PPARs and Myocardial Infarction
Abstract
:1. Introduction
2. PPARs and Myocardial Ischemia/Infarction
2.1. PPARα
2.2. PPARβ/δ
2.3. PPARγ
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APN | adiponectin |
ADRCs | adipose tissue-derived regenerative cells |
ATP | adenosine triphosphate |
Akt | serine/threonine-specific protein kinase |
CPT 1 | carnitine palmitoyltransferase 1 |
EF | ejection fraction |
ERK | extracellular signal related kinases |
FAO | fatty acid oxidation |
FS | fractional shortening |
eNOS | endothelial NO synthetase |
GRb-3 | ginsenoide Rb-3 |
GSK3β | glycogen synthase kinase 3β |
HO-1 | hemeoxygenase-1 |
IL | Interleukin |
ICAM | intercellular adhesion molecule |
iNOS | inducible nitric oxide synthase |
LAD | left anterior descending artery |
LPA | lysophosphatidic acid |
LVEF | left ventricular ejection fractions |
MMP | matrix metallopeptidase |
MAPK | Mitogen-activated protein kinase |
MCP-1 | monocyte chemoattractant protein-1 |
MI | Myocardial infarction |
miR | micro RNA |
MSCs | marrow-derived mesenchymal stem cells |
NP | nanoparticle |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NMR | nuclear magnetic resonance |
NO | Nitric oxide |
PCr | phosphocreatine |
PI3K | phosphoinositide 3-kinase |
rIPC | remote ischaemic preconditioning |
SNPs | single-nucleotide polymorphisms |
VCAM | vascular cell adhesion molecule |
References
- Wagner, K.D.; Wagner, N. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol. Ther. 2010, 125, 423–435. [Google Scholar] [CrossRef]
- Huttunen, J.K.; Heinsalmi, P.; Manninen, V.; Mänttäri, M.; Frick, M.H.; Heinonen, O.P.; Romo, M. Helsinki Heart Study. New perspectives in the prevention of coronary heart disease. Drugs 1988, 36, 32–36. [Google Scholar] [CrossRef]
- Issemann, I.; Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nat. Cell Biol. 1990, 347, 645–650. [Google Scholar] [CrossRef]
- Goldenberg, I.; Benderly, M.; Goldbourt, U. Secondary prevention with bezafibrate therapy for the treatment of dyslipidemia: An extended follow-up of the BIP trial. J. Am. Coll. Cardiol. 2008, 51, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R.; Leiter, L.A.; Linz, P.; Friede-Wald, W.T.; Buse, J.B.; Gerstein, H.C.; Probstfield, J.; et al. Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. New Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar] [CrossRef] [PubMed]
- Wayman, N.S.; Hattori, Y.; McDonald, M.C.; Mota-Filipe, H.; Cuzzocrea, S.; Pisano, B.; Chatterjee, P.; Thiemermann, C. Ligands of the peroxisome proliferator-activated receptors (PPAR-γ and PPAR-α) reduce myocardial infarct size. FASEB J. 2002, 16, 1027–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, T.-L.; Bao, W.; Jucker, B.M.; Gu, J.-L.; Romanic, A.M.; Brown, P.J.; Cui, J.; Thudium, D.T.; Boyce, R.W.; Burns-Kurtis, C.L.; et al. Activation of Peroxisome Proliferator–Activated Receptor-α Protects the Heart From Ischemia/Reperfusion Injury. Circulation 2003, 108, 2393–2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambandam, N.; Morabito, D.; Wagg, C.; Finck, B.N.; Kelly, D.P.; Lopaschuk, G.D. Chronic activation of PPARα is detrimental to cardiac recovery after ischemia. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H87–H95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, E.E.; Rennison, J.H.; Young, M.E.; McElfresh, T.A.; Kung, T.A.; Tserng, K.-Y.; Hoit, B.D.; Stanley, W.C.; Chandler, M.P. Effects of chronic activation of peroxisome proliferator-activated receptor-α or high-fat feeding in a rat infarct model of heart failure. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H1899–H1904. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lu, L.; Greyson, C.; Rizeq, M.; Nunley, K.; Wyatt, B.; Bristow, M.R.; Long, C.S.; Schwartz, G.G. The PPAR-alpha activator fenofibrate fails to provide myocardial protection in ischemia and reperfusion in pigs. Am. J. Physiol. Heart Circ. Physiol. 2005, 290, H1798–H1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulhak, A.A.; Jung, C.; Östenson, C.-G.; Lundberg, J.O.; Sjöquist, P.-O.; Pernow, J. PPAR-α activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: Involvement of the PI3-Kinase/Akt and NO pathway. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H719–H727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duerr, G.D.; Heinemann, J.C.; Arnoldi, V.; Feisst, A.; Kley, J.; Ghanem, A.; Welz, A.; Dewald, O. Cardiomyocyte specific peroxisome proliferator-activated receptor-α overexpression leads to irreversible damage in ischemic murine heart. Life Sci. 2014, 102, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Lara, L.; Sánchez-Aguilar, M.; Soria-Castro, E.; Vargas-Barrón, J.; Roldán, F.J.; Pavón, N.; Torres-Narváez, J.C.; Cervantes-Pérez, L.G.; Pastelín-Hernández, G.; Sánchez-Mendoza, A. Clofibrate Treatment Decreases Inflammation and Reverses Myocardial Infarction-Induced Remodelation in a Rodent Experimental Model. Molecules 2019, 24, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wang, Q.; Shao, M.; Ma, L.; Guo, D.; Wu, Y.; Gao, P.; Wang, X.; Li, W.; Li, C.; et al. Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed. Pharmacother. 2019, 120, 109487. [Google Scholar] [CrossRef] [PubMed]
- Jucker, B.M.; Doe, C.P.; Schnackenberg, C.G.; Olzinski, A.R.; Maniscalco, K.; Williams, C.; Hu, T.C.-C.; Lenhard, S.C.; Costell, M.; Bernard, R.; et al. PPARdelta activation normalizes cardiac substrate metabolism and reduces right ventricular hypertrophy in congestive heart failure. J. Cardiovasc. Pharmacol. 2007, 50, 25–34. [Google Scholar] [CrossRef]
- Wagner, K.-D.; Vukolic, A.; Baudouy, D.; Michiels, J.-F.; Wagner, N. Inducible Conditional Vascular-Specific Overexpression of Peroxisome Proliferator-Activated Receptor Beta/Delta Leads to Rapid Cardiac Hypertrophy. PPAR Res. 2016, 2016, 7631085. [Google Scholar] [CrossRef] [Green Version]
- Park, J.R.; Ahn, J.H.; Jung, M.H.; Koh, J.-S.; Park, Y.; Hwang, S.-J.; Jeong, Y.-H.; Kwak, C.H.; Lee, Y.S.; Seo, H.G.; et al. Effects of Peroxisome Proliferator-Activated Receptor-δ Agonist on Cardiac Healing after Myocardial Infarction. PLoS ONE 2016, 11, e0148510. [Google Scholar] [CrossRef] [Green Version]
- Magadum, A.; Ding, Y.; He, L.; Kim, T.; Vasudevarao, M.D.; Long, Q.; Yang, K.; Wickramasinghe, N.; Renikunta, H.V.; Dubois, N.; et al. Live cell screening platform identifies PPARδ as a regulator of cardiomyocyte proliferation and cardiac repair. Cell Res. 2017, 27, 1002–1019. [Google Scholar] [CrossRef] [Green Version]
- Yue, T.-L.; Chen, J.; Bao, W.; Narayanan, P.K.; Bril, A.; Jiang, W.; Lysko, P.G.; Gu, J.-L.; Boyce, R.; Zimmerman, D.M.; et al. In Vivo Myocardial Protection From Ischemia/Reperfusion Injury by the Peroxisome Proliferator–Activated Receptor-γ Agonist Rosiglitazone. Circ. 2001, 104, 2588–2594. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Nakano, A.; Kinoshita, M.; Matsumori, A. Pioglitazone, a Peroxisome Proliferator-Activated Receptor-Agonist, Attenuates Myocardial Ischemia/Reperfusion Injury in a Rat Model. Lab. Investig. 2003, 83, 1715–1721. [Google Scholar] [CrossRef] [Green Version]
- Molavi, B.; Chen, J.; Mehta, J.L. Cardioprotective effects of rosiglitazone are associated with selective overexpression of type 2 angiotensin receptors and inhibition of p42/44 MAPK. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H687–H693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, D.-F.; Wu, W.; Jin, D.-M.; Wang, J.-F.; Wu, Y.-M. Effect of peroxisome proliferator-activated receptor γ ligand. Rosiglitazone on left ventricular remodeling in rats with myocardial infarction. Int. J. Cardiol. 2006, 113, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Ye, P.; Long, C.; Chen, K.; Li, X.; Wang, H. Effect of Pioglitazone, a Peroxisome Proliferator-Activated Receptor Gamma Agonist, on Ischemia-Reperfusion Injury in Rats. Pharmacology 2007, 79, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Mersmann, J.; Tran, N.; Zacharowski, P.A.; Grotemeyer, D.; Zacharowski, K. Rosiglitazone is cardioprotective in a murine model of myocardial I/R. Shock 2008, 30, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-R.; Tao, L.; Gao, E.; Qu, Y.; Lau, W.B.; Lopez, B.L.; Christopher, T.A.; Koch, W.; Yue, T.-L.; Ma, X.-L. Rosiglitazone inhibits hypercholesterolaemia-induced myeloperoxidase upregulation—A novel mechanism for the cardioprotective effects of PPAR agonists. Cardiovasc. Res. 2008, 81, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, S.; Kobayashi, H.; Iwasa, M.; Kawamura, I.; Sumi, S.; Narentuoya, B.; Yamaki, T.; Ushikoshi, H.; Nishigaki, K.; Nagashima, K.; et al. Antidiabetic drug pioglitazone protects the heart via activation of PPAR-γ receptors, PI3-kinase, Akt, and eNOS pathway in a rabbit model of myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1558–H1565. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-J.; Xiong, Z.-B.; Tang, A.-L.; Ma, H.; Ma, Y.-D.; Wu, J.-G.; Dong, Y.-G. Rosiglitazone-induced myocardial protection against ischaemia-reperfusion injury is mediated via a phosphatidylinositol 3-kinase/Akt-dependent pathway. Clin. Exp. Pharmacol. Physiol. 2010, 37, 156–161. [Google Scholar] [CrossRef]
- Tao, L.; Wang, Y.; Gao, E.; Zhang, H.; Yuan, Y.; Lau, W.B.; Chan, L.; Koch, W.J.; Ma, X.-L. Adiponectin: An indispensable molecule in rosiglitazone cardioprotection following myocardial infarction. Circ. Res. 2009, 106, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Maejima, Y.; Okada, H.; Haraguchi, G.; Onai, Y.; Kosuge, H.; Suzuki, J.-I.; Isobe, M. Telmisartan, a unique ARB, improves left ventricular remodeling of infarcted heart by activating PPAR gamma. Lab. Investig. 2011, 91, 932–944. [Google Scholar] [CrossRef] [Green Version]
- Shinmura, D.; Togashi, I.; Miyoshi, S.; Nishiyama, N.; Hida, N.; Tsuji, H.; Tsuruta, H.; Segawa, K.; Tsukada, Y.; Ogawa, S.; et al. Pretreatment of Human Mesenchymal Stem Cells with Pioglitazone Improved Efficiency of Cardiomyogenic Transdifferentiation and Cardiac Function. Stem Cells 2011, 29, 357–366. [Google Scholar] [CrossRef]
- Hou, J.; Wang, L.; Guo, T.; Xing, Y.; Zheng, S.; Zhou, C.; Huang, H.; Long, H.; Zhong, T.; Wu, Q.; et al. Peroxisome Proliferator-Activated Receptor Gamma Promotes Mesenchymal Stem Cells to Express Connexin43 via the Inhibition of TGF-β1/Smads Signaling in a Rat Model of Myocardial Infarction. Stem Cell Rev. Rep. 2015, 11, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Kostic, I.; Fidalgo-Carvalho, I.; Aday, S.; Vazão, H.; Carvalheiro, T.; Grãos, M.; Duarte, A.; Cardoso, C.; Gonçalves, L.; Carvalho, L.; et al. Lysophosphatidic acid enhances survival of human CD34+ cells in ischemic conditions. Sci. Rep. 2015, 5, 16406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.-L.; Liu, Z.-R.; Xue, Y.-J.; Chen, X. Dual PPARα/γ ligand TZD18 improves myocardial metabolic remodeling after myocardial infarction in rats. Eur. Rev. Med Pharmacol. Sci. 2017, 21, 5765–5773. [Google Scholar] [PubMed]
- Shen, Z.-X.; Yang, Q.-Z.; Li, C.; Du, L.-J.; Sun, X.-N.; Liu, Y.; Sun, J.-Y.; Gu, H.-H.; Sun, Y.-M.; Wang, J.; et al. Myeloid peroxisome proliferator-activated receptor gamma deficiency aggravates myocardial infarction in mice. Atherosclerosis 2018, 274, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Tokutome, M.; Matoba, T.; Nakano, Y.; Okahara, A.; Fujiwara, M.; Koga, J.-I.; Nakano, K.; Tsutsui, H.; Egashira, K. Peroxisome proliferator-activated receptor-gamma targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/macrophage polarization in preclinical animal models. Cardiovasc. Res. 2019, 115, 419–431. [Google Scholar] [CrossRef]
- Mori, D.; Miyagawa, S.; Matsuura, R.; Sougawa, N.; Fukushima, S.; Ueno, T.; Toda, K.; Kuratani, T.; Tomita, K.; Maeda, N.; et al. Pioglitazone strengthen therapeutic effect of adipose-derived regenerative cells against ischemic cardiomyopathy through enhanced expression of adiponectin and modulation of macrophage phenotype. Cardiovasc. Diabetol. 2019, 18, 39. [Google Scholar] [CrossRef]
- Nissen, S.E.; Wolski, K.; Topol, E.J. Effect of Muraglitazar on Death and Major Adverse Cardiovascular Events in Patients With Type 2 Diabetes Mellitus. JAMA 2005, 294, 2581–2586. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, E.; Califf, R.; Gerstein, H.C.; Malmberg, K.; Ruilope, L.M.; Schwartz, G.G.; Wedel, H.; Volz, D.; Ditmarsch, M.; Svensson, A.; et al. Effects of the dual peroxisome proliferator–Activated receptor activator aleglitazar in patients with Type 2 Diabetes mellitus or prediabetes. Am. Hear. J. 2015, 170, 117–122. [Google Scholar] [CrossRef]
- Keech, A.C.; Simes, R.J.; Barter, P.J.; Best, J.D.; Scott, R.A.P.; Taskinen, M.R.; Forder, P.M.; Pillai, A.; Davis, T.M.; Glasziou, P.; et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet 2005, 366, 1849–1861. [Google Scholar] [CrossRef]
- Reinhard, W.; Stark, K.J.; Sedlacek, K.; Fischer, M.; Baessler, A.; Neureuther, K.; Weber, S.; Kaess, B.; Wiedmann, S.; Mitsching, S.; et al. Association between PPARα gene polymorphisms and myocardial infarction. Clin. Sci. 2008, 115, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Enquobahrie, D.A.; Smith, N.L.; Bis, J.C.; Carty, C.L.; Rice, K.M.; Lumley, T.; Hindorff, L.A.; Lemaitre, R.N.; Williams, M.A.; Siscovick, D.S.; et al. Cholesterol Ester Transfer Protein, Interleukin-8, Peroxisome Proliferator Activator Receptor Alpha, and Toll-Like Receptor 4 Genetic Variations and Risk of Incident Nonfatal Myocardial Infarction and Ischemic Stroke. Am. J. Cardiol. 2008, 101, 1683–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilde, A.J.; Van Der Lee, K.A.; Willemsen, P.H.; Chinetti, G.; Van Der Leij, F.R.; Van Der Vusse, G.J.; Staels, B.; Van Bilsen, M. Peroxisome Proliferator-Activated Receptor (PPAR) α and PPARβ/δ, but not PPARγ, Modulate the Expression of Genes Involved in Cardiac Lipid Metabolism. Circ. Res. 2003, 92, 518–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Ding, G.; Qin, Q.; Huang, Y.; Lewis, W.; He, N.; Evans, R.M.; Schneider, M.D.; A Brako, F.; Xiao, Y.; et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat. Med. 2004, 10, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Hu, Q.; Nakamura, Y.; Wang, X.; Zhang, X.; Zhu, X.; Chen, W.; Yang, Q.; Zhang, J. Open-chest31P magnetic resonance spectroscopy of mouse heart at 4.7 Tesla. J. Magn. Reson. Imaging 2006, 24, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Bishop-Bailey, D. PPARβ/δ a potential target in pulmonary hypertension blighted by cancer risk. Pulm. Circ. 2018, 9, 2045894018812053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, K.D.; Du, S.; Martin, L.; Leccia, N.; Michiels, J.-F.; Wagner, N. Vascular PPARβ/δ Promotes Tumor Angiogenesis and Progression. Cells 2019, 8, 1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, N.; Wagner, K.D. PPAR Beta/Delta and the Hallmarks of Cancer. Cells 2020, 9, 1133. [Google Scholar] [CrossRef]
- Mikami, D.; Kimura, H.; Kamiyama, K.; Torii, K.; Kasuno, K.; Takahashi, N.; Yoshida, H.; Iwano, M. Telmisartan activates endogenous peroxisome proliferator-activated receptor-δ and may have anti-fibrotic effects in human mesangial cells. Hypertens. Res. 2013, 37, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Amano, Y.; Yamaguchi, T.; Ohno, K.; Niimi, T.; Orita, M.; Sakashita, H.; Takeuchi, M. Structural basis for telmisartan-mediated partial activation of PPAR gamma. Hypertens. Res. 2012, 35, 715–719. [Google Scholar] [CrossRef] [Green Version]
- Benson, S.C.; Pershadsingh, H.A.; Ho, C.I.; Chittiboyina, A.; Desai, P.; Pravenec, M.; Qi, N.; Wang, J.; Avery, M.A.; Kurtz, T.W. Identification of Telmisartan as a Unique Angiotensin II Receptor Antagonist With Selective PPARγ–Modulating Activity. Hypertension 2004, 43, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Kappert, K.; Boehm, M.; Schmieder, R.; Schumacher, H.; Teo, K.; Yusuf, S.; Sleight, P.; Unger, T. Impact of sex on cardiovascular outcome in patients at high cardiovascular risk: Analysis of the Telmisartan Randomized Assessment Study in ACE-Intolerant Subjects with Cardiovascular Disease (TRANSCEND) and the Ongoing Telmisartan Alone and in Combination with Ramipril Global End Point Trial (ONTARGET). Circulation 2012, 126, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Fliegner, D.; Westermann, D.; Riad, A.; Schubert, C.; Becher, E.; Fielitz, J.; Tschöpe, C.; Regitz-Zagrosek, V. Up-regulation of PPARγ in myocardial infarction. Eur. J. Hear. Fail. 2008, 10, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Xuan, W.; Yan, R.; Tropak, M.B.; Jean‑St‑Michel, E.; Liang, W.; Gladstone, R.; Backx, P.H.; Kharbanda, R.K.; Redington, A.N. Remote preconditioning provides potent cardioprotection via PI3K/Akt activation and is associated with nuclear accumulation of β-catenin. Clin. Sci. 2011, 120, 451–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, N.; Jehl-Piétri, C.; Lopez, P.; Murdaca, J.; Giordano, C.; Schwartz, C.; Gounon, P.; Hatem, S.N.; Grimaldi, P.; Wagner, K.-D. Peroxisome proliferator-activated receptor β stimulation induces rapid cardiac growth and angiogenesis via direct activation of calcineurin. Cardiovasc. Res. 2009, 83, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Wagner, N.; Wagner, K.-D. PPARs and Angiogenesis—Implications in Pathology. Int. J. Mol. Sci. 2020, 21, 5723. [Google Scholar] [CrossRef]
- Delea, T.E.; Edelsberg, J.S.; Hagiwara, M.; Oster, G.; Phillips, L.S. Use of thiazolidinediones and risk of heart failure in people with type 2 diabetes: A retrospective cohort study. Diabetes Care 2003, 26, 2983–2989. [Google Scholar] [CrossRef] [Green Version]
- Nissen, S.E.; Wolski, K. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. New Engl. J. Med. 2007, 356, 2457–2471. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, E.; Charbonnel, B.; Wilcox, R.G.; Skene, A.M.; Massi-Benedetti, M.; Yates, J.; Tan, M.; Spanheimer, R.; Standl, E.; Dormandy, J.A.; et al. Pioglitazone Use and Heart Failure in Patients With Type 2 Diabetes and Preexisting Cardiovascular Disease: Data from the PROactive Study (PROactive 08). Diabetes Care 2007, 30, 2773–2778. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.J.; Ouellet-Hellstrom, R.; MaCurdy, T.E.; Ali, F.; Sholley, C.; Worrall, C.; Kelman, J.A. Risk of Acute Myocardial Infarction, Stroke, Heart Failure, and Death in Elderly Medicare Patients Treated with Rosiglitazone or Pioglitazone. JAMA 2010, 304, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Home, P.D.; Pocock, S.J.; Beck-Nielsen, H.; Curtis, P.S.; Gomis, R.; Hanefeld, M.; Jones, N.P.; Komajda, M.; McMurray, J.J.V.; Team, R.S. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open-label trial. Lancet 2009, 373, 2125–2135. [Google Scholar] [CrossRef]
- Kaul, S.; Bolger, A.F.; Herrington, D.; Giugliano, R.; Eckel, R.H. Thiazolidinedione drugs and cardiovascular risks: A science advisory from the American Heart Association and American College of Cardiology Foundation. Circulation 2010, 121, 1868–1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doney, A.S.F.; Fischer, B.; Leese, G.; Morris, A.D.; Palmer, C.N.A. Cardiovascular risk in type 2 diabetes is associated with variation at the PPARG locus: A Go-DARTS study. Arter. Thromb. Vasc. Biol. 2004, 24, 2403–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafarmand, M.H.; Van Der Schouw, Y.T.; Grobbee, D.E.; De Leeuw, P.W.; Bots, M.L. Peroxisome proliferator-activated receptor gamma-2 P12A polymorphism and risk of acute myocardial infarction, coronary heart disease and ischemic stroke: A case-cohort study and meta-analyses. Vasc. Heal. Risk Manag. 2008, 4, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Lv, F.-H.; Yin, H.-L.; He, Y.-Q.; Wu, H.-M.; Kong, J.; Chai, X.-Y.; Zhang, S.-R. Effects of curcumin on the apoptosis of cardiomyocytes and the expression of NF-κB, PPAR-γ and Bcl-2 in rats with myocardial infarction injury. Exp. Ther. Med. 2016, 12, 3877–3884. [Google Scholar] [CrossRef] [Green Version]
- El-Gohary, O.A.; Allam, M.M. Effect of vitamin D on isoprenaline-induced myocardial infarction in rats: Possible role of peroxisome proliferator-activated receptor-γ. Can. J. Physiol. Pharmacol. 2017, 95, 641–646. [Google Scholar] [CrossRef]
- Mahajan, U.B.; Chandrayan, G.; Patil, C.R.; Arya, D.S.; Suchal, K.; Agrawal, Y.O.; Ojha, S.; Goyal, S.N. The Protective Effect of Apigenin on Myocardial Injury in Diabetic Rats mediating Activation of the PPAR-γ Pathway. Int. J. Mol. Sci. 2017, 18, 756. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Jiang, H.; Bei, Y.; Zhang, J.; Zhang, H.; Zhu, H.; Zhang, C.; Yao, W.; Wei, C.; Shang, H.; et al. Qiliqiangxin Attenuates Adverse Cardiac Remodeling after Myocardial Infarction in Ovariectomized Mice via Activation of PPARγ. Cell. Physiol. Biochem. 2017, 42, 876–888. [Google Scholar] [CrossRef]
- Zhou, H.; Li, D.; Zhu, P.; Hu, S.; Hu, N.; Ma, S.; Zhang, Y.; Han, T.; Ren, J.; Cao, F.; et al. Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways. J. Pineal Res. 2017, 63, e12438. [Google Scholar] [CrossRef]
- Yang, M.; Xiong, J.; Zou, Q.; Wang, D.-D.; Huang, C. Chrysin attenuates interstitial fibrosis and improves cardiac function in a rat model of acute myocardial infarction. J. Mol. Histol. 2018, 49, 555–565. [Google Scholar] [CrossRef]
- Rani, N.; Arya, D.S. Chrysin rescues rat myocardium from ischemia-reperfusion injury via PPAR-γ/Nrf2 activation. Eur. J. Pharmacol. 2020, 883, 173389. [Google Scholar] [CrossRef]
- Garg, S.; Khan, S.I.; Malhotra, R.K.; Sharma, M.K.; Kumar, M.; Kaur, P.; Nag, T.C.; Ray, R.; Bhatia, J.; Arya, D.S. The molecular mechanism involved in cardioprotection by the dietary flavonoid fisetin as an agonist of PPAR-γ in a murine model of myocardial infarction. Arch. Biochem. Biophys. 2020, 694, 108572. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Guo, Z.; Li, D.; Li, H.; He, J.; Wen, D.; Luo, B. Preventive effect of hesperidin modulates inflammatory responses and antioxidant status following acute myocardial infarction through the expression of PPAR‑γ and Bcl‑2 in model mice. Mol. Med. Rep. 2017, 17, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Song, L.L.; Zhang, Y.; Zhang, X.R.; Song, Y.N.; Dai, H.Z. Theacrine attenuates myocardial fibrosis after myocardial infarction via the SIRT3/β-catenin/PPARγ pathway in estrogen-deficient mice. Eur Rev Med Pharmacol. Sci. 2019, 23, 5477–5486. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Arora, S.; Mittal, R.; Joshi, S.; Nag, T.C.; Ray, R.; Kumari, S.; Arya, D.S. Myocardial salvaging effect of telmisartan in experimental model of myocardial infarction. Eur. J. Pharmacol. 2009, 619, 75–84. [Google Scholar] [CrossRef]
- Goyal, S.; Arora, S.; Bhatt, T.K.; Das, P.; Sharma, A.; Kumari, S.; Arya, D.S. Modulation of PPAR-γ by telmisartan protects the heart against myocardial infarction in experimental diabetes. Chem. Biol. Interact. 2010, 185, 271–280. [Google Scholar] [CrossRef]
- Zhao, N.; Mi, L.; Zhang, X.; Xu, M.; Yu, H.; Liu, Z.; Liu, X.; Guan, G.; Gao, W.; Wang, J.; et al. Enhanced MiR-711 transcription by PPARγ induces endoplasmic reticulum stress-mediated apoptosis targeting calnexin in rat cardiomyocytes after myocardial infarction. J. Mol. Cell. Cardiol. 2018, 118, 36–45. [Google Scholar] [CrossRef]
- Chu, X.; Wang, Y.; Pang, L.; Huang, J.; Sun, X.; Chen, X. miR-130 aggravates acute myocardial infarction-induced myocardial injury by targeting PPAR-γ. J. Cell. Biochem. 2018, 119, 7235–7244. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Tardif, J.-C.; Schwartz, G.G.; Nicholls, S.J.; Rydén, L.; Neal, B.; Malmberg, K.; Wedel, H.; Buse, J.B.; Henry, R.R.; et al. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: The AleCardio randomized clinical trial. JAMA 2014, 311, 1515–1525. [Google Scholar] [CrossRef]
- Ratner, R.E.; Parikh, S.; Tou, C. Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes. Diabetes Vasc. Dis. Res. 2007, 4, 214–221. [Google Scholar] [CrossRef]
Concerned PPAR | Type of PPAR Modulation | Experimental Setting | Species | Outcome for Myocardial Infarction | Citation |
---|---|---|---|---|---|
PPARα | Agonists, Clofibrate, WY14643, 30 min before, ischemia | ischemia 25 min, reperfusion 2 h | rats | reduced infarct sizes | [6] |
PPARα | agonist GW7647, 2 days and 1 h before ischemia | ischemia 30 min reperfusion 24 h | mice | reduced infarct sizes, improvement of myocardial contractile dysfunction | [7] |
PPARα | cardiac specific overexpression, knockout | ischemia 18 min reperfusion 40 min | mice | worsened cardiac function, improved cardiac function | [8] |
PPARα | agonist fenofibrate, 12 weeks after MI | myocardial infarction | rats | unchanged leftventricular dysfunction | [9] |
PPARα | agonist fenofibrate, 4 weeks before ischemia | ischemia 90 min reperfusion 120 min | pigs | unchanged infarct sizes and cardiac function | [10] |
PPARα | agonist WY14643, 35 min before ischemia | ischemia 35 min reperfusion 2 h | Goto-Kakizaki, rats | reduced infarct sizes | [11] |
PPARα | cardiomyocyte specific overexpression | repetitive, brief I/R during several days | mice | impaired ventricular function | [12] |
PPARα | agonist clofibrate, 7 days after MI for 7 days | myocardial infarction | rats | reduced left ventricular dilatation, LVEF unchanged | [13] |
PPARα | agonist fenofibrate, ginsenoside Rb3, 7 days after MI | myocardial infarction | mice | Ejection fractions and fractional shortening increased | [14] |
PPARβ/δ | agonist GW610742X, 6–9 weeks after MI | myocardial infarction | rats | infarct sizes and EF fractions unchanged | [15] |
PPARβ/δ | conditional inducible vessel specific overexpression, started 1 week before MI | myocardial infarction | mice | bigger infarct sizes, worse functional parameters | [16] |
PPARβ/δ | agonist GW610742X, after MI every 3 days | myocardial infarction | rats | unchanged functional parameters | [17] |
PPARβ/δ | conditional inducible cardiomyocyte specific overexpression started 1 week before MI, agonist GW0742 after MI for 2 weeks | myocardial infarction | mice | smaller infarct sizes, better functional parameters | [18] |
PPARγ | agonist rosiglitazone, before occlusion and after reperfusion | ischemia 30 min, reperfusion 24 h | rats | smaller infarct sizes, better functional parameters | [19] |
PPARγ | agonists rosiglitazone, ciglitazone, pioglitazone, 15D-PGJ2, PGA1, 30 min before, ischemia | ischemia 25 min, reperfusion 2 h | rats | substantial reduction of infarct sizes, most pronounced with 15D-PGJ2 | [6] |
PPARγ | agonist pioglitazone 7 days before ischemia | ischemia 30 min, reperfusion 24 h | rats | smaller infarct sizes | [20] |
PPARγ | agonist rosiglitazone, fed regularly, before occlusion | ischemia 1 h, reperfusion 1 h | rats | smaller infarct sizes | [21] |
PPARγ | agonist rosiglitazone after MI for 8 weeks | myocardial infarction | rats | better functional parameters | [22] |
PPARγ | agonist pioglitazone after occlusion | ischemia 30 min, reperfusion 30 min or 120 min | rats | better systolic function, less necrosis | [23] |
PPARγ | agonist rosiglitazone, during reperfusion | ischemia 20 min, reperfusion 28 days | mice | smaller infarct sizes | [24] |
PPARγ | agonist rosiglitazone, before occlusion | ischemia 1 h, reperfusion 4 h | rabbits | smaller infarct sizes | [25] |
PPARγ | agonist pioglitazone 7 days before occlusion | ischemia 30 min, reperfusion 48 h | rabbits | smaller infarct sizes improved left ventricular function | [26] |
PPARγ | agonist rosiglitazone, for 14 days, before occlusion | ischemia 30 min, reperfusion 2 h | mice | smaller infarct sizes, ventricular fibrillation reduced | [27] |
PPARγ | agonist rosiglitazone, for 3 days, before MI | myocardial infarction | wildtype and APN knockout mice | smaller infarct sizes, better survival and functional parameters in wildtype, but not in APN ko mice | [28] |
PPARγ | Telmisartan, ortelmisartan+ antagonist GW9662, for 28 days after MI | myocardial infarction | rats | mortality reduced, left ventricular systolic function improved, GW9662 abolished these effects | [29] |
PPARγ | agonist pioglitazone treated MSCs, 2 weeks after MI | myocardial infarction | nude rats | improvement of left ventricular function | [30] |
PPARγ | agonist pioglitazone, 2 weeks after MI and MSC injection | myocardial infarction | rats | better functional parameters | [31] |
PPARγ | injection of LPA treated progenitor cells after MI | myocardial infarction | rats | better functional parameters | [32] |
PPARα/γ | dual agonist TZD18 after MI | myocardial infarction | rats | improvement of left ventricular function | [33] |
PPARγ | myeloid specific knockout | myocardial infarction | mice | increased infarct sizes, worse functional parameters | [34] |
PPARγ | agonist pioglitazone | ischemia 30 min in mice, 60 min in pigsreperfusion different time points | mice, pigs | decreased infarct sizes, better functional parameters | [35] |
PPARγ | pioglitazone treated adipose tissue-derived regenerative cells | myocardial infarction | rats | improved functional parameters | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, K.-D.; Wagner, N. PPARs and Myocardial Infarction. Int. J. Mol. Sci. 2020, 21, 9436. https://doi.org/10.3390/ijms21249436
Wagner K-D, Wagner N. PPARs and Myocardial Infarction. International Journal of Molecular Sciences. 2020; 21(24):9436. https://doi.org/10.3390/ijms21249436
Chicago/Turabian StyleWagner, Kay-Dietrich, and Nicole Wagner. 2020. "PPARs and Myocardial Infarction" International Journal of Molecular Sciences 21, no. 24: 9436. https://doi.org/10.3390/ijms21249436
APA StyleWagner, K. -D., & Wagner, N. (2020). PPARs and Myocardial Infarction. International Journal of Molecular Sciences, 21(24), 9436. https://doi.org/10.3390/ijms21249436