Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis
Abstract
:1. Introduction
2. TMJ and cartilage of TMJ
2.1. Temporomandibular Joint (TMJ)
2.2. Uniqueness of TMJ
3. Pathogenesis of TMJ OA
3.1. Inflammation
3.2. Excessive Mechanical Stress and Malocclusion
3.3. Apoptosis or Necrosis of Chondrocytes
3.4. Sex Hormonal Effect
3.5. Genetic Factors
4. Current Status of TMJ OA Treatments
Overview of TMJ OA Treatment
5. MSC Exosomes in Joint Diseases
5.1. Exosomes
5.2. MSC Exosomes in Therapeutics
5.3. Potential Roles of MSC Exosomes in TMJ Regeneration
5.3.1. Restoring Bioenergetic Homeostasis
5.3.2. Recovery of Cell Numbers
5.3.3. Immunomodulatory Activity
6. MSC Exosomes: Next-Generation Therapeutics for TMJ OA
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TMJ OA | Temporomandibular joint osteoarthritis |
OA | Osteoarthritis |
MSC | Mesenchymal stem cell |
TMJ | Temporomandibular joint |
TMD | Temporomandibular disorder |
ECM | Extracellular matrix |
MCP | Monocyte chemoattractant protein |
ADAMTS | A dis-integrin and metalloproteinase with thrombospondin motifs |
ER | Estrogen receptor |
GWAS | Genome-wide association study |
VEGF | Vascular endothelial growth factor |
NSAID | Non-steroidal anti-inflammatory drug |
ACT | Autologous chondrocyte transplantation |
EV | Extracellular vesicle |
s-GAG | Sulfated glycosaminoglycan |
ETC | Electron transport chain |
HGF | Hepatocyte growth factor |
References
- Shaffer, S.M.; Brismée, J.-M.; Sizer, P.S.; Courtney, C.A. Temporomandibular disorders. Part 1: Anatomy and examination/diagnosis. J. Man. Manip. Ther. 2014, 22, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Yin, J.; Gao, J.; Cheng, T.S.; Pavlos, N.J.; Zhang, C.; Zheng, M.H. Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes. Arthritis Res. Ther. 2013, 15, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egloff, C.; Hugle, T.; Valderrabano, V. Biomechanics and pathomechanisms of osteoarthritis. Swiss Med. Wkly. 2012, 142, w13583. [Google Scholar] [CrossRef]
- Toller, P.A. Osteoarthrosis of the mandibular condyle. Br. Dent. J. 1973, 134, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Mejersjo, C. Therapeutic and prognostic considerations in TMJ osteoarthrosis: A literature review and a long-term study in 11 subjects. Cranio J. Craniomandib. Pract. 1987, 5, 69–78. [Google Scholar] [CrossRef]
- Nandhini, J.; Ramasamy, S.; Ramya, K.; Kaul, R.N.; Felix, A.J.W.; Austin, R.D. Is nonsurgical management effective in temporomandibular joint disorders? A systematic review and meta-analysis. Dent. Res. J. (Isfahan) 2018, 15, 231–241. [Google Scholar]
- Warren, M.P.; Fried, J.L. Temporomandibular disorders and hormones in women. Cells Tissues Org. 2001, 169, 187–192. [Google Scholar] [CrossRef]
- Bi, R.Y.; Ding, Y.; Gan, Y.H. A new hypothesis of sex-differences in temporomandibular disorders: Estrogen enhances hyperalgesia of inflamed TMJ through modulating voltage-gated sodium channel 1.7 in trigeminal ganglion? Med. Hypotheses 2015, 84, 100–103. [Google Scholar] [CrossRef]
- Murphy, M.K.; MacBarb, R.F.; Wong, M.E.; Athanasiou, K.A. Temporomandibular disorders: A review of etiology, clinical management, and tissue engineering strategies. Int. J. Oral Maxillofac. Implant. 2013, 28, e393–e414. [Google Scholar] [CrossRef] [Green Version]
- Aryaei, A.; Vapniarsky, N.; Hu, J.C.; Athanasiou, K.A. Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders. Curr. Osteoporos. Rep. 2016, 14, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.D.; Zhang, J.N.; Gan, Y.H.; Zhou, Y.H. Current understanding of pathogenesis and treatment of TMJ osteoarthritis. J. Dent. Res. 2015, 94, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Abouelhuda, A.M.; Khalifa, A.K.; Kim, Y.-K.; Hegazy, S.A. Non-invasive different modalities of treatment for temporomandibular disorders: Review of literature. J. Korean Assoc. Oral Maxillofac. Surg. 2018, 44, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Yu, F.; Zhang, K.; Wu, Z.; Shi, D.; Teng, H.; Shen, J.; Yang, X.; Jiang, Q. The effectiveness of allogeneic mesenchymal stem cells therapy for knee osteoarthritis in pigs. Ann. Transl. Med. 2018, 6, 404. [Google Scholar] [CrossRef] [PubMed]
- Iijima, H.; Isho, T.; Kuroki, H.; Takahashi, M.; Aoyama, T. Effectiveness of mesenchymal stem cells for treating patients with knee osteoarthritis: A meta-analysis toward the establishment of effective regenerative rehabilitation. NPJ Regen. Med. 2018, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Mazor, M.; Lespessailles, E.; Coursier, R.; Daniellou, R.; Best, T.M.; Toumi, H. Mesenchymal stem-cell potential in cartilage repair: An update. J. Cell. Mol. Med. 2014, 18, 2340–2350. [Google Scholar] [CrossRef]
- Madrigal, M.; Rao, K.S.; Riordan, N.H. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J. Transl. Med. 2014, 12, 260. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Zhang, X.; Li, X. Exosomes derived from mesenchymal stem cells. Int. J. Mol. Sci. 2014, 15, 4142–4157. [Google Scholar] [CrossRef] [Green Version]
- Phinney, D.G.; Pittenger, M.F. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells (Dayt. Ohio) 2017, 35, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, E.; del Pozo, R.; Tanaka, M.; Asai, D.; Hirose, M.; Iwabe, T.; Tanne, K. Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening. Med. Eng. Phys. 2004, 26, 503–511. [Google Scholar] [CrossRef]
- Van Bellinghen, X.; Idoux-Gillet, Y.; Pugliano, M.; Strub, M.; Bornert, F.; Clauss, F.; Schwinté, P.; Keller, L.; Benkirane-Jessel, N.; Kuchler-Bopp, S.; et al. Temporomandibular Joint Regenerative Medicine. Int. J. Mol. Sci. 2018, 19, 446. [Google Scholar] [CrossRef] [Green Version]
- Wadhwa, S.; Kapila, S. TMJ disorders: Future innovations in diagnostics and therapeutics. J. Dent. Educ. 2008, 72, 930–947. [Google Scholar] [PubMed]
- Benjamin, M.; Ralphs, J.R. Biology of fibrocartilage cells. Int. Rev. Cytol. 2004, 233, 1–45. [Google Scholar]
- Mizoguchi, I.; Nakamura, M.; Takahashi, I.; Kagayama, M.; Mitani, H. A comparison of the immunohistochemical localization of type I and type II collagens in craniofacial cartilages of the rat. Acta Anat. 1992, 144, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Milam, S.B. Pathogenesis of degenerative temporomandibular joint arthritides. Odontology 2005, 93, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.E. Current treatment options for the restoration of articular cartilage. Am. J. Knee Surg. 1998, 11, 42–46. [Google Scholar] [PubMed]
- Hunziker, E.B. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartel. 2002, 10, 432–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brocklehurst, R.; Bayliss, M.T.; Maroudas, A.; Coysh, H.L.; Freeman, M.A.; Revell, P.A.; Ali, S.Y. The composition of normal and osteoarthritic articular cartilage from human knee joints. With special reference to unicompartmental replacement and osteotomy of the knee. J. Bone Jt. Surg. Am. Vol. 1984, 66, 95–106. [Google Scholar] [CrossRef]
- Liu, W.; Sun, Y.; He, Y.; Zhang, H.; Zheng, Y.; Yao, Y.; Zhang, Z. IL-1β impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint. Int. J. Mol. Med. 2017, 39, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Ogura, N.; Satoh, K.; Akutsu, M.; Tobe, M.; Kuyama, K.; Kuboyama, N.; Sakamaki, H.; Kujiraoka, H.; Kondoh, T. MCP-1 production in temporomandibular joint inflammation. J. Dent. Res. 2010, 89, 1117–1122. [Google Scholar] [CrossRef]
- Tanaka, E.; Detamore, M.S.; Mercuri, L.G. Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. J. Dent. Res. 2008, 87, 296–307. [Google Scholar] [CrossRef]
- Matsumoto, R.; Ioi, H.; Goto, T.K.; Hara, A.; Nakata, S.; Nakasima, A.; Counts, A.L. Relationship between the unilateral TMJ osteoarthritis/osteoarthrosis, mandibular asymmetry and the EMG activity of the masticatory muscles: A retrospective study. J. Oral Rehabil. 2010, 37, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Tang, Y.; Zheng, M.; Jiang, J.; Zhu, G.; Liang, X.; Li, M. Regulation of plasminogen activator activity and expression by cyclic mechanical stress in rat mandibular condylar chondrocytes. Mol. Med. Rep. 2013, 8, 1155–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Jiao, K.; Zhang, M.; Zhou, T.; Liu, X.D.; Yu, S.B.; Lu, L.; Jing, L.; Yang, T.; Zhang, Y.; et al. Occlusal effects on longitudinal bone alterations of the temporomandibular joint. J. Dent. Res. 2013, 92, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Jiao, K.; Niu, L.N.; Wang, M.Q.; Dai, J.; Yu, S.B.; Liu, X.D.; Wang, J. Subchondral bone loss following orthodontically induced cartilage degradation in the mandibular condyles of rats. Bone 2011, 48, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, X.Y.; Wu, T.J.; Cheng, W.; Liu, X.; Jiang, T.T.; Wen, J.; Li, J.; Ma, Q.L.; Hua, Z.C. Endoplasmic reticulum stress regulates rat mandibular cartilage thinning under compressive mechanical stress. J. Biol. Chem. 2013, 288, 18172–18183. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.D.; Liao, L.F.; Zhang, H.Y.; Lu, L.; Jiao, K.; Zhang, M.; Zhang, J.; He, J.J.; Wu, Y.P.; Chen, D.; et al. Reducing dietary loading decreases mouse temporomandibular joint degradation induced by anterior crossbite prosthesis. Osteoarthr. Cartil. 2014, 22, 302–312. [Google Scholar] [CrossRef] [Green Version]
- Charlier, E.; Relic, B.; Deroyer, C.; Malaise, O.; Neuville, S.; Collée, J.; Malaise, M.G.; De Seny, D. Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis. Int. J. Mol. Sci. 2016, 17, 2146. [Google Scholar] [CrossRef] [Green Version]
- Tabeian, H.; Betti, B.F.; Dos Santos Cirqueira, C.; de Vries, T.J.; Lobbezoo, F.; Ter Linde, A.V.; Zandieh-Doulabi, B.; Koenders, M.I.; Everts, V.; Bakker, A.D. IL-1β Damages Fibrocartilage and Upregulates MMP-13 Expression in Fibrochondrocytes in the Condyle of the Temporomandibular Joint. Int. J. Mol. Sci. 2019, 20, 2260. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, M.; Jiang, S.; Ding, W.; Luo, Q.; Shi, J. Expression of ADAMTs-5 and TIMP-3 in the condylar cartilage of rats induced by experimentally created osteoarthritis. Arch. Oral Biol. 2014, 59, 524–529. [Google Scholar] [CrossRef]
- Ge, X.P.; Gan, Y.H.; Zhang, C.G.; Zhou, C.Y.; Ma, K.T.; Meng, J.H.; Ma, X.C. Requirement of the NF-kappaB pathway for induction of Wnt-5A by interleukin-1beta in condylar chondrocytes of the temporomandibular joint: Functional crosstalk between the Wnt-5A and NF-kappaB signaling pathways. Osteoarthr. Cartil. 2011, 19, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Szalewski, L.; Bakalczuk, M.; Bakalczuk, G.; Bakalczuk, S.; Szkutnik, J. Association between estrogen levels and temporomandibular disorders: A systematic literature review. Prz. Menopauzalny 2015, 14, 260–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milam, S.B.; Aufdemorte, T.B.; Sheridan, P.J.; Triplett, R.G.; Van Sickels, J.E.; Holt, G.R. Sexual dimorphism in the distribution of estrogen receptors in the temporomandibular joint complex of the baboon. Oral Surg. Oral Med. Oral Pathol. 1987, 64, 527–532. [Google Scholar] [CrossRef]
- Chen, J.; Kamiya, Y.; Polur, I.; Xu, M.; Choi, T.; Kalajzic, Z.; Drissi, H.; Wadhwa, S. Estrogen via estrogen receptor beta partially inhibits mandibular condylar cartilage growth. Osteoarthr. Cartil. 2014, 22, 1861–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meisler, J.G. Chronic pain conditions in women. J. Womens Health 1999, 8, 313–320. [Google Scholar] [CrossRef]
- Wang, W.; Hayami, T.; Kapila, S. Female hormone receptors are differentially expressed in mouse fibrocartilages. Osteoarthr. Cartil. 2009, 17, 646–654. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Wang, W.; Nair, R.; Kapila, S. Relaxin induces matrix-metalloproteinases-9 and -13 via RXFP1: Induction of MMP-9 involves the PI3K, ERK, Akt and PKC-ζ pathways. Mol. Cell. Endocrinol. 2012, 363, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Chisnoiu, A.M.; Picos, A.M.; Popa, S.; Chisnoiu, P.D.; Lascu, L.; Picos, A.; Chisnoiu, R. Factors involved in the etiology of temporomandibular disorders-a literature review. Clujul Med. 2015, 88, 473–478. [Google Scholar] [CrossRef]
- Smith, S.B.; Parisien, M.; Bair, E.; Belfer, I.; Chabot-Doré, A.-J.; Gris, P.; Khoury, S.; Tansley, S.; Torosyan, Y.; Zaykin, D.V.; et al. Genome-wide association reveals contribution of MRAS to painful temporomandibular disorder in males. Pain 2019, 160, 579–591. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Nakaoka, H.; Yamamoto, K.; Fujikawa, T.; Kim, Y.I.; Yano, K.; Haga, S.; Katayama, K.; Shibusawa, T.; Park, S.B.; et al. Genome-wide association study of degenerative bony changes of the temporomandibular joint. Oral Dis. 2014, 20, 409–415. [Google Scholar] [CrossRef]
- Rintala, M.; Metsaranta, M.; Saamanen, A.M.; Vuorio, E.; Ronning, O. Abnormal craniofacial growth and early mandibular osteoarthritis in mice harbouring a mutant type II collagen transgene. J. Anat. 1997, 190, 201–208. [Google Scholar] [CrossRef]
- Xu, L.; Flahiff, C.M.; Waldman, B.A.; Wu, D.; Olsen, B.R.; Setton, L.A.; Li, Y. Osteoarthritis-like changes and decreased mechanical function of articular cartilage in the joints of mice with the chondrodysplasia gene (cho). Arthr. Rheum. 2003, 48, 2509–2518. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, S.; Embree, M.C.; Kilts, T.; Young, M.F.; Ameye, L.G. Accelerated osteoarthritis in the temporomandibular joint of biglycan/fibromodulin double-deficient mice. Osteoarthr. Cartil. 2005, 13, 817–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Embree, M.; Ono, M.; Kilts, T.; Walker, D.; Langguth, J.; Mao, J.; Bi, Y.; Barth, J.L.; Young, M. Role of subchondral bone during early-stage experimental TMJ osteoarthritis. J. Dent. Res. 2011, 90, 1331–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Pi, C.; Zhang, J.; Fan, Y.; Cui, C.; Zhou, Y.; Sun, J.; Yuan, Q.; Xu, X.; Ye, L.; et al. Aberrant activation of latent transforming growth factor-β initiates the onset of temporomandibular joint osteoarthritis. Bone Res. 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, M.Z.; Davies, S.J.; Gray, R.J.; Sloan, P.; Glenny, A.M. Stabilisation splint therapy for temporomandibular pain dysfunction syndrome. Cochrane Database Syst. Rev. 2004. [Google Scholar] [CrossRef]
- Gerbino, G.; Zavattero, E.; Bosco, G.; Berrone, S.; Ramieri, G. Temporomandibular joint reconstruction with stock and custom-made devices: Indications and results of a 14-year experience. J. Craniomaxillofac. Surg. 2017, 45, 1710–1715. [Google Scholar] [CrossRef]
- Zhang, W.; Ouyang, H.; Dass, C.R.; Xu, J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 2016, 4, 15040. [Google Scholar] [CrossRef]
- Mor, N.; Tang, C.; Blitzer, A. Temporomandibular Myofacial Pain Treated with Botulinum Toxin Injection. Toxins 2015, 7, 2791–2800. [Google Scholar] [CrossRef] [Green Version]
- Goiato, M.C.; da Silva, E.V.; de Medeiros, R.A.; Turcio, K.H.; Dos Santos, D.M. Are intra-articular injections of hyaluronic acid effective for the treatment of temporomandibular disorders? A systematic review. Int. J. Oral Maxillofac. Surg. 2016, 45, 1531–1537. [Google Scholar] [CrossRef] [Green Version]
- Juni, P.; Hari, R.; Rutjes, A.W.; Fischer, R.; Silletta, M.G.; Reichenbach, S.; da Costa, B.R. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [Green Version]
- Ayhan, E.; Kesmezacar, H.; Akgun, I. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J. Orthop. 2014, 5, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Soni, A. Arthrocentesis of Temporomandibular Joint- Bridging the Gap Between Non-Surgical and Surgical Treatment. Ann. Maxillofac. Surg. 2019, 9, 158–167. [Google Scholar] [CrossRef] [PubMed]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell. Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Pan, B.T.; Johnstone, R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell 1983, 33, 967–978. [Google Scholar] [CrossRef]
- Maas, S.L.N.; Breakefield, X.O.; Weaver, A.M. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol. 2017, 27, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Asghar, S.; Litherland, G.J.; Lockhart, J.C.; Goodyear, C.S.; Crilly, A. Exosomes in intercellular communication and implications for osteoarthritis. Rheumatology (Oxf. Engl.) 2020, 59, 57–68. [Google Scholar] [CrossRef]
- Mianehsaz, E.; Mirzaei, H.R.; Mahjoubin-Tehran, M.; Rezaee, A.; Sahebnasagh, R.; Pourhanifeh, M.H.; Mirzaei, H.; Hamblin, M.R. Mesenchymal stem cell-derived exosomes: A new therapeutic approach to osteoarthritis? Stem Cell Res. Ther. 2019, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Raposo, G.; Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [Google Scholar] [CrossRef]
- Choi, D.S.; Kim, D.K.; Kim, Y.K.; Gho, Y.S. Proteomics of extracellular vesicles: Exosomes and ectosomes. Mass Spectrom. Rev. 2015, 34, 474–490. [Google Scholar] [CrossRef]
- Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 2016, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Yin, K.; Wang, S.; Zhao, R.C. Exosomes from mesenchymal stem/stromal cells: A new therapeutic paradigm. Biomark. Res. 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.S.; Lai, R.C.; Lee, M.M.; Choo, A.B.; Lee, C.N.; Lim, S.K. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010, 38, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, R.C.; Tan, S.S.; Teh, B.J.; Sze, S.K.; Arslan, F.; de Kleijn, D.P.; Choo, A.; Lim, S.K. Proteolytic Potential of the MSC Exosome Proteome: Implications for an Exosome-Mediated Delivery of Therapeutic Proteasome. Int. J. Proteom. 2012, 2012, 971907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.P.; Mardini, O.; Ericsson, M.; Prabhakar, S.; Maguire, C.; Chen, J.W.; Tannous, B.A.; Breakefield, X.O. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 2014, 8, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Grange, C.; Tapparo, M.; Bruno, S.; Chatterjee, D.; Quesenberry, P.J.; Tetta, C.; Camussi, G. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int. J. Mol. Med. 2014, 33, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Chu, W.C.; Lai, R.C.; Lim, S.K.; Hui, J.H.; Toh, W.S. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr. Cartil. 2016, 24, 2135–2140. [Google Scholar] [CrossRef] [Green Version]
- Lai, R.C.; Yeo, R.W.; Lim, S.K. Mesenchymal stem cell exosomes. Semin. Cell Dev. Biol. 2015, 40, 82–88. [Google Scholar] [CrossRef]
- Lai, R.C.; Chen, T.S.; Lim, S.K. Mesenchymal stem cell exosome: A novel stem cell-based therapy for cardiovascular disease. Regen. Med. 2011, 6, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Yeo, R.W.; Lai, R.C.; Zhang, B.; Tan, S.S.; Yin, Y.; Teh, B.J.; Lim, S.K. Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 336–341. [Google Scholar] [CrossRef]
- Vaamonde-Garcia, C.; Riveiro-Naveira, R.R.; Valcarcel-Ares, M.N.; Hermida-Carballo, L.; Blanco, F.J.; Lopez-Armada, M.J. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 2012, 64, 2927–2936. [Google Scholar] [CrossRef]
- Terkeltaub, R.; Johnson, K.; Murphy, A.; Ghosh, S. Invited review: The mitochondrion in osteoarthritis. Mitochondrion 2002, 1, 301–319. [Google Scholar] [CrossRef]
- Pashoutan Sarvar, D.; Shamsasenjan, K.; Akbarzadehlaleh, P. Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy. Adv. Pharm. Bull. 2016, 6, 293–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haslauer, C.M.; Elsaid, K.A.; Fleming, B.C.; Proffen, B.L.; Johnson, V.M.; Murray, M.M. Loss of extracellular matrix from articular cartilage is mediated by the synovium and ligament after anterior cruciate ligament injury. Osteoarthr. Cartil. 2013, 21, 1950–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuta, H.; Kudo, S.; Nakamura, E.; Otsuka, Y.; Takagi, K.; Hiraki, Y. Active proliferation of mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects of articular cartilage. Osteoarthr. Cartil. 2004, 12, 586–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luthje, J. Origin, metabolism and function of extracellular adenine nucleotides in the blood. Klin. Wochenschr. 1989, 67, 317–327. [Google Scholar] [CrossRef]
- Ayna, G.; Krysko, D.V.; Kaczmarek, A.; Petrovski, G.; Vandenabeele, P.; Fesus, L. ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PLoS ONE 2012, 7, e40069. [Google Scholar] [CrossRef] [Green Version]
- Aymeric, L.; Apetoh, L.; Ghiringhelli, F.; Tesniere, A.; Martins, I.; Kroemer, G.; Smyth, M.J.; Zitvogel, L. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res. 2010, 70, 855–858. [Google Scholar] [CrossRef] [Green Version]
- Antonioli, L.; Pacher, P.; Vizi, E.S.; Haskó, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 2013, 19, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Sun, F.; Liu, J.; Ding, T.; She, J.; Mao, F.; Xu, W.; Qian, H.; Yan, Y. Emerging Role of Mesenchymal Stem Cell-derived Exosomes in Regenerative Medicine. Curr. Stem Cell Res. Ther. 2019, 14, 482–494. [Google Scholar] [CrossRef]
- Fahy, N.; de Vries-van Melle, M.L.; Lehmann, J.; Wei, W.; Grotenhuis, N.; Farrell, E.; van der Kraan, P.M.; Murphy, J.M.; Bastiaansen-Jenniskens, Y.M.; van Osch, G.J. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthr. Cartil. 2014, 22, 1167–1175. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Chen, B.; Lv, T.; Liu, X.; Fu, X.; Wang, Q.; Yan, L.; Kang, N.; Cao, Y.; Xiao, R. Bone Marrow Mesenchymal Stem Cell-Based Engineered Cartilage Ameliorates Polyglycolic Acid/Polylactic Acid Scaffold-Induced Inflammation Through M2 Polarization of Macrophages in a Pig Model. Stem Cells Transl. Med. 2016, 5, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Ghannam, S.; Bouffi, C.; Djouad, F.; Jorgensen, C.; Noel, D. Immunosuppression by mesenchymal stem cells: Mechanisms and clinical applications. Stem Cell Res. Ther. 2010, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Yin, Y.; Lai, R.C.; Tan, S.S.; Choo, A.B.; Lim, S.K. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 2014, 23, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Mitsialis, S.A.; Aslam, M.; Vitali, S.H.; Vergadi, E.; Konstantinou, G.; Sdrimas, K.; Fernandez-Gonzalez, A.; Kourembanas, S. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 2012, 126, 2601–2611. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Zhao, A.G.; Sumer, H. New Approaches to Treat Osteoarthritis with Mesenchymal Stem Cells. Stem Cells Int. 2018, 2018, 5373294. [Google Scholar] [CrossRef]
- Helgeland, E.; Shanbhag, S.; Pedersen, T.O.; Mustafa, K.; Rosen, A. Scaffold-Based Temporomandibular Joint Tissue Regeneration in Experimental Animal Models: A Systematic Review. Tissue Eng. Part B Rev. 2018, 24, 300–316. [Google Scholar] [CrossRef]
- Zhang, S.; Teo, K.Y.W.; Chuah, S.J.; Lai, R.C.; Lim, S.K.; Toh, W.S. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials 2019, 200, 35–47. [Google Scholar] [CrossRef]
- Zhang, S.; Chuah, S.J.; Lai, R.C.; Hui, J.H.P.; Lim, S.K.; Toh, W.S. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 2018, 156, 16–27. [Google Scholar] [CrossRef]
- Kim, H.; Yang, G.; Park, J.; Choi, J.; Kang, E.; Lee, B.K. Therapeutic effect of mesenchymal stem cells derived from human umbilical cord in rabbit temporomandibular joint model of osteoarthritis. Sci. Rep. 2019, 9, 13854. [Google Scholar] [CrossRef] [Green Version]
Advantages | Disadvantages | |
---|---|---|
Mesenchymal stem cell (MSC) | Easy to isolate and obtain | Risk of teratoma formation after transplantation |
Highly proliferative | Limited number of cells | |
Multilineal differentiation | Risk of potentially transmit infection | |
Minimal risk of immune problems | Risk of potentially transmit genetic diseases | |
In some cases, free from ethical issues | Ethical and political issues | |
Accumulated experimental and clinical results (relatively long time) | Uncertainty of the related regenerative mechanism | |
MSC exosomes | Targeting efficiency through specific proteins in the exosome membranes and natural homing ability | No recommended isolation protocol |
Excellent immune-compatibility and non-cytotoxic | No standard manufacturing methods | |
Low risk of teratoma formation | Rapid clearance from blood after administration (in vivo) | |
Relatively free against ethical issues | Limited and insufficient research on exosome-based therapeutics | |
Good delivery vehicle for both hydrophobic and hydrophilic drugs | Difficulty in isolation and purification of exosomes with specific bioactive molecules | |
Stable upon freezing and thawing (compared with cells) | Lack of techniques and methodology to strictly quantify the molecular and physical aspects of exosomes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-H.; Park, H.-K.; Auh, Q.-S.; Nah, H.; Lee, J.S.; Moon, H.-J.; Heo, D.N.; Kim, I.S.; Kwon, I.K. Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis. Int. J. Mol. Sci. 2020, 21, 1541. https://doi.org/10.3390/ijms21041541
Lee Y-H, Park H-K, Auh Q-S, Nah H, Lee JS, Moon H-J, Heo DN, Kim IS, Kwon IK. Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis. International Journal of Molecular Sciences. 2020; 21(4):1541. https://doi.org/10.3390/ijms21041541
Chicago/Turabian StyleLee, Yeon-Hee, Hee-Kyung Park, Q-Schick Auh, Haram Nah, Jae Seo Lee, Ho-Jin Moon, Dong Nyoung Heo, In San Kim, and Il Keun Kwon. 2020. "Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis" International Journal of Molecular Sciences 21, no. 4: 1541. https://doi.org/10.3390/ijms21041541
APA StyleLee, Y. -H., Park, H. -K., Auh, Q. -S., Nah, H., Lee, J. S., Moon, H. -J., Heo, D. N., Kim, I. S., & Kwon, I. K. (2020). Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis. International Journal of Molecular Sciences, 21(4), 1541. https://doi.org/10.3390/ijms21041541