-USA-Minnesota140-2015 | USA | 2015 | ANI85836.1 | 342 |
PDCoV-USA-Nebraska145-2015 | USA | 2015 | ANI85850.1 | 342 |
PDCoV-USA-Ohio137-2014 | USA | 2014 | KJ601780.1 | 342 |
PDCoV-HB-BD | China | 2017 | ATJ00133.1 | 342 |
PDCoV-CHN-NH | China | 2015 | ANA78447.1 | 342 |
PDCoV-SD-strain | China | 2014 | ASR75150.1 | 342 |
PDCoV-SHJS-SL-2016 | China | 2016 | AUH28254.1 | 342 |
Strains | Country | Collection Date | Accession Number | Lengths of N-Protein (Amino Acid) |
---|---|---|---|---|
PDCoV-HKU15 | China | 2009 | YP_005352835.1 | 342 |
Asian leopard cat coronavirus (ALCCoV) Guangxi/F230/2006 | China | 2006 | ABQ39962.1 | 342 |
Bulbul-CoV-HKU11-934 | China | 2007 | ACJ12039.1 | 349 |
Thrush-CoV-HKU12-600 | China | 2007 | ACJ12057.1 | 343 |
Munia-CoV-HKU13-3514 | China | 2007 | ACJ12066.1 | 352 |
White-eye-CoV-HKU16 | China | 2007 | YP-005352842.1 | 347 |
Sparrow-CoV-HKU17 | China | 2007 | YP-005352850.1 | 342 |
Night-heron-CoV-HKU19 | China | 2007 | YP-005352867.1 | 342 |
Wigeon-CoV-HKU20 | China | 2008 | YP-005352875.1 | 350 |
Common-moorhen CoV-HKU21 | China | 2007 | YP-005352885.1 | 351 |
Falcon-CoV-UAE-HKU27 | China | 2013 | BBC54826.1 | 344 |
Pigeon-CoV-UAE-HKU29 | China | 2017 | BBC54846.1 | 344 |
Quail-CoV-UAE-HKU30 | China | 2017 | BBC54865.1 | 341 |
Magpie-robin-CoV-HKU18 | China | 2007 | YP-005352858.1 | 346 |
Sparrow-deltacoronavirus | USA | 2017 | AWV67111.1 | 341 |
Strains | Country | Collection Date | Accession Number | Lengths of N-Protein (Amino Acid) |
---|---|---|---|---|
PEDV-CV777 | Belgium | 1977 | AF353511 | 441 |
PEDV-AJ1102 | China | 2011 | JX188454 | 441 |
TGEV-Purdue P115 | USA | 2006 | DQ811788 | 382 |
TGEV-Miller M6 | USA | 2006 | DQ811785 | 382 |
PRCV-ISU-1 | USA | 2006 | DQ811787 | 382 |
PHEV-VW572 | Belgium | 2005 | DQ011855 | 449 |
PHEV-CC14 | China | 2014 | MF083115 | 449 |
SADS-CoV/CN/GDWT/2017 | China | 2017 | MG557844 | 375 |
PEAV-GDS04 | China | 2017 | MH697599 | 375 |
SeACoV-p10 | China | 2018 | MK977618 | 375 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Chen, R.; Hu, J.; Qu, H.; Zhao, Y.; Cao, S.; Wen, X.; Wen, Y.; Wu, R.; Zhao, Q.; et al. Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus. Int. J. Mol. Sci. 2020, 21, 648. https://doi.org/10.3390/ijms21020648
Fu J, Chen R, Hu J, Qu H, Zhao Y, Cao S, Wen X, Wen Y, Wu R, Zhao Q, et al. Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus. International Journal of Molecular Sciences. 2020; 21(2):648. https://doi.org/10.3390/ijms21020648
Chicago/Turabian StyleFu, Jiayu, Rui Chen, Jingfei Hu, Huan Qu, Yujia Zhao, Sanjie Cao, Xintian Wen, Yiping Wen, Rui Wu, Qin Zhao, and et al. 2020. "Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus" International Journal of Molecular Sciences 21, no. 2: 648. https://doi.org/10.3390/ijms21020648
APA StyleFu, J., Chen, R., Hu, J., Qu, H., Zhao, Y., Cao, S., Wen, X., Wen, Y., Wu, R., Zhao, Q., Ma, X., & Huang, X. (2020). Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus. International Journal of Molecular Sciences, 21(2), 648. https://doi.org/10.3390/ijms21020648