In Vivo, In Vitro and In Silico Studies of the Hybrid Compound AA3266, an Opioid Agonist/NK1R Antagonist with Selective Cytotoxicity
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vivo Examination of Antinociceptive Activity, Tolerance and Impact On Gastrointestinal Transit
- (1)
- the compounds’ antinociceptive activity in an acute pain model,
- (2)
- its influence on tolerance development,
- (3)
- its influence on gastrointestinal transit.
2.1.1. Antinociceptive Activity
2.1.2. Tolerance
2.1.3. Influence on Gastrointestinal Transit
2.1.4. Discussion of the In Vivo Results
2.2. Cytotoxicity
2.2.1. In Vitro Assessment of Cellular Pharmacological Effects in Selected Cancer and Normal Cells
- direct counting the number of cells in culture after the incubation (reported previously [29]),
- the MTT assay,
- measuring the extent of colony formation, and
- measuring the expression of Ki67 protein (proliferation index).
2.2.2. Discussion of the In Vitro Results
2.3. In Sillico Examination of Receptor-Ligand Interactions
2.3.1. µ-Opioid Receptor
2.3.2. NK1 Receptor
2.3.3. Discussion of the In Silico Results
3. Materials and Methods
3.1. Chemistry
3.2. In Vivo Examination of Antinociceptive Activity, Tolerance Development and the Influence on Gastrointestinal Function
3.3. Cell Cultures
3.4. Cellular Assays
- (1)
- Influence on cell viability as measured by the MTT assay (eight cell lines).
- (2)
- Influence on the ability to form colonies (five cancer cell lines).
- (3)
- Influence on the Ki67 proliferation index (three cell lines).
3.5. Molecular Docking
3.6. Molecular Dynamics
3.7. Fragment Molecular Orbitals Calculations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
%Ees+ct | Percentage share of polar character of interaction according to PIEDA analysis |
%MPE | Percent of the maximal possible effect |
ACN | Acetonitrile |
AUC | Area under the curve |
CCK | Cholecystokinin |
DALDA | [d-Arg2, Lys4]-Dermorphin-(1-4)-amide |
DAMGO | [d-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin |
DCC | N,N′-dicyclohexylcarbodiimide |
DCU | N,N′-dicyclohexylourea |
Dmt | 2′,6′-Dimethyl-l-tyrosine |
DMF | Dimethylformamide |
DOR | δ-Opioid receptor |
Ect | Change-transfer contribution to PIE |
Edisp | Dispersion contribution to PIE |
Eex | Exchange repulsion contribution to PIE |
Ees | Electrostatic contribution to PIE |
ESI-MS | Electrospray-ionization mass spectrometry |
Esolv | Gibbs solution energy |
FA | Formic acid |
FMO | Fragment molecular orbital |
GAMESS | General Atomic and Molecular Electronic Structure System |
GTPγS | Guanosine 5′-O-[γ-thio]triphosphate |
HOSu | N-Hydroxysuccinimide |
HPLC | High performance liquid chromatography |
IC50 | Half-maximal inhibitory concentration |
Ki | Inhibition constant |
Ki-67 | Ki-67 protein |
MD | Molecular dynamics |
MEM | Minimal Essential Medium |
MF | Morphine |
MOR | μ-Opioid receptor |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NK1R | Neurokinin-1 receptor |
OPM | Orientation of Proteins in Membrane Database |
PIE | Pair interaction energy |
PIEDA | Pair interaction energy decomposition analysis |
POPC | Phosphatidylcholine |
R | Correlation coefficient |
RMSD | Root mean square deviation |
RP-HPLC | Reversed-phase high performance liquid chromatography |
SP | Substance P |
TFA | Trifluoroacetic acid |
TLC | Thin layer chromatography |
TM | Transmembrane helix |
TMG | 1,1,3,3-Tetramethylguanidine |
VGCC | Voltage gated calcium channel |
References
- Van Hecke, O.; Torrance, N.; Smith, B.H. Chronic pain epidemiology and its clinical relevance. Br. J. Anaesth. 2013, 111, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turk, D.C.; Wilson, H.D.; Cahana, A. Treatment of chronic non-cancer pain. Lancet 2011, 377, 2226–2235. [Google Scholar] [CrossRef]
- McNicol, E.; Horowicz-Mehler, N.; Fisk, R.A.; Bennett, K.; Gialeli-Goudas, M.; Chew, P.W.; Lau, J.; Carr, D. Management of opioid side effects in cancer-related and chronic noncancer pain: A systematic review. J. Pain 2003, 4, 231–256. [Google Scholar] [CrossRef]
- Turnaturi, R.; Aricò, G.; Ronsisvalle, G.; Parenti, C.; Pasquinucci, L. Multitarget opioid ligands in pain relief: New players in an old game. Eur. J. Med. Chem. 2016, 108, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Dvoracsko, S.; Stefanucci, A.; Novellino, E.; Mollica, A. The design of multitarget ligands for chronic and neuropathic pain. Future Med. Chem. 2015, 7, 2469–2483. [Google Scholar] [CrossRef]
- Vandormael, B.; Fourla, D.-D.; Gramowski-Voß, A.; Kosson, P.; Weiss, D.G.; Schröder, O.H.-U.; Lipkowski, A.; Georgoussi, Z.; Tourwé, D. Superpotent [Dmt1]Dermorphin Tetrapeptides Containing the 4-Aminotetrahydro-2-benzazepin-3-one Scaffold with Mixed μ/δ Opioid Receptor Agonistic Properties. J. Med. Chem. 2011, 54, 7848–7859. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kulkarani, V.; Cowell, S.M.; Ma, S.; Davis, P.; Hanlon, K.E.; Vanderah, T.W.; Lai, J.; Porreca, F.; Vardanyan, R.; et al. Development of Potent μ and δ Opioid Agonists with High Lipophilicity. J. Med. Chem. 2011, 54, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Purington, L.C.; Sobczyk-Kojiro, K.; Pogozheva, I.D.; Traynor, J.R.; Mosberg, H.I. Development and In Vitro Characterization of a Novel Bifunctional μ-Agonist/δ-Antagonist Opioid Tetrapeptide. ACS Chem. Biol. 2011, 6, 1375–1381. [Google Scholar] [CrossRef] [Green Version]
- Balboni, G.; Salvadori, S.; Trapella, C.; Knapp, B.I.; Bidlack, J.M.; Lazarus, L.H.; Peng, X.; Neumeyer, J.L. Evolution of the Bifunctional Lead μ Agonist/δ Antagonist Containing the 2′,6′-Dimethyl-l-tyrosine−1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acid (Dmt−Tic) Opioid Pharmacophore. ACS Chem. Neurosci. 2010, 1, 155–164. [Google Scholar] [CrossRef]
- Lee, Y.S.; Agnes, R.S.; Davis, P.; Ma, S.; Badghisi, H.; Lai, J.; Porreca, F.; Hruby, V.J. Partial Retro−Inverso, Retro, and Inverso Modifications of Hydrazide Linked Bifunctional Peptides for Opioid and Cholecystokinin (CCK) Receptors. J. Med. Chem. 2007, 50, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Agnes, R.S.; Lee, Y.S.; Davis, P.; Ma, S.; Badghisi, H.; Porreca, F.; Lai, J.; Hruby, V.J. Structure−Activity Relationships of Bifunctional Peptides Based on Overlapping Pharmacophores at Opioid and Cholecystokinin Receptors. J. Med. Chem. 2006, 49, 2868–2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleczkowska, P.; Kosson, P.; Ballet, S.; Van den Eynde, I.; Tsuda, Y.; Tourwé, D.; Lipkowski, A.W. PK20, a New Opioid-Neurotensin Hybrid Peptide That Exhibits Central and Peripheral Antinociceptive Effects. Mol. Pain 2010, 6, 1744–8069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, S.; Dumitrascuta, M.; Eiselt, E.; Louis, S.; Kunze, L.; Blasiol, A.; Vivancos, M.; Previti, S.; Dewolf, E.; Martin, C.; et al. Optimized Opioid-Neurotensin Multitarget Peptides: From Design to Structure-Activity Relationship Studies. J. Med. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Starnowska-Sokół, J.; Piotrowska, A.; Bogacka, J.; Makuch, W.; Mika, J.; Witkowska, E.; Godlewska, M.; Osiejuk, J.; Gątarz, S.; Misicka, A.; et al. Novel hybrid compounds, opioid agonist+melanocortin 4 receptor antagonist, as efficient analgesics in mouse chronic constriction injury model of neuropathic pain. Neuropharmacology 2020, 178, 108232. [Google Scholar] [CrossRef]
- García, M.; Virgili, M.; Alonso, M.; Alegret, C.; Fernández, B.; Port, A.; Pascual, R.; Monroy, X.; Vidal-Torres, A.; Serafini, M.-T.; et al. 4-Aryl-1-oxa-4,9-diazaspiro[5.5]undecane Derivatives as Dual μ-Opioid Receptor Agonists and σ1 Receptor Antagonists for the Treatment of Pain. J. Med. Chem. 2020, 63, 2434–2454. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Jin, J.; Gao, L.; Hao, C.; Liu, X.; Liu, B.-F.; Chen, Y.; Zhang, G. Piperidine propionamide as a scaffold for potent sigma-1 receptor antagonists and mu opioid receptor agonists for treating neuropathic pain. Eur. J. Med. Chem. 2020, 191, 112144. [Google Scholar] [CrossRef]
- Dyniewicz, J.; Lipiński, P.F.J.; Kosson, P.; Bochyńska-Czyż, M.; Matalińska, J.; Misicka, A. Antinociceptive and Cytotoxic Activity of Opioid Peptides with Hydrazone and Hydrazide Moieties at the C-Terminus. Molecules 2020, 25, 3429. [Google Scholar] [CrossRef]
- Dvorácskó, S.; Keresztes, A.; Mollica, A.; Stefanucci, A.; Macedonio, G.; Pieretti, S.; Zádor, F.; Walter, F.R.; Deli, M.A.; Kékesi, G.; et al. Preparation of bivalent agonists for targeting the mu opioid and cannabinoid receptors. Eur. J. Med. Chem. 2019, 178, 571–588. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-L.; Pan, J.-X.; Song, J.-J.; Tang, H.-H.; Yu, H.-P.; Li, X.-H.; Li, N.; Zhang, T.; Zhang, R.; Zhang, M.-N.; et al. Structure-Based Optimization of Multifunctional Agonists for Opioid and Neuropeptide FF Receptors with Potent Nontolerance Forming Analgesic Activities. J. Med. Chem. 2016, 59, 10198–10208. [Google Scholar] [CrossRef]
- Kleczkowska, P.; Nowicka, K.; Bujalska-Zadrozny, M.; Hermans, E. Neurokinin-1 receptor-based bivalent drugs in pain management: The journey to nowhere? Pharmacol. Ther. 2019, 196, 44–58. [Google Scholar] [CrossRef]
- Zubrzycka, M.; Janecka, A. Substance P: Transmitter of nociception (Minireview). Endocr. Regul. 2000, 34, 195–201. [Google Scholar] [PubMed]
- Xiao, J.; Zeng, S.; Wang, X.; Babazada, H.; Li, Z.; Liu, R.; Yu, W. Neurokinin 1 and opioid receptors: Relationships and interactions in nervous system. Transl. Perioper. Pain Med. 2016, 1, 11–21. [Google Scholar] [PubMed]
- Wtorek, K.; Adamska-Bartłomiejczyk, A.; Piekielna-Ciesielska, J.; Ferrari, F.; Ruzza, C.; Kluczyk, A.; Piasecka-Zelga, J.; Calo’, G.; Janecka, A. Synthesis and Pharmacological Evaluation of Hybrids Targeting Opioid and Neurokinin Receptors. Molecules 2019, 24, 4460. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.; Coveñas, R. The Neurokinin-1 Receptor Antagonist Aprepitant, a New Drug for the Treatment of Hematological Malignancies: Focus on Acute Myeloid Leukemia. J. Clin. Med. 2020, 9, 1659. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Coveñas, R. The Neurokinin-1 Receptor Antagonist Aprepitant: An Intelligent Bullet against Cancer? Cancers 2020, 12, 2682. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.; Rosso, M.; Covenas, R. The NK-1 Receptor: A New Target in Cancer Therapy. Curr. Drug Targets 2011, 12, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Martinez-Armesto, J.; Coveñas, R. NK-1 receptor antagonists as antitumor drugs: A survey of the literature from 2000 to 2011. Expert Opin. Ther. Pat. 2012, 22, 735–746. [Google Scholar] [CrossRef]
- Ge, C.; Huang, H.; Huang, F.; Yang, T.; Zhang, T.; Wu, H.; Zhou, H.; Chen, Q.; Shi, Y.; Sun, Y.; et al. Neurokinin-1 receptor is an effective target for treating leukemia by inducing oxidative stress through mitochondrial calcium overload. Proc. Natl. Acad. Sci. USA 2019, 116, 19635–19645. [Google Scholar] [CrossRef] [Green Version]
- Matalinska, J.; Skurzak, H.; Markowicz, S.; Lesniak, A.; Sacharczuk, M.; Molnar, G.; Varga, E.; Lipkowski, A.W. Opioid agonist–tachykinin antagonist as a new analgesic with adjuvant anticancer properties. Folia Neuropathol. 2013, 2, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Q.; Douglas, S.D.; Wang, X.; Kolson, D.L.; O’Donnell, L.A.; Ho, W.-Z. Morphine upregulates functional expression of neurokinin-1 receptor in neurons. J. Neurosci. Res. 2006, 84, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- King, T.; Gardell, L.R.; Wang, R.; Vardanyan, A.; Ossipov, M.H.; Malan, P.T.; Vanderah, T.W.; Hunt, S.P.; Hruby, V.J.; Lai, J.; et al. Role of NK-1 neurotransmission in opioid-induced hyperalgesia. Pain 2005, 116, 276–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderah, T.W.; Ossipov, M.H.; Lai, J.; Malan, P.T.; Porreca, F. Mechanisms of opioid-induced pain and antinociceptive tolerance: Descending facilitation and spinal dynorphin. Pain 2001, 92, 5–9. [Google Scholar] [CrossRef]
- Misterek, K.; Maszczynska, I.; Dorociak, A.; Gumulka, S.W.; Carr, D.B.; Szyfelbein, S.K.; Lipkowski, A.W. Spinal co-administration of peptide substance P antagonist increases antinociceptive effect of the opioid peptide biphalin. Life Sci. 1994, 54, 939–944. [Google Scholar] [CrossRef]
- Foran, S.E.; Carr, D.B.; Lipkowski, A.W.; Maszczynska, I.; Marchand, J.E.; Misicka, A.; Beinborn, M.; Kopin, A.S.; Kream, R.M. Inhibition of morphine tolerance development by a substance P-opioid peptide chimera. J. Pharmacol. Exp. Ther. 2000, 295, 1142–1148. [Google Scholar] [PubMed]
- Bonney, I.M.; Foran, S.E.; Marchand, J.E.; Lipkowski, A.W.; Carr, D.B. Spinal antinociceptive effects of AA501, a novel chimeric peptide with opioid receptor agonist and tachykinin receptor antagonist moieties. Eur. J. Pharmacol. 2004, 488, 91–99. [Google Scholar] [CrossRef]
- Largent-Milnes, T.M.T.; Yamamoto, T.; Nair, P.; Moulton, J.W.; Hruby, V.J.V.; Lai, J.; Porreca, F.; Vanderah, T.W. Spinal or systemic TY005, a peptidic opioid agonist/neurokinin 1 antagonist, attenuates pain with reduced tolerance. Br. J. Pharmacol. 2010, 161, 986–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Largent-Milnes, T.M.; Brookshire, S.W.; Skinner, D.P.; Hanlon, K.E.; Giuvelis, D.; Yamamoto, T.; Davis, P.; Campos, C.R.; Nair, P.; Deekonda, S.; et al. Building a Better Analgesic: Multifunctional Compounds that Address Injury-Induced Pathology to Enhance Analgesic Efficacy while Eliminating Unwanted Side Effects. J. Pharmacol. Exp. Ther. 2013, 347, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Nair, P.; Davis, P.; Ma, S.; Navratilova, E.; Moye, S.; Tumati, S.; Lai, J.; Vanderah, T.W.; Yamamura, H.I.; et al. Design, Synthesis, and Biological Evaluation of Novel Bifunctional C-Terminal-Modified Peptides for δ/μ Opioid Receptor Agonists and Neurokinin-1 Receptor Antagonists. J. Med. Chem. 2007, 50, 2779–2786. [Google Scholar] [CrossRef] [Green Version]
- Ballet, S.; Feytens, D.; Buysse, K.; Chung, N.N.; Lemieux, C.; Tumati, S.; Keresztes, A.; Van Duppen, J.; Lai, J.; Varga, E.; et al. Design of Novel Neurokinin 1 Receptor Antagonists Based on Conformationally Constrained Aromatic Amino Acids and Discovery of a Potent Chimeric Opioid Agonist-Neurokinin 1 Receptor Antagonist. J. Med. Chem. 2011, 54, 2467–2476. [Google Scholar] [CrossRef] [Green Version]
- Betti, C.; Starnowska, J.; Mika, J.; Dyniewicz, J.; Frankiewicz, L.; Novoa, A.; Bochynska, M.; Keresztes, A.; Kosson, P.; Makuch, W.; et al. Dual Alleviation of Acute and Neuropathic Pain by Fused Opioid Agonist-Neurokinin 1 Antagonist Peptidomimetics. ACS Med. Chem. Lett. 2015, 6, 1209–1214. [Google Scholar] [CrossRef] [Green Version]
- Guillemyn, K.; Kleczkowska, P.; Lesniak, A.; Dyniewicz, J.; Van Der Poorten, O.; Van den Eynde, I.; Keresztes, A.; Varga, E.; Lai, J.; Porreca, F.; et al. Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist–neurokinin-1 antagonist peptidomimetics. Eur. J. Med. Chem. 2015, 92, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starnowska, J.; Costante, R.; Guillemyn, K.; Popiolek-Barczyk, K.; Chung, N.N.; Lemieux, C.; Keresztes, A.; Van Duppen, J.; Mollica, A.; Streicher, J.M.; et al. Analgesic properties of opioid/NK1 multitarget ligands with distinct in vitro profiles in naive and chronic constriction injury (CCI)-mice. ACS Chem. Neurosci. 2017, 8, 2315–2324. [Google Scholar] [CrossRef]
- Guillemyn, K.; Kleczkowska, P.; Novoa, A.; Vandormael, B.; Van den Eynde, I.; Kosson, P.; Asim, M.F.; Schiller, P.W.; Spetea, M.; Lipkowski, A.W.; et al. In vivo antinociception of potent mu opioid agonist tetrapeptide analogues and comparison with a compact opioid agonist-neurokinin 1 receptor antagonist chimera. Mol. Brain 2012, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matalińska, J.; Lipiński, P.F.J.; Kotlarz, A.; Kosson, P.; Muchowska, A.; Dyniewicz, J. Evaluation of Receptor Affinity, Analgesic Activity and Cytotoxicity of a Hybrid Peptide, AWL3020. Int. J. Pept. Res. Ther. 2020. [Google Scholar] [CrossRef] [Green Version]
- Matalińska, J.; Swić, A.; Lipiński, P.F.J.; Misicka, A. Antiproliferative effects of [D-Pro2, D-Trp7,9]-substance P and aprepitant on several cancer cell lines and their selectivity in comparison to normal cells. Folia Neuropathol. 2020, 58. in press. [Google Scholar]
- Muñoz, M.; Rosso, M. The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Invest. New Drugs 2010, 28, 187–193. [Google Scholar] [CrossRef]
- Muñoz, M.; Coveñas, R.; Esteban, F.; Redondo, M. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J. Biosci. 2015, 40, 441–463. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Rosso, M.; Robles-Frias, M.J.; Salinas-Martín, M.V.; Rosso, R.; González-Ortega, A.; Coveñas, R. The NK-1 receptor is expressed in human melanoma and is involved in the antitumor action of the NK-1 receptor antagonist aprepitant on melanoma cell lines. Lab. Investig. 2010, 90, 1259–1269. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.; Berger, M.; Rosso, M.; Gonzales-Ortega, A.; Carranza, A.; Coveñas, R. Antitumor activity of neurokinin-1 receptor antagonists in MG-63 human osteosarcoma xenografts. Int. J. Oncol. 2014, 44, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Kast, R.E.; Ramiro, S.; Lladó, S.; Toro, S.; Coveñas, R.; Muñoz, M. Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells. J. Neurooncol. 2016, 126, 425–431. [Google Scholar] [CrossRef]
- Muñoz, M.; Gonzales-Ortega, A.; Salinas-Martin, M.V.; Carranza, A.; Garcia-Recio, S.; Alemndro, V.; Coveñas, R. The neurokinin-1 receptor antagonist aprepitant is a promising candidate for the treatment of breast cancer. Int. J. Oncol. 2014, 45, 1658–1672. [Google Scholar] [CrossRef] [Green Version]
- Laskowska, A.K.; Puszko, A.K.; Sosnowski, P.; Różycki, K.; Kosson, P.; Matalińska, J.; Durlik, M.; Misicka, A. Opioid Tripeptides Hybridized with trans -1-Cinnamylpiperazine as Proliferation Inhibitors of Pancreatic Cancer Cells in Two- and Three-Dimensional in vitro Models. ChemMedChem 2017, 12, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, L.; Dong, D.; Wang, Z.; Ji, W.; Yu, M.; Zhang, F.; Niu, R.; Zhou, Y. MiR-34b/c-5p and the neurokinin-1 receptor regulate breast cancer cell proliferation and apoptosis. Cell Prolif. 2019, 52, e12527. [Google Scholar] [CrossRef]
- Javid, H.; Asadi, J.; Zahedi Avval, F.; Afshari, A.R.; Hashemy, S.I. The role of substance P/neurokinin 1 receptor in the pathogenesis of esophageal squamous cell carcinoma through constitutively active PI3K/Akt/NF-κB signal transduction pathways. Mol. Biol. Rep. 2020, 47, 2253–2263. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, X.; Huang, F.; Shao, G.; Meng, Y.; Wang, L.; Wang, T.; Jia, X.; Yang, T.; Wang, X.; et al. Aprepitant Sensitizes Acute Myeloid Leukemia Cells to the Cytotoxic Effects of Cytosine Arabinoside in vitro and in vivo. Drug Des. Devel. Ther. 2020, 14, 2413–2422. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Neth, O.; Ilmer, M.; Garnier, A.; Salinas-Martín, M.V.; de Agustín Asencio, J.C.; von Schweinitz, D.; Kappler, R.; Muñoz, M. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J. Hepatol. 2014, 60, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Harford-Wright, E.; Lewis, K.M.; Vink, R.; Ghabriel, M.N. Evaluating the role of substance P in the growth of brain tumors. Neuroscience 2014, 261, 85–94. [Google Scholar] [CrossRef]
- Koehl, A.; Hu, H.; Maeda, S.; Zhang, Y.; Qu, Q.; Paggi, J.M.; Latorraca, N.R.; Hilger, D.; Dawson, R.; Matile, H.; et al. Structure of the µ-opioid receptor–Gi protein complex. Nature 2018, 558, 547–552. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Palczewski, K.; Peng, Q.; Kolinski, M.; Vogel, H.; Filipek, S. The mechanism of ligand-induced activation or inhibition of μ- and κ-opioid receptors. Angew. Chemie Int. Ed. 2015, 54, 7560–7563. [Google Scholar] [CrossRef]
- Li, J.-G.; Chen, C.; Yin, J.; Rice, K.; Zhang, Y.; Matecka, D.; de Riel, J.K.; Desjarlais, R.L.; Liu-Chen, L.-Y. Asp147 in the third transmembrane helix of the rat μ opioid receptor forms ion-pairing with morphine and naltrexone. Life Sci. 1999, 65, 175–185. [Google Scholar] [CrossRef]
- Bartuzi, D.; Kaczor, A.A.; Matosiuk, D. Activation and Allosteric Modulation of Human μ Opioid Receptor in Molecular Dynamics. J. Chem. Inf. Model. 2015, 55, 2421–2434. [Google Scholar] [CrossRef] [PubMed]
- Remesic, M.; Sun Lee, Y.; Hruby, V.J. Cyclic Opioid Peptides. Curr. Med. Chem. 2016, 23, 1288–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piekielna, J.; Perlikowska, R.; Gach, K.; Janecka, A. Cyclization in Opioid Peptides. Curr. Drug Targets 2013, 14, 798–816. [Google Scholar] [CrossRef] [PubMed]
- Schöppe, J.; Ehrenmann, J.; Klenk, C.; Rucktooa, P.; Schütz, M.; Doré, A.S.; Plückthun, A. Crystal structures of the human neurokinin 1 receptor in complex with clinically used antagonists. Nat. Commun. 2019, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Tymecka, D.; Lipiński, P.F.J.; Kosson, P.; Misicka, A. β2-Homo-Amino Acid Scan of µ-Selective Opioid Tetrapeptide TAPP. Molecules 2020, 25, 2461. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Manglik, A.; Venkatakrishnan, A.J.; Laeremans, T.; Feinberg, E.N.; Sanborn, A.L.; Kato, H.E.; Livingston, K.E.; Thorsen, T.S.; Kling, R.C.; et al. Structural insights into µ-opioid receptor activation. Nature 2015, 524, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Lipiński, P.F.J.; Kosson, P.; Matalińska, J.; Roszkowski, P.; Czarnocki, Z.; Jarończyk, M.; Misicka, A.; Dobrowolski, J.; Sadlej, J. Fentanyl Family at the Mu-Opioid Receptor: Uniform Assessment of Binding and Computational Analysis. Molecules 2019, 24, 740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamska-Bartłomiejczyk, A.; Lipiński, P.F.J.; Piekielna-Ciesielska, J.; Kluczyk, A.; Janecka, A. Pharmacological Profile and Molecular Modeling of Cyclic Opioid Analogues Incorporating Various Phenylalanine Derivatives. ChemMedChem 2020, 15, 1322–1329. [Google Scholar] [CrossRef]
- Dumitrascuta, M.; Bermudez, M.; Ballet, S.; Wolber, G.; Spetea, M. Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt1]DALDA, and KGOP01, Binding to the Mu Opioid Receptor. Molecules 2020, 25, 2087. [Google Scholar] [CrossRef]
- Yin, J.; Chapman, K.; Clark, L.D.; Shao, Z.; Borek, D.; Xu, Q.; Wang, J.; Rosenbaum, D.M. Crystal structure of the human NK 1 tachykinin receptor. Proc. Natl. Acad. Sci. USA 2018, 115, 13264–13269. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lu, M.; Liu, D.; Yang, L.; Yi, C.; Ma, L.; Zhang, H.; Liu, Q.; Frimurer, T.M.; Wang, M.-W.; et al. Human substance P receptor binding mode of the antagonist drug aprepitant by NMR and crystallography. Nat. Commun. 2019, 10, 638. [Google Scholar] [CrossRef] [PubMed]
- Harrison, T.; Owens, A.P.; Williams, B.J.; Swain, C.J.; Williams, A.; Carlson, E.J.; Rycroft, W.; Tattersall, F.D.; Cascieri, M.A.; Chicchi, G.G.; et al. An Orally Active, Water-Soluble Neurokinin-1 Receptor Antagonist Suitable for Both Intravenous and Oral Clinical Administration. J. Med. Chem. 2001, 44, 4296–4299. [Google Scholar] [CrossRef] [PubMed]
- Halik, P.K.; Lipiński, P.F.J.; Matalińska, J.; Koźmiński, P.; Misicka, A.; Gniazdowska, E. Radiochemical Synthesis and Evaluation of Novel Radioconjugates of Neurokinin 1 Receptor Antagonist Aprepitant Dedicated for NK1R-Positive Tumors. Molecules 2020, 25, 3756. [Google Scholar] [CrossRef]
- Fenalti, G.; Zatsepin, N.A.; Betti, C.; Giguere, P.; Han, G.W.; Ishchenko, A.; Liu, W.; Guillemyn, K.; Zhang, H.; James, D.; et al. Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nat. Struct. Mol. Biol. 2015, 22, 265–268. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, C.; White, K.L.; Doncescu, N.; Didenko, T.; Roth, B.L.; Czaplicki, G.; Stevens, R.C.; Wüthrich, K.; Milon, A. NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor. Proc. Natl. Acad. Sci. USA 2015, 112, 11852–11857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vo, Q.N.; Mahinthichaichan, P.; Shen, J.; Ellis, C.R. How μ-Opioid Receptor Recognizes Fentanyl. bioRxiv Prepr. Serv. Biol. 2020. [Google Scholar] [CrossRef]
- Valentin-Hansen, L.; Park, M.; Huber, T.; Grunbeck, A.; Naganathan, S.; Schwartz, T.W.; Sakmar, T.P. Mapping substance P binding sites on the neurokinin-1 receptor using genetic incorporation of a photoreactive amino acid. J. Biol. Chem. 2014, 289, 18045–18054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipkowski, A. Method of Producing a Novel Opioid Peptide. US8877891B2, 4 November 2014. [Google Scholar]
- Brady, L.S.; Holtzman, S.G. Analgesic effects of intraventricular morphine and enkephalins in nondependent and morphine-dependent rats. J. Pharmacol. Exp. Ther. 1982, 222, 190–197. [Google Scholar] [PubMed]
- GraphPad Prism 8 Version 8.3.1 San Diego, C.A.
- Pándy-Szekeres, G.; Munk, C.; Tsonkov, T.M.; Mordalski, S.; Harpsøe, K.; Hauser, A.S.; Bojarski, A.J.; Gloriam, D.E. GPCRdb in 2018: Adding GPCR structure models and ligands. Nucleic Acids Res. 2018, 46, D440–D446. [Google Scholar] [CrossRef] [Green Version]
- Lomize, M.A.; Lomize, A.L.; Pogozheva, I.D.; Mosberg, H.I. OPM: Orientations of proteins in membranes database. Bioinformatics 2006, 22, 623–625. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2009, 31, 671–690. [Google Scholar] [CrossRef] [Green Version]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger LLC. The PyMOL Molecular Graphics System. 2018. Available online: sourceforge.net/p/pymol/code/HEAD/tree/trunk/pymol (accessed on 30 September 2020).
- Alexeev, Y.; Mazanetz, M.P.; Ichihara, O.; Fedorov, D.G. GAMESS As a Free Quantum-Mechanical Platform for Drug Research. Curr. Top. Med. Chem. 2012, 12, 2013–2033. [Google Scholar] [CrossRef] [PubMed]
- Barca, G.M.J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J.E.; Fedorov, D.G.; Gour, J.R.; Gunina, A.O.; Guidez, E.; et al. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020, 152, 154102. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, D.G.; Kitaura, K. The importance of three-body terms in the fragment molecular orbital method. J. Chem. Phys. 2004, 120, 6832–6840. [Google Scholar] [CrossRef]
- Suenaga, M. FACIO Version 22.1.1. 2018. Available online: http://zzzfelis.sakura.ne.jp/ (accessed on 30 September 2020).
- Fedorov, D.G.; Kitaura, K. Pair interaction energy decomposition analysis. J. Comput. Chem. 2007, 28, 222–237. [Google Scholar] [CrossRef] [PubMed]
- Śliwa, P.; Kurczab, R.; Kafel, R.; Drabczyk, A.; Jaśkowska, J. Recognition of repulsive and attractive regions of selected serotonin receptor binding site using FMO-EDA approach. J. Mol. Model. 2019, 25, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cmpd | Description | Cell Counting | MTT | ||||||
---|---|---|---|---|---|---|---|---|---|
Readout Reduction (at 100 µM) [Percentage Points] 1 | Selectivity 2 | Readout Reduction (at 100 µM) [Percentage Points] 1 | Selectivity 2 | ||||||
Melanoma 3 | All Cancers 4 | Normal Cells 5 | Melanoma 3 | All Cancers 4 | Normal Cells 5 | ||||
AA3266 This paper and [29] | potent µOR and δOR agonist; moderate NK1 antagonist | 61 ± 16 | 44 ± 25 | 18 ± 5 | 3.4 / 2.5 | 42 ± 9 | 44 ± 15 | 17 ± 13 | 2.5 / 2.6 |
AWL3020 [44] | potent δOR agonist; low µOR and NK1R binding | 51 ± 26 | 47 ± 19 | 33 ± 6 | 1.6 / 1.4 | 38 ± 21 | 44 ± 20 | 43 ± 6 | 0.9 / 1.0 |
Aprepitant [29,45] | potent NK1-antagonist | 36 ± 3 | 37 ± 2 | 32 ± 4 | 1.1 / 1.2 | 40 ± 16 | 38 ± 12 | 28 ± 5 | 1.4 / 1.3 |
PIEDA | Contribution of Single Residues | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pose | Populated [%] | PIE 1 | Ees 2 | Eex 3 | Ect 4 | Edisp 5 | Esolv 6 | %Ees+ct 7 | Tyr1 | D-Ala2 | Gly3 | Phe4 | Tyr1—Asp147 Interaction 8 |
MOR-1 | 72 | −226.3 | −237.4 | 53.2 | −24.5 | −36.9 | 19.3 | 88 | −188.1 | −8.2 | −20.1 | −10.0 | −108.2 (48%) |
MOR-2 | 10 | −160.1 | −173.9 | 40.1 | −22.6 | −35.4 | 31.6 | 85 | −126.7 | −19.5 | - | −13.9 | −91.4 (57%) |
MOR-3 | 5 | −171.3 | −185.7 | 61.4 | −27.5 | −46.7 | 27.2 | 82 | −104.0 | −15.8 | −18.1 | −33.3 | −70.7 (41%) |
MOR-4 | 5 | −223.4 | −251.9 | 80.8 | −30.8 | −51.5 | 30.0 | 85 | −139.5 | −30.6 | −20.6 | −32.8 | −91.0 (41%) |
Title | Title | Intermolecular Contacts | ||
---|---|---|---|---|
Populated [%] | D-Trp | Z | N′-Acylhydrazide | |
MOR-a | 4 | Lys303, Trp318 | Arg211 (hydrophobic) | Asp216 |
MOR-b | 6 | In vicinity of d-Ala2 (Figure S7), Lys233, Val300 | to the solvent | Thr218, Leu219 (bb 1) |
MOR-c | 11 | Ser62 (bb-H-bond), Pro63 | Gly60, Thr61 | Asn127, Gln124 (bb) |
MOR-d | 4 | Arg211 (hydrophobic) | Lys303 | Asp216, Glu229, Glu310 |
MOR-e | 6 | Trp225, Trp228 | to the solvent | Thr218 |
MOR-f | 11 | Lys233 (hydrophobic) | Arg211 (hydrophobic) | - |
MOR-g | 6 | Trp318, His319, Tyr128 | to the solvent | - |
MOR-h | 3 | Thr60, Tyr128 | Arg211 (hydrophobic) | - |
MOR-i | 2 | Trp318, His319, Gln127, Asn127, Tyr128 | Arg211 (hydrophobic) | Asp216 |
PIEDA | ||||||||
---|---|---|---|---|---|---|---|---|
Populated [%] | PIE 1 | Ees 2 | Eex 3 | Ect 4 | Edisp 5 | Esolv 6 | %Ees+ct 7 | |
MOR-a | 4 | −55.2 | −42.6 | 11.4 | −6.9 | −20.5 | 3.5 | 71 |
MOR-b | 6 | −62.4 | −43.0 | 26.0 | −12.1 | −21.2 | −12.1 | 72 |
MOR-c | 11 | −63.4 | −36.3 | 26.7 | −14.1 | −37.1 | −2.7 | 58 |
MOR-d | 4 | −66.3 | −24.2 | 11.9 | −4.1 | −14.8 | −35.1 | 66 |
MOR-e | 6 | −81.8 | −41.9 | 31.6 | −12.1 | −23.9 | −35.6 | 69 |
MOR-f | 11 | −56.1 | −29.5 | 11.1 | −5.0 | −14.0 | −18.7 | 71 |
MOR-g | 6 | −38.4 | −28.3 | 9.5 | −7.8 | −20.0 | 8.1 | 64 |
MOR-h | 3 | −92.7 | −60.7 | 20.8 | −11.4 | −28.0 | −13.5 | 72 |
MOR-i | 2 | −66.7 | −44.1 | 13.2 | −9.4 | −17.9 | −8.5 | 75 |
PIEDA | ||||||||
---|---|---|---|---|---|---|---|---|
Populated [%] | PIE 1 | Ees 2 | Eex 3 | Ect 4 | Edisp 5 | Esolv 6 | %Ees+ct 7 | |
NK1-a | 60 | −78.8 | −65.7 | 61.3 | −19.8 | −51.1 | −3.5 | 63 |
NK1-b | 13 | −68.7 | −44.1 | 33.2 | −12.0 | −45.4 | −0.4 | 55 |
NK1-c | 3 | −58.2 | −23.7 | 23.1 | −14.0 | −40.4 | −3.3 | 48 |
NK1-d | 4 | −49.8 | −20.6 | 30.6 | −13.5 | −44.4 | −1.9 | 43 |
Populated [%] | Tyr1 Amine | Notes | |
---|---|---|---|
NK1-1 | 4 | To the solvent | By ECL2 |
NK1-2 | 17 | Glu193 | By ECL2, Tyr1 ring by ECL3 |
NK1-3 | 2 | Asn189 | By ECL2 |
NK1-4 | 7 | Glu193 | By ECL2 |
NK1-5 | 4 | Glu193 | By ECL2 |
NK1-6 | 9 | Glu193 | By ECL2, Tyr1 ring stack to Phe267 |
NK1-7 | 5 | Glu193 | By ECL2, Tyr1 ring by ECL3 |
NK1-8 | 14 | Glu193 | ByECL2, Tyr1 ring towards the receptor interior, stacking with His197, intramolecular H-bond between carbohydrazide and phenol of Tyr1 |
NK1-9 | 3 | Glu193 | By ECL2, Tyr1 H-bond to Tyr287 |
NK1-10 | 13 | Glu193 | By ECL2, Tyr1 ring directed towards the receptor interior |
PIEDA | Contribution of Single Residues | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Populated [%] | PIE 1 | Ees 2 | Eex 3 | Ect 4 | Edisp 5 | Esolv 6 | %Ees+ct 7 | Tyr1 | D-Ala2 | Gly3 | Phe4 | |
NK1-1 | 4 | −115.8 | −116.0 | 40.4 | −21.3 | −56.8 | 37.8 | 71 | −13.8 | −5.5 | −5.1 | −22.0 |
NK1-2 | 17 | −113.2 | −159.5 | 29.4 | −18.6 | −21.9 | 57.5 | 89 | −71.6 | −6.4 | −8.4 | −26.8 |
NK1-3 | 2 | −111.2 | −165.6 | 33.5 | −16.6 | −19.2 | 56.7 | 90 | −81.9 | −12.4 | −3.4 | −13.6 |
NK1-4 | 7 | −208.5 | −214.6 | 88.4 | −38.3 | −77.3 | 33.2 | 77 | −111.3 | −17.6 | −2.1 | −9.2 |
NK1-5 | 4 | −153.1 | −201.6 | 59.0 | −23.7 | −26.5 | 39.7 | 89 | −86.7 | −26.6 | −26.9 | −12.9 |
NK1-6 | 9 | −148.8 | −193.1 | 53.7 | −22.5 | −32.0 | 45.0 | 87 | −115.3 | −7.5 | −12.2 | −13.8 |
NK1-7 | 5 | −123.2 | −167.4 | 32.5 | −17.3 | −21.8 | 50.8 | 89 | −89.1 | −13.8 | − | −20.3 |
NK1-8 | 14 | −125.0 | −162.3 | 47.6 | −20.8 | −30.0 | 40.5 | 86 | −77.6 | −20.5 | −8.0 | −13.0 |
NK1-9 | 3 | −69.2 | −75.6 | 12.7 | −6.8 | −22.3 | 22.8 | 79 | −47.1 | −4.6 | −2.6 | −15.1 |
NK1-10 | 13 | −176.2 | −216.7 | 49.5 | −19.6 | −23.0 | 33.6 | 91 | −102.1 | −22.6 | −26.5 | −24.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matalińska, J.; Lipiński, P.F.J.; Kosson, P.; Kosińska, K.; Misicka, A. In Vivo, In Vitro and In Silico Studies of the Hybrid Compound AA3266, an Opioid Agonist/NK1R Antagonist with Selective Cytotoxicity. Int. J. Mol. Sci. 2020, 21, 7738. https://doi.org/10.3390/ijms21207738
Matalińska J, Lipiński PFJ, Kosson P, Kosińska K, Misicka A. In Vivo, In Vitro and In Silico Studies of the Hybrid Compound AA3266, an Opioid Agonist/NK1R Antagonist with Selective Cytotoxicity. International Journal of Molecular Sciences. 2020; 21(20):7738. https://doi.org/10.3390/ijms21207738
Chicago/Turabian StyleMatalińska, Joanna, Piotr F. J. Lipiński, Piotr Kosson, Katarzyna Kosińska, and Aleksandra Misicka. 2020. "In Vivo, In Vitro and In Silico Studies of the Hybrid Compound AA3266, an Opioid Agonist/NK1R Antagonist with Selective Cytotoxicity" International Journal of Molecular Sciences 21, no. 20: 7738. https://doi.org/10.3390/ijms21207738
APA StyleMatalińska, J., Lipiński, P. F. J., Kosson, P., Kosińska, K., & Misicka, A. (2020). In Vivo, In Vitro and In Silico Studies of the Hybrid Compound AA3266, an Opioid Agonist/NK1R Antagonist with Selective Cytotoxicity. International Journal of Molecular Sciences, 21(20), 7738. https://doi.org/10.3390/ijms21207738