Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation
Abstract
:1. Introduction
2. Fabrication Techniques for Three-Dimensional (3D) Cell Microcarriers
3. Microspheres as 3D Cell Carriers
3.1. Non-Porous Microspheres
3.2. Porous Microspheres
4. Microgels as 3D Cell Carriers
5. Understanding of Real 3D Cell Culture and Challenges
6. Microcarrier-Supported 3D Cell Cultures towards Engineered Tissues
6.1. Engineered Tissues from Controllable Assembly via Specific Interactions
6.2. Engineered Tissues from Random Assembly of Cell-Laden Blocks
6.3. Advantages, Limitations and Prospective
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2/3D | Two-/three-dimensional |
ECM | Extracellular matrix |
TIPS | Thermally induced phase separation |
W/O | W/O |
PVA | Poly(vinyl alcohol) |
CNF | Cellulose nanofibril |
BC | Bacterial cellulose |
PEG | Poly(ethylene glycol) |
U-4CR | Ugi four-component reaction |
P-3CR | Passerini three-component reaction |
PLA | Polylactide |
PLGA | Poly(D, L-lactide-co-glycolide) |
NIPAM | N-isopopylacrylamide |
PEC | Polyelectrolyte complex |
MSCs | Mesenchymal stem cells |
PCB | Polycarboxybetaine |
ZIP | Zwitterionic injectable pellet |
ADSCs | Adipose-derived stem cells |
CSM | Chitosan microspheres |
MAPhB | Microporous annealed particle |
hBMSC | Human bone marrow derived mesenchymal stem cell |
HUVEC | Human umbilical vein endothelial cells |
ADCs | Anchorage dependent cells |
References
- Asghar, W.; El Assal, R.; Shafiee, H.; Pitteri, S.; Paulmurugan, R.; Demirci, U. Engineering cancer microenvironments for in vitro 3-D tumor models. Mater. Today 2015, 18, 539–553. [Google Scholar] [CrossRef] [PubMed]
- In, J.G.; Foulke-Abel, J.; Estes, M.K.; Zachos, N.C.; Kovbasnjuk, O.; Donowitz, M. Human mini-guts: New insights into intestinal physiology and host-pathogen interactions. Nat. Rev. Gastro. Hepat. 2016, 13, 633–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Techn. 2014, 12, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Skardal, A.; Devarasetty, M.; Rodman, C.; Atala, A.; Soker, S. Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann. Bio. Eng. 2015, 43, 2361–2373. [Google Scholar] [CrossRef] [Green Version]
- Achilli, T.-M.; Meyer, J.; Morgan, J.R. Advances in the formation, use and understanding of multi-cellular spheroids. Expert. Opin. Biol. Th. 2012, 12, 1347–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pampaloni, F.; Reynaud, E.G.; Stelzer, E.H.K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Bio. 2007, 8, 839. [Google Scholar] [CrossRef] [PubMed]
- Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Ke, C.J.; Yen, K.C.; Hsieh, H.C.; Sun, J.S.; Lin, F.H. 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy. Theranostics 2015, 5, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Mazza, G.; Rombouts, K.; Hall, A.R.; Urbani, L.; Luong, T.V.; Al-Akkad, W.; Longato, L.; Brown, D.; Maghsoudlou, P.; Dhillon, A.P.; et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci. Rep-UK. 2015, 5, 13079. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, C.; Wang, C.; Kuang, Y.; Li, Y.; Jiang, F.; Gong, A. Superflexible wood. ACS Appl. Mater. Inter. 2017, 9, 23520–23527. [Google Scholar] [CrossRef]
- Khademhosseini, A.; Langer, R.; Borenstein, J.; Vacanti, J.P. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 2006, 103, 2480–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, K.F.; Cheah, C.M.; Chua, C.K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003, 24, 2363–2378. [Google Scholar] [CrossRef]
- Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B-Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [Green Version]
- Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413–3431. [Google Scholar] [CrossRef] [PubMed]
- Kehr, N.S. Enantiomorphous periodic mesoporous organosilica-based nanocomposite hydrogel scaffolds for cell adhesion and cell enrichment. Biomacromolecules 2016, 17, 1117–1122. [Google Scholar] [CrossRef]
- Motealleh, A.; Hermes, H.; Jose, J.; Kehr, N.S. Chirality-dependent cell adhesion and enrichment in Janus nanocomposite hydrogels. Nanomed-Nanotechnol. 2018, 14, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Motealleh, A.; Seda Kehr, N. Janus nanocomposite hydrogels for chirality-dependent cell adhesion and migration. ACS Appl. Mater. Inter. 2017, 9, 33674–33682. [Google Scholar] [CrossRef]
- Aguado, B.A.; Mulyasasmita, W.; Su, J.; Lampe, K.J.; Heilshorn, S.C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 2011, 18, 806–815. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.H.; Yang, S.H.; Su, W.Y.; Chen, Y.C.; Yang, K.C.; Cheng, W.T.K.; Wu, S.C.; Lin, F.H. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: An in vitro study. Tissue Eng. Part A 2009, 16, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Wei, K.; Lin, S.; Xu, Z.; Sun, Y.; Shi, P.; Li, G.; Bian, L. Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials 2016, 101, 217–228. [Google Scholar] [CrossRef]
- Wang, C.; Varshney, R.R.; Wang, D.A. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adva. Drug Deliver. Rev. 2010, 62, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Kenny, P.A.; Lee, E.H.; Bissell, M.J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods. 2007, 4, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanoni, M.; Pignatta, S.; Arienti, C.; Bonafè, M.; Tesei, A. Anticancer drug discovery using multicellular tumor spheroid models. Expert Opin. Drug Dis. 2019, 14, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Sensi, F.; D’Angelo, E.; D’Aronco, S.; Molinaro, R.; Agostini, M. Preclinical three-dimensional colorectal cancer model: The next generation of in vitro drug efficacy evaluation. J. Cell. Physiol. 2019, 234, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Giannattasio, A.; Weil, S.; Kloess, S.; Ansari, N.; Stelzer, E.H.K.; Cerwenka, A.; Steinle, A.; Koehl, U.; Koch, J. Cytotoxicity and infiltration of human NK cells in in vivo-like tumor spheroids. BMC Cancer 2015, 15, 351. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.C.; Moreira, A.F.; de Melo-Diogo, D.; Gaspar, V.M.; Carvalho, M.P.; Correia, I.J. 3D tumor spheroids: An overview on the tools and techniques used for their analysis. Biotechnol. Adv. 2016, 34, 1427–1441. [Google Scholar] [CrossRef]
- Valcárcel, M.; Arteta, B.; Jaureguibeitia, A.; Lopategi, A.; Martínez, I.; Mendoza, L.; Muruzabal, F.J.; Salado, C.; Vidal-Vanaclocha, F. Three-dimensional growth as multicellular spheroid activates the proangiogenic phenotype of colorectal carcinoma cells via LFA-1-dependent VEGF: Implications on hepatic micrometastasis. J. Transl. Med. 2008, 6, 57. [Google Scholar]
- Roelants, M.; Van Cleynenbreugel, B.; Lerut, E.; Van Poppel, H.; de Witte, P.A.M. Human serum albumin as key mediator of the differential accumulation of hypericin in normal urothelial cell spheroids versus urothelial cell carcinoma spheroids. Photoch. Photobio. Sci. 2011, 10, 151–159. [Google Scholar] [CrossRef]
- Lu, H.; Stenzel, M.H. Multicellular tumor spheroids (mcts) as a 3D in vitro evaluation tool of nanoparticles. Small 2018, 13, 1702858. [Google Scholar] [CrossRef]
- Griffith, C.K.; Miller, C.; Sainson, R.C.; Calvert, J.W.; Jeon, N.L.; Hughes, C.C.; George, S.C. Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng. 2005, 11, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Nishiguchi, A.; Yoshida, H.; Matsusaki, M.; Akashi, M. Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cell-accumulation technique. Adv. Mater. 2011, 23, 3506–3510. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, A.; Matsusaki, M.; Asano, Y.; Shimoda, H.; Akashi, M. Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures. Biomaterials 2014, 35, 4739–4748. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.K.L.; Reuveny, S.; Oh, S.K.W. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnol. Adv. 2013, 31, 1032–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healthcare, G.E.; Biosciences, A. Microcarrier cell culture: Principles and methods; General Electric Company: Fairfield, CT, USA, 2005. [Google Scholar]
- Van Wezel, A.L. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 1967, 216, 64. [Google Scholar] [CrossRef]
- Abranches, E.; Bekman, E.; Henrique, D.; Cabral, J.M. Expansion of mouse embryonic stem cells on microcarriers. Biotechnol. Bioeng. 2007, 96, 1211–1221. [Google Scholar] [CrossRef]
- Bhuptani, R.S.; Patravale, V.B. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells. Int. J. Pharm. 2016, 515, 555–564. [Google Scholar] [CrossRef]
- Dias, A.D.; Elicson, J.M.; Murphy, W.L. Microcarriers with synthetic hydrogel surfaces for stem cell expansion. Adv. Healthc. Mater. 2017, 6, 1700072. [Google Scholar] [CrossRef]
- Duan, B.; Zheng, X.; Xia, Z.; Fan, X.; Guo, L.; Liu, J.; Wang, Y.; Ye, Q.; Zhang, L. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew. Chem. Int. Edit. 2015, 54, 5152–5156. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, Y.; Yan, S.; Liu, Z.; He, S.; Cui, L.; Yin, J. Poly (L-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater. 2014, 10, 276–288. [Google Scholar] [CrossRef]
- Melero-Martin, J.M.; Dowling, M.A.; Smith, M.; Al-Rubeai, M. Expansion of chondroprogenitor cells on macroporous microcarriers as an alternative to conventional monolayer systems. Biomaterials 2006, 27, 2970–2979. [Google Scholar] [CrossRef]
- Yu, C.; Kornmuller, A.; Brown, C.; Hoare, T.; Flynn, L.E. Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion. Biomaterials 2017, 120, 66–80. [Google Scholar] [CrossRef]
- Platen, M.; Mathieu, E.; Lück, S.; Schube, R.; Jordan, R.; Pauto, S. Poly(2-oxazoline)-based microgel particles for neuronal cell culture. Biomacromolecules 2015, 16, 1516–1524. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, X.; Yu, K.; Meng, H.; Zheng, Y.; Peng, J.; Lu, S.; Liu, X.; Xie, Y.; Qiao, K. Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials 2018, 171, 118–132. [Google Scholar] [CrossRef]
- Neto, M.D.; Oliveira, M.B.; Mano, J.F. Microparticles in contact with cells: From carriers to multifunctional tissue modulators. Trends Biotechnol. 2019, 37, 1011–1028. [Google Scholar] [CrossRef]
- Levato, R.; Visser, J.; Planell, J.A.; Engel, E.; Malda, J.; Mateos-Timoneda, M.A. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 2014, 6, 035020. [Google Scholar] [CrossRef]
- Correia, C.R.; Bjørge, I.M.; Zeng, J.; Matsusaki, M.; Mano, J.F. Liquefied microcapsules as dual-microcarriers for 3D+ 3D bottom-up tissue engineering. Adv. Healthcare Mater. 2019, 8, 1901221. [Google Scholar] [CrossRef]
- Hernández, R.M.; Orive, G.; Murua, A.; Pedraz, J.L. Microcapsules and microcarriers for in situ cell delivery. Adv. Drug Deliver. Rev. 2010, 62, 711–730. [Google Scholar] [CrossRef]
- Tavassoli, H.; Alhosseini, S.N.; Tay, A.; Chan, P.P.; Oh, S.K.W.; Warkiani, M.E. Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials 2018, 181, 333–346. [Google Scholar] [CrossRef]
- Martin, Y.; Eldardiri, M.; Lawrence-Watt, D.J.; Sharpe, J.R. Microcarriers and their potential in tissue regeneration. Tissue Eng. Part B Rev. 2011, 17, 71–80. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Wang, Y.; Gou, W.; Yuan, X.; Peng, J.; Guo, Q.; Lu, S. Past, present, and future of microcarrier-based tissue engineering. J. Orthop. Transl. 2015, 3, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chen, J.; Tong, X.; Mei, J.; Chen, Y.; Mou, X. Recent advances in the use of microcarriers for cell cultures and their ex vivo and in vivo applications. Biotechnol. Lett. 2020, 42, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Patricio, T.M.F.; Panseri, S.; Montesi, M.; Iafisco, M.; Sandri, M.; Tampieri, A.; Sprio, S. Superparamagnetic hybrid microspheres affecting osteoblasts behaviour. Mat. Sci. Eng. C-Mater. 2019, 96, 234–247. [Google Scholar] [CrossRef]
- Huang, L.; Xiao, L.; Poudel, A.J.; Li, J.; Zhou, P.; Gauthier, M.; Liu, H.; Wu, Z.; Yang, G. Porous chitosan microspheres as microcarriers for 3D cell culture. Carbohyd. Polym. 2018, 202, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhai, T.; Turng, L.S. Aerogel microspheres based on cellulose nanofibrils as potential cell culture scaffolds. Cellulose 2017, 24, 2791–2799. [Google Scholar] [CrossRef]
- Chung, H.J.; Park, T.G. Injectable cellular aggregates prepared from biodegradable porous microspheres for adipose tissue engineering. Tissue Eng. Part A 2008, 15, 1391–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashi, K.; Miki, N. Hydrogel fiber cultivation method for forming bacterial cellulose microspheres. Micromachines 2018, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.T.; Rotem, A.; Heyman, J.A.; Weitz, D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip 2012, 12, 2146–2155. [Google Scholar] [CrossRef]
- Joensson, H.N.; Svahn, H.A. Droplet microfluidics-A tool for single-cell analysis. Angew. Chem. Int. Edit. 2012, 51, 12176–12192. [Google Scholar] [CrossRef]
- Leng, X.; Zhang, W.; Wang, C.; Cui, L.; Yang, C.J. Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR. Lab Chip 2010, 10, 2841–2843. [Google Scholar] [CrossRef] [Green Version]
- Mark, D.; Haeberle, S.; Roth, G.; Von Stetten, F.; Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. In Microfluidics based microsystems.; Springer: Dordrecht, Switzerland, 2010; pp. 305–376. [Google Scholar]
- Kim, S.; Oh, J.; Cha, C. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry. Colloids Surfaces B 2016, 147, 1–8. [Google Scholar] [CrossRef]
- Aikawa, T.; Konno, T.; Takai, M.; Ishihara, K. Spherical phospholipid polymer hydrogels for cell encapsulation prepared with a flow-focusing microfluidic channel device. Langmuir 2011, 28, 2145–2150. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, T.; Konno, T.; Ishihara, K. Phospholipid polymer hydrogel microsphere modulates the cell cycle profile of encapsulated cells. Soft Matter 2013, 9, 4628–4634. [Google Scholar] [CrossRef]
- Lee, D.; Lee, K.; Cha, C. Microfluidics-Assisted Fabrication of Microtissues with Tunable Physical Properties for Developing an In Vitro Multiplex Tissue Model. Adv. Biosystems 2018, 2, 1800236. [Google Scholar] [CrossRef]
- Jiang, W.; Li, M.; Chen, Z.; Leong, K.W. Cell-laden microfluidic microgels for tissue regeneration. Lab Chip 2016, 16, 4482–4506. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.R.; Custódio, C.A.; Mano, J.F. Multifunctional laminarin microparticles for cell adhesion and expansion. Carbohyd. Polym. 2018, 202, 91–98. [Google Scholar] [CrossRef]
- Pajoumshariati, S.R.; Azizi, M.; Wesner, D.; Miller, P.G.; Shuler, M.L.; Abbaspourrad, A. Microfluidic-based cell-embedded microgels using nonfluorinated oil as a model for the gastrointestinal niche. ACS Appl. Mater. Inter. 2018, 10, 9235–9246. [Google Scholar] [CrossRef]
- Liu, E.Y.; Jung, S.; Weitz, D.A.; Yi, H.; Choi, C.H. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation. Lab Chip 2018, 18, 323–334. [Google Scholar] [CrossRef]
- Hauck, N.; Seixas, N.; Centeno, S.; Schlüßler, R.; Cojoc, G.; Müller, P.; Guck, J.; Wöll, D.; Wessjohan, L.A.; Thiele, J. Droplet-assisted microfluidic fabrication and characterization of multifunctional polysaccharide microgels formed by multicomponent reactions. Polymers 2018, 10, 1055. [Google Scholar] [CrossRef] [Green Version]
- Sehlinger, A.; Meier, M.A. Passerini and Ugi multicomponent reactions in polymer science. In Multi-component and sequential reactions in polymer synthesis; Springer: Cham, Switzerland, 2014; pp. 61–86. [Google Scholar]
- Cumpstey, I. Chemical modification of polysaccharides. ISRN Org. Chem. 2013, 4, 417672. [Google Scholar] [CrossRef]
- Kirschning, A.; Dibbert, N.; Dräger, G. Chemical functionalization of polysaccharides-Towards biocompatible hydrogels for biomedical applications. Chem-Eur J. 2018, 24, 1231–1240. [Google Scholar] [CrossRef]
- Heida, T.; Neubauer, J.W.; Seuss, M.; Hauck, N.; Thiele, J.; Fery, A. Mechanically defined microgels by droplet microfluidics. Macromol. Chem. Phys. 2017, 218, 1600418. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, B.; Wang, S.; Duan, J.; Qiu, J.; Li, D.; Sang, Y.; Ge, S.; Liu, H. Mass-production of fluorescent chitosan/graphene oxide hybrid microspheres for in vitro 3D expansion of human umbilical cord mesenchymal stem cells. Chem. Eng. J. 2018, 331, 675–684. [Google Scholar] [CrossRef]
- Tan, K.Y.; Teo, K.L.; Lim, J.F.; Chen, A.K.; Reuveny, S.; Oh, S.K. Serum-free media formulations are cell line–specific and require optimization for microcarrier culture. Cytotherapy 2015, 17, 1152–1165. [Google Scholar] [CrossRef] [PubMed]
- Guillou, L.; Babataheri, A.; Puech, P.H.; Barakat, A.I.; Husson, J. Dynamic monitoring of cell mechanical properties using profile microindentation. Sci. Rep-UK. 2016, 6, 21529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Custódio, C.A.; Cerqueira, M.T.; Marques, A.P.; Reis, R.L.; Mano, J.F. Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration. Biomaterials 2015, 43, 23–31. [Google Scholar] [CrossRef]
- Tedesco, M.T.; Di Lisa, D.; Massobrio, P.; Colistra, N.; Pesce, M.; Catelani, T.; Dellacasa, E.; Raiteri, R.; Martinoia, S.; Pastorino, L. Soft chitosan microbeads scaffold for 3D functional neuronal networks. Biomaterials 2018, 156, 159–171. [Google Scholar] [CrossRef]
- Wu, X.B.; Peng, C.H.; Huang, F.; Kuang, J.; Yu, S.L.; Dong, Y.D.; Han, B.S. Preparation and characterization of chitosan porous microcarriers for hepatocyte culture. Hepatob. Pancreat. Dis. 2011, 10, 509–515. [Google Scholar] [CrossRef]
- Anitha, A.; Sowmya, S.; Kumar, P.S.; Deepthi, S.; Chennazhi, K.P.; Ehrlich, H.; Tsurkan, M. Jayakumar, R., Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci. 2014, 39, 1644–1667. [Google Scholar] [CrossRef]
- Pellá, M.G.; Lima-Tenório, M.K.; Tenório-Neto, E.T.; Guilherme, M.R.; Muniz, E.C.; Rubira, A.F. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohyd. Polym. 2018, 196, 233–245. [Google Scholar] [CrossRef]
- Hong, Y.; Gao, C.; Xie, Y.; Gong, Y.; Shen, J. Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials 2005, 26, 6305–6313. [Google Scholar] [CrossRef]
- Chen, R.; Curran, S.J.; Curran, J.M.; Hunt, J.A. The use of poly (l-lactide) and RGD modified microspheres as cell carriers in a flow intermittency bioreactor for tissue engineering cartilage. Biomaterials 2006, 27, 4453–4460. [Google Scholar] [CrossRef] [PubMed]
- Newman, K.D.; McBurney, M.W. Poly (D, L lactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells. Biomaterials 2004, 25, 5763–5771. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Yoon, J.J.; Lee, D.S.; Park, T.G. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials 2006, 27, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, S.; Yildirimer, L.; Zhao, H.; Ding, R.; Wang, H.; Cui, W.; Weitz, D. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 2016, 26, 2809–2819. [Google Scholar] [CrossRef]
- Li, F.; Truong, V.X.; Thissen, H.; Frith, J.E.; Forsythe, J.S. Microfluidic encapsulation of human mesenchymal stem cells for articular cartilage tissue regeneration. ACS Appl. Mater. Inter. 2017, 9, 8589–8601. [Google Scholar] [CrossRef]
- Sung, B.; Krieger, J.; Yu, B.; Kim, M.H. Colloidal gelatin microgels with tunable elasticity support the viability and differentiation of mesenchymal stem cells under pro-inflammatory conditions. J. Biomed Mater. Res. A 2018, 106, 2753–2761. [Google Scholar] [CrossRef]
- Gjorevski, N.; Sachs, N.; Manfrin, A.; Giger, S.; Bragina, M.E.; Ordóñez-Morán, P.; Clevers, H.; Lutolf, M.P. Designer matrices for intestinal stem cell and organoid culture. Nature 2016, 539, 560. [Google Scholar] [CrossRef]
- Laschewsky, A. Structures and synthesis of zwitterionic polymers. Polymers 2014, 6, 1544–1601. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010, 22, 920–932. [Google Scholar] [CrossRef]
- Shao, Q.; Jiang, S. Molecular understanding and design of zwitterionic materials. Adv. Mater. 2015, 27, 15–26. [Google Scholar] [CrossRef]
- Ishihara, K.; Goto, Y.; Takai, M.; Matsuno, R.; Inoue, Y.; Konno, T. Novel polymer biomaterials and interfaces inspired from cell membrane functions. BBA-Gen. Subj. 2011, 1810, 268–275. [Google Scholar] [CrossRef] [PubMed]
- White, A.D.; Nowinski, A.K.; Huang, W.; Keefe, A.J.; Sun, F.; Jiang, S. Decoding nonspecific interactions from nature. Chem. Sci. 2012, 3, 3488–3494. [Google Scholar] [CrossRef]
- Bai, T.; Sun, F.; Zhang, L.; Sinclair, A.; Liu, S.; Ella-Menye, J.R.; Zheng, Y.; Jiang, S. Restraint of the differentiation of mesenchymal stem cells by a nonfouling zwitterionic hydrogel. Angew. Chem. Int. Edit. 2014, 53, 12729–12734. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yuan, Z.; Zhang, P.; Sinclair, A.; Jain, P.; Wu, K.; Tsao, C.; Xie, J.; Bai, T.; Jiang, S. Zwitterionic nanocages overcome the efficacy loss of biologic drugs. Adv. Mater. 2018, 30, 1705728. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, F.; Tsao, C.; Liu, S.; Jain, P.; Sinclair, A.; Hung, H.C.; Bai, T.; Wu, K.; Jiang, S. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. P Natl. Acad. Sci. 2015, 112, 12046–12051. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, A.; O’Kelly, M.B.; Bai, T.; Hung, H.C.; Jain, P.; Jiang, S. Self-Healing Zwitterionic Microgels as a Versatile Platform for Malleable Cell Constructs and Injectable Therapies. Adv. Mater. 2018, 30, 1803087. [Google Scholar] [CrossRef]
- Cui, X.; Hartanto, Y.; Wu, C.; Bi, J.; Dai, S.; Zhang, H. Tuning microenvironment for multicellular spheroid formation in thermo-responsive anionic microgel scaffolds. J. Biomed. Mater. Res. A 2018, 106, 2899–2909. [Google Scholar] [CrossRef]
- Tripathi, A.; Melo, J.S. Preparation of a sponge-like biocomposite agarose–chitosan scaffold with primary hepatocytes for establishing an in vitro 3D liver tissue model. RSC Adv. 2015, 5, 30701–30710. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Wei, J.; Liu, Y.; Zhang, H.; Chen, J.; Li, X. Hepatocyte spheroid culture on fibrous scaffolds with grafted functional ligands as an in vitro model for predicting drug metabolism and hepatotoxicity. Acta Biomater. 2015, 28, 138–148. [Google Scholar] [CrossRef]
- Yan, S.; Xia, P.; Xu, S.; Zhang, K.; Li, G.; Cui, L.; Yin, J. Nanocomposite porous microcarriers based on strontium-substituted HA-g-poly (γ-benzyl-l-glutamate) for bone tissue engineering. ACS Appl. Mater. Inter. 2018, 10, 16270–16281. [Google Scholar] [CrossRef]
- Choi, S.W.; Xie, J.; Xia, Y. Chitosan-based inverse opals: Three-dimensional scaffolds with uniform pore structures for cell culture. Adv. Mater. 2009, 21, 2997–3001. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.M.; Haugh, M.G.; O’Brien, F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010, 31, 461–466. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L.J. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005, 26, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Yannas, I.V.; Lee, E.; Orgill, D.P.; Skrabut, E.M.; Murphy, G.F. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. P. Natl. Acad. Sci. 1989, 86, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, A.S.; Campbell, G.T.; Shekiro, K.M.; Anseth, K.S. Clickable microgel scaffolds as platforms for 3D cell encapsulation. Adv. Healthc Mater. 2017, 6, 1700254. [Google Scholar] [CrossRef]
- Griffin, D.R.; Weaver, W.M.; Scumpia, P.O.; Di Carlo, D.; Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 2015, 14, 737. [Google Scholar] [CrossRef] [Green Version]
- Nih, L.R.; Sideris, E.; Carmichael, S.T.; Segura, T. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Adv. Mater. 2017, 29, 1606471. [Google Scholar] [CrossRef]
- Li, F.; Truong, V.X.; Fisch, P.; Levinson, C.; Glattauer, V.; Zenobi-Wong, M.; Thissen, H.; Forsythe, J.S.; Frith, J.E. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater. 2018, 77, 48–62. [Google Scholar] [CrossRef]
- Tasoglu, S.; Yu, C.H.; Gungordu, H.I.; Guven, S.; Vural, T.; Demirci, U. Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat. Commun. 2015, 5, 4702–4713. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, Y.T.; Morimoto, Y.; Takeuchi, S. Molding cell beads for rapid construction of macroscopic 3D tissue architecture. Adv. Mater. 2011, 23, H90–H94. [Google Scholar] [CrossRef]
- McGuigan, A.P.; Leung, B.; Sefton, M.V. Fabrication of cells containing gel modules to assemble modular tissue-engineered constructs. Nat. Protoc. 2006, 1, 2963–2969. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gong, Y.; Zhong, Y.; Yao, Y.; Su, K.; Wang, D.A. The control of anchorage-dependent cell behavior within a hydrogel/microcarrier system in an osteogenic model. Biomaterials 2009, 30, 2259–2269. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Bae, C.Y.; Park, J.K. Freestanding stacked mesh-like hydrogel sheets enable the creation of complex macroscale cellular scaffolds. Biotechnol. J. 2015, 11, 585–591. [Google Scholar] [CrossRef]
- Tiruvannamalai-Annamalai, R.; Armant, D.R.; Matthew, H.W. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues. PLoS ONE 2014, 9, e84287. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M.; Wei, D.; Yang, Y.; Sun, J.; Chen, X.; Guo, L.; Wei, Q.; Wan, Y.; Fan, H.; Zhang, X. Vascularization in engineered tissue construct by assembly of cellular patterned micro-modules and degradable microspheres. ACS Appl. Mater. Inter. 2017, 9, 3524–3534. [Google Scholar] [CrossRef]
Morphology | Method | Size (µm) | Ref. |
---|---|---|---|
Non-porous microsphere | Combining the emulsification method and biomimetic mineralization process | 70 | [53] |
Fermentation by specific bacteria | 200–1000 | [57] | |
High-throughput double emulsion-based microfluidic approach | 100 | [69] | |
Through an acid dissolution/alkali precipitation approach. | 400 | [75] | |
Porous microsphere | Micro-emulsification and thermally induced phase separation (TIPS) | 150 | [54] |
Combination of the water-in-oil (W/O) emulsification process and the freeze-drying process | 100–500 | [55] | |
Microgel | Using a microfluidic flow-focusing device | 100–160 | [65] |
Combination of microfluidics technology and photopolymerization | 100 | [67] | |
Microfluidic approach | 50 | [68] | |
Multicomponent reactions | 40–80 | [70] | |
Droplet based microfluidic | Micro-size | [74] |
Microspheres | Materials | Size | Cell Type | Application | Ref. |
---|---|---|---|---|---|
Non-porous microsphere | Collagen | 70 | Osteoblast cells | Potential ability of drug carrier and smart response in the presence of inflammatory states. | [53] |
Chitosan | 400 | Human umbilical cord mesenchymal stem cells (huMSC) | Support long-time stem cell expansion can greatly maintain the pluripotency of huMSC | [75] | |
Chitosan | 115 | Human subcutaneous adipose cell | separation, scale-up expansion of specific cell type and successful use as an injectable system to form small tissue constructs in situ. | [78] | |
Chitin | 3–130 | Human hepatocyte L02 | As excellent 3D cell carriers for applications in tissue engineering. | [36] | |
Polystyrenene (PS)/ Poly(ethylene glycol) (PEG) | 400–500 | Human mesenchymal stem cells (hMSC) | These microcarriers with defined, synthetic coatings may be suitable for a variety of bio-manufacturing applications. | [38] | |
Polylactide (PLA) | 180–200 | Chondrocyte | Collagen-coated PLA microspheres could effectively support the attachment and proliferation of chondrocytes. | [83] | |
Poly-L-lactide (PLLA) | 100–200 | Human chondrosarcoma line OUMS-27 | Used as building blocks for developing nascent tissue for clinical use. | [84] | |
Porous microsphere | Poly(vinyl alcohol) (PVA)/cellulose | 100–500 | NIH3T3 | Have the potential to be used as cell culture scaffolds. | [55] |
Poly(D,L-lactide-co-glycolide) (PLGA) | 80–100 | P19 | Used as transplantation matrices of pluripotent stem cells for tissue engineering and regeneration. | [85] | |
PLGA | 50 | 3T3 L1 preadipocyte cells | Injectable cellular aggregates for adipose tissue engineering. | [56] | |
PLGA | 300–500 | NIH 3T3 mouse embryo fibroblasts | Utilized as injectable and biodegradable scaffold microcarriers. | [86] | |
PLGA/chitosan | 200–400 | Chondrocyte | As effective injectable cell carriers for cartilage tissue engineering | [40] | |
Decellularized adipose tissue (DAT) | 420 | adipose-derived stem/stromal cells | applying dynamic culture with tissue-specific DAT microcarriers as a means of deriving regenerative cell populations. | [42] |
Material | Size (μm) | Cell Type | Application | Ref. |
---|---|---|---|---|
Methacrylic gelatin | 100–160 | Macrophage | As 3D cell culture platform. | [65] |
Laminarin | 100 | Mouse fibroblasts cells | Support cell adhesion and expansion. | [67] |
Gelatin | 253 | Mesenchymal stem cells | Provide a protective diffusional barrier against a pro-inflammatory environment and thereby can support the survival and differentiation of encapsulated cell. | [89] |
Ploy(carboxybetaine) | 10–50 | hMSC, HEK-293T, and NIH-3T3 | As a versatile platform for malleable cell constructs and injectable therapies. | [99] |
NIPAM | 200–500 | Hela cell | Thermo-responsive anionic microgel scaffolds for multicellular spheroid formation. | [100] |
Module type | Cell type | Assembly method | Application | Ref. |
---|---|---|---|---|
Gelatin microgel | Macrophage | Embedding into a larger tissue construct | Microtissues containing macrophage as a model cell type | [65] |
PEG microgel | Human mesenchymal stem cells | Clicking the microgel blocks | Platforms for 3D cell encapsulation | [108] |
PEG microgel | Dermal fibroblasts (HDF), adipose-derived mesenchymal stem cells (Ah MSC), and bone marrow-derived mesenchymal stem cells (BMh MSC) | Via a non-canonical amide linkage between the K and Q peptides mediated by activated Factor XIII | Accelerated wound healing | [109,110] |
Gelatin Norbornene microgel | Bone marrow-derived mesenchymal stem cell | Covalent bonding between the microgel | Articular cartilage repair | [111] |
Polyethylene glycol dimethacrylate(PEGDMA) microgel | NIH 3T3 | Assembled under the drive of the applied magnetic field | Bioactive, soft 3D hydrogel constructs to be employed in soft robotics | [112] |
Gelatin and collagen microspheres | Human osteoblasts, human umbilical vein endothelial cells | Randomly assembled | Engineering complex 3D tissues | [118] |
Collagen gel bead | NIH 3T3 cells, Hep G2 cells, human umbilical endothelial cells (HUVECs), primary neurons, primary rat hepatocytes, and MIN6m9 cells | Stacking microtissue unit | Engineering complex 3D tissues | [113] |
Gelatin-grafted-gellan microspheres | Human fetal osteoblasts, human mesenchymal stem cells | Simple mixing | Bone regeneration | [115] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Abdalla, A.M.E.; Xiao, L.; Yang, G. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. Int. J. Mol. Sci. 2020, 21, 1895. https://doi.org/10.3390/ijms21051895
Huang L, Abdalla AME, Xiao L, Yang G. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. International Journal of Molecular Sciences. 2020; 21(5):1895. https://doi.org/10.3390/ijms21051895
Chicago/Turabian StyleHuang, Lixia, Ahmed M.E. Abdalla, Lin Xiao, and Guang Yang. 2020. "Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation" International Journal of Molecular Sciences 21, no. 5: 1895. https://doi.org/10.3390/ijms21051895
APA StyleHuang, L., Abdalla, A. M. E., Xiao, L., & Yang, G. (2020). Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. International Journal of Molecular Sciences, 21(5), 1895. https://doi.org/10.3390/ijms21051895