Effect of Different Crowding Agents on the Architectural Properties of the Bacterial Nucleoid-Associated Protein HU
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Expression and Purification
2.2. DNA Substrate
2.3. Beads
2.4. Flow Cell
2.5. Tethered Particle Motion Experiments
2.6. Data Analysis
2.7. Quantitation of DNA Coverage and Calculation of DNA Binding Properties
3. Results
3.1. MgCl2 Enhances Compaction of DNA by HU
3.2. BGB Increases Local HU Concentration
3.3. BSA Increases Local HU Concentration
3.4. PEG8000 Enhances HU Compaction
3.5. HU Binding Cooperativity in Crowded Conditions
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rouviere-Yaniv, J.; Gros, F. Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc. Natl. Acad. Sci. USA 1975, 72, 3428–3432. [Google Scholar] [CrossRef] [Green Version]
- Rouvière-Yaniv, J.; Yaniv, M.; Germond, J.-E. E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA. Cell 1979, 17, 265–274. [Google Scholar] [CrossRef]
- Dame, R.T. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol. Microbiol. 2005, 56, 858–870. [Google Scholar] [CrossRef]
- Dame, R.T.; Kalmykowa, O.J.; Grainger, D.C. Chromosomal Macrodomains and Associated Proteins: Implications for DNA Organization and Replication in Gram Negative Bacteria. PLoS Genet. 2011, 7, e1002123. [Google Scholar] [CrossRef] [Green Version]
- Dame, R.T.; Rashid, F.-Z.M.; Grainger, D.C. Chromosome organization in bacteria: Mechanistic insights into genome structure and function. Nat. Rev. Genet. 2019, 21, 227–242. [Google Scholar] [CrossRef]
- Swinger, K.K.; Lemberg, K.M.; Zhang, Y.; Rice, P.A. Flexible DNA bending in HU-DNA cocrystal structures. EMBO J. 2003, 22, 3749–3760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Noort, J.; Verbrugge, S.; Goosen, N.; Dekker, C.; Dame, R.T. Dual architectural roles of HU: Formation of flexible hinges and rigid filaments. Proc. Natl. Acad. Sci. USA 2004, 101, 6969–6974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dame, R.T.; Goosen, N. HU: Promoting or counteracting DNA compaction? FEBS Lett. 2004, 529, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Hammel, M.; Amlanjyoti, D.; Reyes, F.E.; Chen, J.-H.; Parpana, R.; Tang, H.Y.H.; Larabell, C.A.; Tainer, J.A.; Adhya, S. HU multimerization shift controls nucleoid compaction. Sci. Adv. 2016, 2, e1600650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dame, R.T.; Hall, M.A.; Wang, M.D. Single-Molecule Unzipping Force Analysis of HU-DNA Complexes. ChemBioChem 2013, 14, 1954–1957. [Google Scholar] [CrossRef]
- Vis, H.; Mariani, M.; Vorgias, C.E.; Wilson, K.S.; Kaptein, R.; Boelens, R. Solution Structure of the HU Protein fromBacillus stearothermophilus. J. Mol. Biol. 1995, 254, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Driessen, R.P.C.; Sitters, G.; Laurens, N.; Moolenaar, G.F.; Wuite, G.J.L.; Goosen, N.; Dame, R.T. Effect of Temperature on the Intrinsic Flexibility of DNA and Its Interaction with Architectural Proteins. Biochemistry 2014, 53, 6430–6438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinger, K.K.; Rice, A.P. IHF and HU: Flexible architects of bent DNA. Curr. Opin. Struct. Biol. 2004, 14, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, I.M.; Turoverov, K.K.; Uversky, V.N. What Macromolecular Crowding Can Do to a Protein. Int. J. Mol. Sci. 2014, 15, 23090–23140. [Google Scholar] [CrossRef] [Green Version]
- Dix, J.A.; Verkman, A.S. Crowding Effects on Diffusion in Solutions and Cells. Annu. Rev. Biophys. 2008, 37, 247–263. [Google Scholar] [CrossRef]
- Minton, A.P. The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media. J. Biol. Chem. 2001, 276, 10577–10580. [Google Scholar] [CrossRef] [Green Version]
- Shim, A.R.; Nap, R.J.; Huang, K.; Almassalha, L.M.; Matusda, H.; Backman, V.; Szleifer, I. Dynamic Crowding Regulates Transcription. Biophys. J. 2020, 118, 2117–2129. [Google Scholar] [CrossRef]
- Murphy, L.D.; Zimmerman, S.B. Macromolecular crowding effects on the interaction of DNA with Escherichia coli DNA-binding proteins: A model for bacterial nucleoid stabilization. Biochim. Biophys. Acta (BBA)-Gene Struct. Expr. 1994, 1219, 277–284. [Google Scholar] [CrossRef]
- Amado, C.M.; Minahk, C.J.; Cilli, E.; Oliveira, R.G.; Dupuy, F.G. Bacteriocin enterocin CRL35 is a modular peptide that induces non-bilayer states in bacterial model membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2019, 1862, 183135. [Google Scholar] [CrossRef]
- Schindl, A.; Hagen, M.L.; Muzammal, S.; Gunasekera, H.A.D.; Croft, A.K. Proteins in Ionic Liquids: Reactions, Applications, and Futures. Front. Chem. 2019, 7, 347. [Google Scholar] [CrossRef] [Green Version]
- Farge, G.; Laurens, N.; Broekmans, O.D.; Wildenberg, S.M.V.D.; Dekker, L.C.; Gaspari, M.; Gustafsson, C.M.; Peterman, E.J.; Falkenberg, M.; Wuite, G.J. Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A. Nat. Commun. 2012, 3, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnefoy, E.; Takahashi, M.; Yaniv, J.R. DNA-binding Parameters of the HU Protein of Escherichia coli to Cruciform DNA. J. Mol. Biol. 1994, 242, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Johnson, R.C.; Marko, J.F. Modulation of HU–DNA interactions by salt concentration and applied force. Nucleic Acids Res. 2010, 38, 6176–6185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas, G.; Minton, A.P. Macromolecular Crowding In Vitro, In Vivo, and In Between. Trends Biochem. Sci. 2016, 41, 970–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristov, P.; Mitkov, I.; Sirakova, D.; Mehandgiiski, I.; Radoslavov, I.M.A.G. Measurement of Casein Micelle Size in Raw Dairy Cattle Milk by Dynamic Light Scattering; IntechOpen: London, UK, 2016; pp. 19–32. [Google Scholar]
- Fox, P.; Brodkorb, A. The casein micelle: Historical aspects, current concepts and significance. Int. Dairy J. 2008, 18, 677–684. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hirota, S.; Makita, N.; Yoshikawa, Y. Compaction of DNA Induced by Like-Charge Protein: Opposite Salt-Effect against the Polymer-Salt-Induced Condensation with Neutral Polymer. J. Phys. Chem. Lett. 2010, 1, 1763–1766. [Google Scholar] [CrossRef]
- Biswas, S.; Kundu, J.; Mukherjee, S.K.; Chowdhury, P.K. Mixed Macromolecular Crowding: A Protein and Solvent Perspective. ACS Omega 2018, 3, 4316–4330. [Google Scholar] [CrossRef] [Green Version]
- Devanand, K.; Selser, J.C. Asymptotic behavior and long-range interactions in aqueous solutions of poly(ethylene oxide). Macromolecules 1991, 24, 5943–5947. [Google Scholar] [CrossRef]
- Yang, W.; Lee, J.Y.; Nowotny, M. Making and Breaking Nucleic Acids: Two-Mg2+-Ion Catalysis and Substrate Specificity. Mol. Cell 2006, 22, 5–13. [Google Scholar] [CrossRef]
- Coppins, R.L.; Hall, K.B.; Groisman, E.A. The intricate world of riboswitches. Curr. Opin. Microbiol. 2007, 10, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Sissi, C.; Palumbo, M. Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Res. 2009, 37, 702–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vashishtha, A.K.; Wang, J.; Konigsberg, W.H. Different Divalent Cations Alter the Kinetics and Fidelity of DNA Polymerases. J. Biol. Chem. 2016, 291, 20869–20875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, A.J. Metal regulation of metabolism. Curr. Opin. Chem. Biol. 2019, 49, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Dame, R.T. Architectural Roles of H-NS and HU in DNA Compaction and Transcription Regulation; Leiden University: Leiden, The Netherlands, 2003; pp. 9–46. [Google Scholar]
- Van Der Valk, R.A.; Laurens, N.; Dame, R.T. Tethered Particle Motion Analysis of the DNA Binding Properties of Architectural Proteins. Adv. Struct. Saf. Stud. 2017, 1624, 127–143. [Google Scholar] [CrossRef]
- Kamsma, D.; Creyghton, R.; Sitters, G.; Wuite, G.J.; Peterman, E.J. Tuning the Music: Acoustic Force Spectroscopy (AFS) 2.0. Methods 2016, 105, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.; Wuite, G.J. Acoustic force spectroscopy. Nat. Methods 2015, 12, 47–50. [Google Scholar] [CrossRef]
- Laurens, N.; Driessen, R.P.; Heller, I.; Vorselen, D.; Noom, M.C.; Hol, F.J.; White, M.F.; Dame, R.T.; Wuite, G.J. Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA. Nat. Commun. 2012, 3, 1328. [Google Scholar] [CrossRef]
- Hill, A.V. The mode of action of nicotine and curari, determined by the form of the contraction curve and the method of temperature coefficients. J. Physiol. 1909, 39, 361–373. [Google Scholar] [CrossRef]
- Gesztelyi, R.; Kiss, Z.; Zsuga, J.; Pak, K.; Papp, C.; Galajda, Z.; Branzaniuc, K.; Szentmiklósi, A.J.; Tosaki, A. Thyroid hormones decrease the affinity of 8-cyclopentyl-1,3-dipropylxanthine (CPX), a competitive antagonist, for the guinea pig atrial A1 adenosine receptor. Gen. Physiol. Biophys. 2012, 31, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Kim, Y.C.; Mittal, J. Protein–protein interactions in a crowded environment. Biophys. Rev. 2013, 5, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Park, C.K.; Horton, N.C. Structures, functions, and mechanisms of filament forming enzymes: A renaissance of enzyme filamentation. Biophys. Rev. 2019, 11, 927–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, S.P.; Panda, A.K.; Dhaka, S.; Pasayat, S.; Biswas, A.; Maurya, M.R.; Majhi, P.K.; Crochet, A.; Dinda, R. A study of DNA/BSA interaction and catalytic potential of oxidovanadium(v) complexes with ONO donor ligands. Dalton Trans. 2016, 45, 18292–18307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vugmeyster, Y.; Entrican, C.A.; Joyce, A.P.; Lawrence-Henderson, R.F.; Leary, B.A.; Mahoney, C.S.; Patel, H.K.; Raso, S.W.; Olland, S.H.; Hegen, M.; et al. Pharmacokinetic, Biodistribution, and Biophysical Profiles of TNF Nanobodies Conjugated to Linear or Branched Poly(ethylene glycol). Bioconjug. Chem. 2012, 23, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.X.; Rivas, G.; Minton, A.P. Macromolecular Crowding and Confinement: Biochemical, Biophysical, and Potential Physiological Consequences. Annu. Rev. Biophys. 2008, 37, 375–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyrilis, F.L.; Meister, A.; Kastritis, P.L. Integrative biology of native cell extracts: A new era for structural characterization of life processes. Biol. Chem. 2019, 400, 831–846. [Google Scholar] [CrossRef]
- Zhu, G.; Schwendeman, S.P. Stabilization of protein encapsulated in cylindrical poly(lactide-co-glycolide) implants: Mechanism of stabilization by basic additives. Pharm. Rev. 2000, 17, 351–377. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-N.; Wuite, G.J.L.; Dame, R.T. Effect of Different Crowding Agents on the Architectural Properties of the Bacterial Nucleoid-Associated Protein HU. Int. J. Mol. Sci. 2020, 21, 9553. https://doi.org/10.3390/ijms21249553
Lin S-N, Wuite GJL, Dame RT. Effect of Different Crowding Agents on the Architectural Properties of the Bacterial Nucleoid-Associated Protein HU. International Journal of Molecular Sciences. 2020; 21(24):9553. https://doi.org/10.3390/ijms21249553
Chicago/Turabian StyleLin, Szu-Ning, Gijs J.L. Wuite, and Remus T. Dame. 2020. "Effect of Different Crowding Agents on the Architectural Properties of the Bacterial Nucleoid-Associated Protein HU" International Journal of Molecular Sciences 21, no. 24: 9553. https://doi.org/10.3390/ijms21249553
APA StyleLin, S. -N., Wuite, G. J. L., & Dame, R. T. (2020). Effect of Different Crowding Agents on the Architectural Properties of the Bacterial Nucleoid-Associated Protein HU. International Journal of Molecular Sciences, 21(24), 9553. https://doi.org/10.3390/ijms21249553