Diagnostic and Prognostic Potential of Biomarkers CYFRA 21.1, ERCC1, p53, FGFR3 and TATI in Bladder Cancers
Abstract
:1. Introduction: Bladder Cancer Issues and Biomarkers
2. Diagnostic and Prognostic Potential of Bladder Cancer Biomarkers
2.1. Cytokeratin Fragment 21.1 (CYFRA 21.1)
Protein Name | Gene Symbol | Purpose | Diagnostic Value | Prognostic Value | FDA Approved | Method | Samples Used (No. Patients) | Predicitive Capacity | Reference |
---|---|---|---|---|---|---|---|---|---|
CYFRA 21.1 | KRT19 | Diagnostic and surveillance | Both serum and urine CYFRA 21.1 levels provide an effective index for the diagnosis of BC. | High risk of malignancy- significantly higher serum level of CYFRA 21.1 according to tumour stage (p < 0.01) and grade (p < 0.05). Patients with increased CYFRA 21.1 level had significantly worse disease-specific survival (p < 0.0001, log rank test) [19]. Moreover, patients with metastases had a higher CYFRA 21.1 level than those with locally invasive BC [14]. | No | Meta-analysis performed using STATA 12.0 on the base of studies had published before 2 November 2014 in EMBASE, Web of Science and Medline databases. Quality of the studies was assessed by revised QUADAS tools, all of selected studies were English language publications and evaluate diagnostic accuracy of CYFRA 21.1 in patients with BC. Systematic review included 13 studies and 1,262 BC and 1,233 non-bladder cancer patients. 8 studies measured urine and 5 serum level of CYFRA 21.1. In serum detection of CYFRA 21.1 471 BC and 296 non- bladder cancer patients were analyzed. Urine CYFRA 21.1 studies included 538 BC and 678 non-bladder cancer patients. | Urine (n = 538 BC/678 control) | Sensitivity = 82% Specificity = 80% AUC = 0.87 | [12,13,14,19] |
Serum (n = 471 BC/296 control) | Sensitivity = 42% Specificity = 94% AUC = 0.88 | ||||||||
DNA EXCISION REPAIR PROTEIN ERCC-1 | ERCC1 | Diagnostic and surveillance | 71.3% (308/432) of cases was ERCC1 positive. Ta = 3.2% T1 = 11.7% T2 = 21.4% T3 = 45.1% T4 = 18.5% CIS = 8.1% LG = 20.8% HG = 79.2% | ERCC positive tumour had significantly better disease-free survival (HR 0.7, p = 0.028) than ERCC1 negative tumours. ERCC1 positive tumours has significantly reduced risk of recurrences (HR 0.71, p = 0.021). The 5-year DFS and CSS were better for ERCC1 positive than negative, and were respectively 62% vs 49% and 70% vs 59%. However, there was no important outcomes of adjuvant cisplatin-based chemotherapy by ERCC1 status. | No | Study cohort had 432 patients and 308 of tumours expressed ERCC1. Staining was conducted using Abcam® mouse monoclonal antibody and expression of ERCC1was evaluated by 2 pathologists. Chi-square test was made to assessed differences between ERCC1 expression. All analyses were performed with STATA®, version 13.1. Primary tumour samples collected at RC, cells were lysed and total RNA was extracted with Qiagen® kit. ERCC1 mRNA expression was measured by RNA sequencing and confirmed by qPCR using TaqMan® gene expression assays. | UCB cell lines in vitro (n = 432) | No data | [22] |
TUMOR SUPPRESSOR P53 | TP53 gene | Diagnostic (as a complementary tool) and surveillance | 54% (56/103) of cases had TP53 mutations. Ta = 40% T1 = 52% T2 = 80% CIS = 55% LG = 34% HG = 62% | High risk of malignancy-significant difference of TP53 mutations according to tumour stage (p = 0.005) and to cellular grade (p < 0.001). | No | Sample collection of urine and tumours from 103 patients. Extraction of mRNA was made by Micro mRNA Purification Kit. Then Verso Kit® were used to reverse transcription, amplification was performed by PCR PrimeStar®. FASAY assay was used to detect TP53 mutations in tumour tissues and urinary cells. Statistical test was performed using SPSS software®, version 17. | Primary bladder tumours and associated urine (n = 103) | Sensitivity = 34% Specificity = 87% PPV = 0.76 NPV = 0.53 | [23] |
FIBROBLAST GROWTH FACTOR RECEPTOR 3 | FGFR3 gene | Diagnostic (as a complementary tool) and surveillance | 36% (37/103) of cases had FGFR3 mutations. Ta = 55% T1 = 29% T2 = 19% CIS = 10% LG = 62% HG = 26% | Low risk of malignancy-negative association of FGFR3 mutations based on tumour stage (p = 0.002) and cellular grade (p < 0.001) [23]. Low level of FGFR3 expression is an independent predictor of cancer progression and is associated with HG tumours [24]. | No * | Sample collection of urine and tumours from 103 patients. Extraction of genomic DNA was performed by QIAamp Viral RNA® Mini kit. Multiplex PCR Kit were used to amplification. Snapshot ® kit was used to detect FGFR3 eight most frequent mutations hotspots in tumour tissues and urinary cells (two independent analysis were carried out). Statistical test was performed using SPSS software®, version 17. | Primary bladder tumours and associated urine (n = 103) | Sensitivity = 43% Specificity = 98% PPV = 0.94 NPV =0.76 | [23] |
Sensitivity = 97.6% Specificity = 84.8% AUC = 0.96 NPV = 0.996 (1) | [25] | ||||||||
TUMOR-ASSOCIATED TRYPSIN INHIBITOR | SPINK1 gene | Diagnostic and surveillance | 49.1% (54/110) of cases had TATI expression. Stage <T2 = 66.7% Stage ≥T2 = 44.9% LG = 76.2% HG = 44.9% | Low risk of malignancy- negative association of TATI expression was positively correlated based on tumour stage (p = 0.048) and poor differentiation (p = 0.013). Significant differences were observed between TATI-positive and negative specimens in PFS and OS (Log-rank test, p = 0.003, 0.003). In a group of patients with BC undergoing RC TATI expression was independent protective factor. Moreover, TATI expression could enhance prognostic value of p53. | No | Study cohort had 110 patients and 54 of tumours, undergone RC, expressed TATI. Staining was conducted using Abcam® anti-TATI monoclonal antibody and expression of TATI was evaluated by 2 pathologists. Proportion of immune-positive cells and their staining intensity was scored in two scales and used to evaluation of TATI expression. All analyses were performed with SPSS software, version 21. | Tissue microarrays from UCB (n = 110) | No data | [26] |
Study cohort consisted of 160 patients, divided into 3 groups. Group 1 had 80 primary HG UBC. Group 2 of 40 healthy volunteers and group 3 of 40 benign UBC. TATI was measured using a radioimmunoassay according to the manufacturer’s instructions (Orion Diagnostica). Analyses were performer with STATA®, statistical software, version 6.0 | Urine (n = 160) | Sensitivity = 85.7% Specificity = 77.5% | [27] |
2.2. Excision Repair Cross-Complementation 1 (ERCC1)
2.3. Tumour Protein p53 (TP53)
2.4. Fibroblast Growth Factor Receptor 3 (FGFR3)
2.5. Tumor-Associated Trypsin Inhibitor (TATI)
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
BC | Bladder cancer |
BCG | Bacille Calmette–Guérin |
CIS | Carcinoma in situ |
CK | Cytokeratin |
CSS | Cancer-specific survival |
CYFRA 21.1 | Cytokeratin fragment 21.1 |
DFS | Disease-free survival |
ERCC1 | Excision repair cross-complementing group 1 |
HG | High grade |
IHC | Immunohistochemistry staining |
LG | Low grade |
MIBC | Muscle-invasive bladder cancer |
NMIBC | Non-muscle invasive bladder cancer |
NPV | Negative predictive value |
OS | Overall survival |
PFS | Progression-free survival |
PPV | Positive predictive value |
PUNLMP | Papillary urothelial neoplasm of low malignant potential |
TURBT | Transurethral resection of bladder tumor |
UBC | Urothelial bladder cancer |
UC | Urothelial carcinoma |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Sanli, O.; Dobruch, J.; Knowles, M.A.; Burger, M.; Alemozaffar, M.; Nielsen, M.E.; Lotan, Y. Bladder cancer. Nat. Rev. Dis. Primers 2017, 3, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 2017, 171, 540–556. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, P.A.; Moch, H.; Cubilla, A.L.; Ulbright, T.M.; Reuter, V.E. The 2016 WHO classification of tumours of the urinary system and male genital organs—Part B: Prostate and bladder tumours. Eur. Urol. 2016, 70, 106–119. [Google Scholar] [CrossRef] [Green Version]
- Czerniak, B.; Dinney, C.; McConkey, D. Origins of bladder cancer. Annu. Rev. Pathol. Mech. Dis. 2016, 11, 149–174. [Google Scholar] [CrossRef]
- Babjuk, M.; Burger, M.; Zigeuner, R.; Shariat, S.F.; van Rhijn, B.W.G.; Compérat, E.; Sylvester, R.J.; Kaasinen, E.; Böhle, A.; Redorta, J.P.; et al. EAU Guidelines on Non–Muscle-invasive urothelial carcinoma of the bladder: Update 2013. Eur. Urol. 2013, 64, 639–653. [Google Scholar] [CrossRef]
- Knowles, M.A.; Hurst, C.D. Molecular biology of bladder cancer: New insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 2014, 15, 25–41. [Google Scholar] [CrossRef]
- Inamura, K. Bladder cancer: New insights into its molecular pathology. Cancers 2018, 10, 100. [Google Scholar] [CrossRef] [Green Version]
- Burger, M.; Catto, J.W.F.; Dalbagni, G.; Grossman, H.B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L.A.; Vecchia, C.L.; Shariat, S.; et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 2013, 63, 234–241. [Google Scholar] [CrossRef]
- Woldu, S.L.; Bagrodia, A.; Lotan, Y. Guideline of guidelines: Non-muscle-invasive bladder cancer. BJU Int. 2017, 119, 371–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.-L.; Chen, J.; Yan, W.; Zang, D.; Qin, Q.; Deng, A.-M. Diagnostic accuracy of cytokeratin-19 fragment (CYFRA 21–1) for bladder cancer: a systematic review and meta-analysis. Tumor Biol. 2015, 36, 3137–3145. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-G.; Long, J.-J. Cytokeratin-19 fragment in the diagnosis of bladder carcinoma. Tumor Biol. 2016, 37, 14329–14330. [Google Scholar] [CrossRef] [PubMed]
- Kuang, L.I.; Song, W.J.; Qing, H.M.; Yan, S.; Song, F.L. CYFRA21-1 levels could be a biomarker for bladder cancer: A meta-analysis. Genet. Mol. Res. 2015, 14, 3921–3931. [Google Scholar] [CrossRef]
- Nisman, B.; Barak, V.; Shapiro, A.; Golijanin, D.; Peretz, T.; Pode, D. Evaluation of urine CYFRA 21-1 for the detection of primary and recurrent bladder carcinoma. Cancer 2002, 94, 2914–2922. [Google Scholar] [CrossRef]
- D’Costa, J.J.; Goldsmith, J.C.; Wilson, J.S.; Bryan, R.T.; Ward, D.G. A systematic review of the diagnostic and prognostic value of urinary protein biomarkers in urothelial bladder cancer. Bladder Cancer 2016, 2, 301–317. [Google Scholar] [CrossRef] [Green Version]
- Andreadis, C.; Touloupidis, S.; Galaktidou, G.; Kortsaris, A.H.; Boutis, A.; Mouratidou, D. Serum CYFRA 21–1 in patients with invasive bladder cancer and its relevance as a tumor marker during chemotherapy. J. Urol. 2005, 174, 1771–1776. [Google Scholar] [CrossRef]
- Nisman, B.; Yutkin, V.; Peretz, T.; Shapiro, A.; Barak, V.; Pode, D. The follow-up of patients with non-muscle-invasive bladder cancer by urine cytology, abdominal ultrasound and urine CYFRA 21-1: A pilot study. Anticancer Res. 2009, 29, 4281–4285. [Google Scholar]
- Washino, S.; Hirai, M.; Matsuzaki, A.; Kobayashi, Y. Clinical usefulness of CEA, CA19-9, and CYFRA 21-1 as tumor markers for urothelial bladder carcinoma. Urol. Int. 2011, 87, 420–428. [Google Scholar] [CrossRef]
- Dittadi, R.; Barioli, P.; Gion, M.; Mione, R.; Barichello, M.; Capitanio, G.; Cocco, G.; Cazzolato, G.; De Biasi, F.; Praturlon, S.; et al. Standardization of assay for cytokeratin-related tumor marker CYFRA21.1 in urine samples. Clin. Chem. 1996, 42, 1634–1638. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Park, Y.; Cho, Y.; Kim, Y.R.; Kim, H.-S. Diagnostic values of urine CYFRA21-1, NMP22, UBC, and FDP for the detection of bladder cancer. Clin. Chim. Acta 2012, 414, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Klatte, T.; Seitz, C.; Rink, M.; Rouprêt, M.; Xylinas, E.; Karakiewicz, P.; Susani, M.; Shariat, S.F. ERCC1 as a prognostic and predictive biomarker for urothelial carcinoma of the bladder following radical cystectomy. J. Urol. 2015, 194, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Noel, N.; Couteau, J.; Maillet, G.; Gobet, F.; D'Aloisio, F.; Minier, C.; Pfister, C. TP53 and FGFR3 Gene mutation assessment in urine: Pilot study for bladder cancer diagnosis. Anticancer Res. 2015, 35, 4915–4921. [Google Scholar] [PubMed]
- Kang, H.W.; Kim, Y.-H.; Jeong, P.; Park, C.; Kim, W.T.; Ryu, D.H.; Cha, E.-J.; Ha, Y.-S.; Kim, T.-H.; Kwon, T.G.; et al. Expression levels of FGFR3 as a prognostic marker for the progression of primary pT1 bladder cancer and its association with mutation status. Oncol. Lett. 2017, 14, 3817–3824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roperch, J.-P.; Grandchamp, B.; Desgrandchamps, F.; Mongiat-Artus, P.; Ravery, V.; Ouzaid, I.; Roupret, M.; Phe, V.; Ciofu, C.; Tubach, F.; et al. Promoter hypermethylation of HS3ST2, SEPTIN9 and SLIT2 combined with FGFR3 mutations as a sensitive/specific urinary assay for diagnosis and surveillance in patients with low or high-risk non-muscle-invasive bladder cancer. BMC Cancer 2016, 16, 704. [Google Scholar] [CrossRef]
- Liu, A.; Xue, Y.; Liu, F.; Tan, H.; Xiong, Q.; Zeng, S.; Zhang, Z.; Gao, X.; Sun, Y.; Xu, C. Prognostic value of the combined expression of tumor-associated trypsin inhibitor (TATI) and p53 in patients with bladder cancer undergoing radical cystectomy. Cancer Biomark. 2019, 26, 281–289. [Google Scholar] [CrossRef]
- Gkialas, I.; Papadopoulos, G.; Iordanidou, L.; Stathouros, G.; Tzavara, C.; Gregorakis, A.; Lykourinas, M. Evaluation of urine tumor-associated trypsin inhibitor, CYFRA 21-1, and urinary bladder cancer antigen for detection of high-grade bladder Carcinoma. Urology 2008, 72, 1159–1163. [Google Scholar] [CrossRef]
- Rabik, C.A.; Dolan, M.E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 2007, 33, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.P.; Hamilton, T.C.; Schilder, R.J. Platinum resistance: The role of DNA repair pathways. Clin. Cancer Res. 2008, 14, 1291–1295. [Google Scholar] [CrossRef] [Green Version]
- Metzger, R.; Bollschweiler, E.; Hölscher, A.H.; Warnecke-Eberz, U. ERCC1: Impact in multimodality treatment of upper gastrointestinal cancer. Future Oncol. 2010, 6, 1735–1749. [Google Scholar] [CrossRef]
- Olaussen, K.A.; Dunant, A.; Fouret, P.; Brambilla, E.; André, F.; Haddad, V.; Taranchon, E.; Filipits, M.; Pirker, R.; Popper, H.H.; et al. DNA repair by ERCC1 in Non–Small-Cell Lung Cancer and Cisplatin-Based Adjuvant Chemotherapy. N. Engl. J. Med. 2006, 355, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.R.; Sharma, S.; Cantor, A.; Smith, P.; Bepler, G. ERCC1 expression is a predictor of survival in resected patients with non-small cell lung cancer. Chest 2005, 127, 978–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosell, R.; Pifarré, A.; Monzó, M.; Astudillo, J.; López-Cabrerizo, M.P.; Calvo, R.; Moreno, I.; Sánchez-Céspedes, M.; Font, A.; Navas-Palacios, J.J. Reduced survival in patients with stage-I non-small-cell lung cancer associated with DNA-replication errors. Int. J. Cancer 1997, 74, 330–334. [Google Scholar] [CrossRef]
- Eldehna, W.M.; Fouda, M.M.; Eteba, S.M.; Abdelrahim, M.; Elashry, M.S. Gene expression of excision repair cross-complementation group 1 enzyme as a novel predictive marker in patients receiving platinum-based chemotherapy in advanced bladder cancer. Benha Med. J. 2018, 35, 42–48. [Google Scholar] [CrossRef]
- Piljić Burazer, M.; Mladinov, S.; Matana, A.; Kuret, S.; Bezić, J.; Glavina Durdov, M. Low ERCC1 expression is a good predictive marker in lung adenocarcinoma patients receiving chemotherapy based on platinum in all TNM stages—A single-center study. Diagn. Pathol. 2019, 14, 105. [Google Scholar] [CrossRef]
- Li, Z.; Qing, Y.; Guan, W.; Li, M.; Peng, Y.; Zhang, S.; Xiong, Y.; Wang, D. Predictive value of APE1, BRCA1, ERCC1 and TUBB3 expression in patients with advanced non-small cell lung cancer (NSCLC) receiving first-line platinum–paclitaxel chemotherapy. Cancer Chemother. Pharmacol. 2014, 74, 777–786. [Google Scholar] [CrossRef]
- Facista, A.; Nguyen, H.; Lewis, C.; Prasad, A.R.; Ramsey, L.; Zaitlin, B.; Nfonsam, V.; Krouse, R.S.; Bernstein, H.; Payne, C.M.; et al. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer. Genome Integr. 2012, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.H.; Fiehn, A.-M.K.; Fogh, L.; Christensen, I.J.; Hansen, T.P.; Stenvang, J.; Nielsen, H.J.; Nielsen, K.V.; Hasselby, J.P.; Brünner, N.; et al. Measuring ERCC1 protein expression in cancer specimens: Validation of a novel antibody. Sci. Rep. 2014, 4, 4313. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.-M.; Sung, J.-Y.; Park, S.H.; Kwon, G.Y.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Lee, H.M.; Jo, J.; Choi, H.Y.; et al. ERCC1 as a biomarker for bladder cancer patients likely to benefit from adjuvant chemotherapy. BMC Cancer 2012, 12, 187. [Google Scholar] [CrossRef] [Green Version]
- Hemdan, T.; Segersten, U.; Malmström, P.-U. 122 ERCC1-negative tumors benefit from neoadjuvant cisplatin-based chemotherapy whereas patients with ERCC1-positive tumors do not—Results from a cystectomy trial database. Eur. Urol. Suppl. 2014, 13, e122. [Google Scholar] [CrossRef]
- Urun, Y.; Leow, J.J.; Fay, A.P.; Albiges, L.; Choueiri, T.K.; Bellmunt, J. ERCC1 as a prognostic factor for survival in patients with advanced urothelial cancer treated with platinum based chemotherapy: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2017, 120, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Sakano, S.; Ogawa, S.; Yamamoto, Y.; Nishijima, J.; Miyachika, Y.; Matsumoto, H.; Hara, T.; Matsuyama, H. ERCC1 and XRCC1 expression predicts survival in bladder cancer patients receiving combined trimodality therapy. Mol. Clin. Oncol. 2013, 1, 403–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Liu, Y.; Zhang, Q.; Zhang, M.; Han, X.; Li, Q.; Xie, T.; Wu, Q.; Sui, X. p53/PCDH17/Beclin-1 proteins as prognostic predictors for urinary bladder cancer. J. Cancer 2019, 10, 6207–6216. [Google Scholar] [CrossRef] [PubMed]
- Choundhury, S.; Kolukula, V.; Preet, A.; Albanese, C.; Maria, A. Dissecting the pathways that destabilize mutant p53: The proteasome or autophagy? Cell Cycle 2013, 12, 1022–1029. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Wang, J.; Zhao, M.; Xie, T.-X.; Tanaka, N.; Sano, D.; Patel, A.A.; Ward, A.M.; Sandulache, V.C.; Jasser, S.A.; et al. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol. Cell 2014, 54, 960–974. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A.P. Molecular substratification of bladder cancer: Moving towards individualized patient management. Ther. Adv. Urol. 2016, 8, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Ando, K.; Oki, E.; Saeki, H.; Yan, Z.; Tsuda, Y.; Hidaka, G.; Kasagi, Y.; Otsu, H.; Kawano, H.; Kitao, H.; et al. Discrimination of p53 immunohistochemistry-positive tumors by its staining pattern in gastric cancer. Cancer Medicine 2014, 4, 75–83. [Google Scholar] [CrossRef]
- Puzio-Kuter, A.M.; Castillo-Martin, M.; Kinkade, C.W.; Wang, X.; Shen, T.H.; Matos, T.; Shen, M.M.; Cordon-Cardo, C.; Abate-Shen, C. Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev. 2009, 23, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Shariat, S.F.; Chade, D.C.; Karakiewicz, P.I.; Ashfaq, R.; Isbarn, H.; Fradet, Y.; Bastian, P.J.; Nielsen, M.E.; Capitanio, U.; Jeldres, C. Combination of multiple molecular markers can improve prognostication in patients with locally advanced and lymph node positive bladder cancer. J. Urol. 2010, 183, 68–75. [Google Scholar] [CrossRef]
- Daizumoto, K.; Yoshimaru, T.; Matsushita, Y.; Fukawa, T.; Uehara, H.; Ono, M.; Komatsu, M.; Kanayama, H.; Katagiri, T. A DDX31/Mutant–p53/EGFR axis promotes multistep progression of muscle-invasive bladder cancer. Cancer Res. 2018, 78, 2233–2247. [Google Scholar] [CrossRef] [Green Version]
- Qamar, S.; Inam, Q.A.; Ashraf, S.; Khan, M.S.; Khokhar, M.A.; Awan, N. Prognostic Value of p53 expression intensity in urothelial cancers. J. Coll. Physicians Surg. Pak. 2017, 27, 232–236. [Google Scholar] [PubMed]
- Ciccarese, C.; Massari, F.; Blanca, A.; Tortora, G.; Montironi, R.; Cheng, L.; Scarpelli, M.; Raspollini, M.R.; Vau, N.; Fonseca, J.; et al. Tp53 and its potential therapeutic role as a target in bladder cancer. Expert Opin. Ther. Targets 2017, 21, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, S.; Yang, Q.; Chen, Q.; Yao, X. p53 status correlates with the risk of progression in stage T1 bladder cancer: A meta-analysis. World J. Surg. Oncol. 2016, 14, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shariat, S.F.; Lotan, Y.; Karakiewicz, P.I.; Ashfaq, R.; Isbarn, H.; Fradet, Y.; Bastian, P.J.; Nielsen, M.E.; Capitanio, U.; Jeldres, C.; et al. p53 predictive value for pT1-2 N0 disease at radical cystectomy. J. Urol. 2009, 182, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO classification of tumours of the urinary system and male genital organs—Part A: Renal, penile, and testicular tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.-Y.; Sun, J.-M.; Chang Jeong, B.; Il Seo, S.; Soo Jeon, S.; Moo Lee, H.; Choi, H.Y.; Kang, S.Y.; Choi, Y.-L.; Young Kwon, G. FGFR3 overexpression is prognostic of adverse outcome for muscle-invasive bladder carcinoma treated with adjuvant chemotherapy11This work was supported by Grant CB-2011-04-01 from Korean Foundation for Cancer Research grant and by a Global Frontier Project Grant (NRF-M1AXA002-2010-0029795) of the National Research Foundation funded by the Ministry of Education, Science and Technology of Korea. Urol. Oncol. Semin. Orig. Investig. 2014, 32, 49.e23–49.e31. [Google Scholar] [CrossRef]
- Akanksha, M.; Sandhya, S. Role of FGFR3 in Urothelial Carcinoma. Iran. J. Pathol. 2019, 14, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.V.; Hurst, C.D.; Knowles, M.A. Oncogenic FGFR3 gene fusions in bladder cancer. Hum. Mol. Genet. 2012, 22, 795–803. [Google Scholar] [CrossRef]
- Di Martino, E.; Tomlinson, D.C.; Knowles, M.A. A decade of FGF receptor research in bladder cancer: Past, present, and future challenges. Adv. Urol. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Beukers, W.; van der Keur, K.A.; Kandimalla, R.; Vergouwe, Y.; Steyerberg, E.W.; Boormans, J.L.; Jensen, J.B.; Lorente, J.A.; Real, F.X.; Segersten, U.; et al. FGFR3, TERT and OTX1 as a urinary biomarker combination for surveillance of patients with bladder cancer in a large prospective multicenter study. J. Urol. 2017, 197, 1410–1418. [Google Scholar] [CrossRef]
- Hurst, C.D.; Knowles, M.A. Multiomic profiling refines the molecular view. Nat. Rev. Clin. Oncol. 2017, 15, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Van Oers, J.M.M.; Zwarthoff, E.C.; Rehman, I.; Azzouzi, A.-R.; Cussenot, O.; Meuth, M.; Hamdy, F.C.; Catto, J.W.F. FGFR3 mutations indicate better survival in invasive upper urinary tract and bladder tumours. Eur. Urol. 2009, 55, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Van Rhijn, B.W.G.; van der Kwast, T.H.; Liu, L.; Fleshner, N.E.; Bostrom, P.J.; Vis, A.N.; Alkhateeb, S.S.; Bangma, C.H.; Jewett, M.A.S.; Zwarthoff, E.C.; et al. The FGFR3 mutation is related to favorable pT1 bladder cancer. J. Urol. 2012, 187, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, S.; Lopez-Knowles, E.; Lloreta, J.; Kogevinas, M.; Amorós, A.; Tardón, A.; Carrato, A.; Serra, C.; Malats, N.; Real, F.X. Prospective study of fgfr3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J. Clin. Oncol. 2006, 24, 3664–3671. [Google Scholar] [CrossRef]
- Critelli, R.; Fasanelli, F.; Oderda, M.; Polidoro, S.; Assumma, M.B.; Viberti, C.; Preto, M.; Gontero, P.; Cucchiarale, G.; Lurkin, I.; et al. Detection of multiple mutations in urinary exfoliated cells from male bladder cancer patients at diagnosis and during follow-up. Oncotarget 2016, 7, 67435. [Google Scholar] [CrossRef] [Green Version]
- Frantzi, M.; Makridakis, M.; Vlahou, A. Biomarkers for bladder cancer aggressiveness. Curr. Opin. Urol. 2012, 22, 390–396. [Google Scholar] [CrossRef]
- Tomlinson, D.; Baldo, O.; Harnden, P.; Knowles, M. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J. Pathol. 2007, 213, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Christensen, E.; Birkenkamp-Demtröder, K.; Nordentoft, I.; Høyer, S.; van der Keur, K.; van Kessel, K.; Dyrskjøt, L. Liquid biopsy analysis of FGFR3 and PIK3CA hotspot mutations for disease surveillance in bladder cancer. Eur. Urol. 2017, 71, 961–969. [Google Scholar] [CrossRef]
- Choi, W.; Porten, S.; Kim, S.; Willis, D.; Plimack, E.R.; Hoffman-Censits, J.; McConkey, D.J. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014, 25, 152–165. [Google Scholar] [CrossRef] [Green Version]
- Hosen, I.; Rachakonda, P.S.; Heidenreich, B.; de Verdier, P.J.; Ryk, C.; Steineck, G.; Hemminki, K.; Kumar, R. Mutations inTERTpromoter andFGFR3and telomere length in bladder cancer. Int. J. Cancer 2015, 137, 1621–1629. [Google Scholar] [CrossRef]
- Kompier, L.C.; van der Aa, M.N.; Lurkin, I.; Vermeij, M.; Kirkels, W.J.; Bangma, C.H.; van der Kwast, T.H.; Zwarthoff, E.C. The development of multiple bladder tumour recurrences in relation to the FGFR3mutation status of the primary tumour. J. Pathol. 2009, 218, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Kompier, L.C.; Lurkin, I.; van der Aa, M.N.M.; van Rhijn, B.W.G.; van der Kwast, T.H.; Zwarthoff, E.C. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS ONE 2010, 5, e13821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foth, M.; Ismail, N.F.B.; Kung, J.S.C.; Tomlinson, D.; Knowles, M.A.; Eriksson PIwata, T. FGFR3 mutation increases bladder tumourigenesis by suppressing acute inflammation. J. Pathol. 2018, 246, 331–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pectasides, D.; Bafaloucos, D.; Antoniou, F.; Gogou, L.; Economides, N.; Varthalitis, J.; Athanassiou, A. TPA, TATI, CEA, AFP, β-HCG, PSA, SCC, and CA 19-9 for monitoring transitional cell carcinoma of the bladder. Am. J. Clin. Oncol. 1996, 19, 271–277. [Google Scholar] [CrossRef]
- Järvisalo, J.; Hakama, M.; Knekt, P.; Stenman, U.H.; Leino, A.; Teppo, L.; Maatela, J.; Aromaa, A. Serum tumor markers CEA, CA 50, TATI, and NSE in lung cancer screening. Lung Cancer 1993, 10, 276. [Google Scholar] [CrossRef]
- Sjöström, J.; Alfthan, H.; Joensuu, H.; Stenman, U.; Lundin, J.; Blomqvist, C. Serum tumour markers CA 15-3, TPA, TPS, hCG β and TATI in the monitoring of chemotherapy response in metastatic breast cancer. Scand. J. Clin. Lab. Investig. 2001, 61, 431–441. [Google Scholar] [CrossRef]
- Paavonen, J.; Lehtinen, M.; Lehto, M.; Laine, S.; Aine, R.; Räsänen, L.; Stenman, U.H. Concentrations of tumor-associated trypsin inhibitor and C-reactive protein in serum in acute pelvic inflammatory disease. Clin. Chem. 1989, 35, 869–871. [Google Scholar] [CrossRef]
- Lasson, Å.; Borgström, A.; Ohlsson, K. Elevated pancreatic secretory trypsin inhibitor levels during severe inflammatory disease, renal insufficiency, and after various surgical procedures. Scand. J. Gastroenterol. 1986, 21, 1275–1280. [Google Scholar] [CrossRef]
- Huhtala, M.-L.; Kahanpää, K.; Seppää, M.; Halila, H.; Stenman, U.-H. Excretion of a tumor-associated trypsin inhibitor (TATI) in urine of patients with gynecological malignancy. Int. J. Cancer 1983, 31, 711–714. [Google Scholar] [CrossRef]
- Goumas, P.D.; Mastronikolis, N.S.; Mastorakou, A.N.; Vassilakos, P.J.; Nikiforidis, G.C. Evaluation of TATI and CYFRA 21-1 in patients with head and neck squamous cell carcinoma. ORL 1997, 59, 106–114. [Google Scholar] [CrossRef]
- Tramonti, P.G.; Ferdeghini, M.; Donadio, C.; Annichiarico, C.; Norpoth, M.; Bianchi, R.; Bianchi, C. Serum levels of tumor associated trypsin inhibitor (TATT) and glomerular filtration rate. Ren. Fail. 1998, 20, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenman, U.-H.; Koivunen, E.; Itkonen, O. Biology and function of tumor-associated trypsin inhibitor, tati. Scand. J. Clin. Lab. Investig. 1991, 51, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Stenman, U.-H. Tumor-associated trypsin inhibitor. Clin. Chem. 2002, 48, 1206–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelloniemi, E.; Rintala, E.; Finne, P.; Stenman, U.-H. Tumor-associated trypsin inhibitor as a prognostic factor during follow-up of bladder cancer. Urology 2003, 62, 249–253. [Google Scholar] [CrossRef]
- Shariat, S.F.; Herman, M.P.; Casella, R.; Lotan, Y.; Karam, J.A.; Stenman, U.-H. Urinary levels of tumor-associated trypsin inhibitor (TATI) in the detection of transitional cell carcinoma of the urinary bladder. Eur. Urol. 2005, 48, 424–431. [Google Scholar] [CrossRef]
- Hotakainen, K.; Bjartell, A.; Sankila, A.; Järvinen, R.; Paju, A.; Rintala, E.; Haglund, C.; Stenman, U.-H. Differential expression of trypsinogen and tumor-associated trypsin inhibitor (TATI) in bladder cancer. Int. J. Oncol. 2006, 28, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Patschan, O.; Shariat, S.F.; Chade, D.C.; Karakiewicz, P.I.; Ashfaq, R.; Lotan, Y.; Hotakainen, K.; Stenman, U.-H.; Bjartell, A. Association of tumor-associated trypsin inhibitor (TATI) expression with molecular markers, pathologic features and clinical outcomes of urothelial carcinoma of the urinary bladder. World J. Urol. 2011, 30, 785–794. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuszczak, M.; Salagierski, M. Diagnostic and Prognostic Potential of Biomarkers CYFRA 21.1, ERCC1, p53, FGFR3 and TATI in Bladder Cancers. Int. J. Mol. Sci. 2020, 21, 3360. https://doi.org/10.3390/ijms21093360
Matuszczak M, Salagierski M. Diagnostic and Prognostic Potential of Biomarkers CYFRA 21.1, ERCC1, p53, FGFR3 and TATI in Bladder Cancers. International Journal of Molecular Sciences. 2020; 21(9):3360. https://doi.org/10.3390/ijms21093360
Chicago/Turabian StyleMatuszczak, Milena, and Maciej Salagierski. 2020. "Diagnostic and Prognostic Potential of Biomarkers CYFRA 21.1, ERCC1, p53, FGFR3 and TATI in Bladder Cancers" International Journal of Molecular Sciences 21, no. 9: 3360. https://doi.org/10.3390/ijms21093360
APA StyleMatuszczak, M., & Salagierski, M. (2020). Diagnostic and Prognostic Potential of Biomarkers CYFRA 21.1, ERCC1, p53, FGFR3 and TATI in Bladder Cancers. International Journal of Molecular Sciences, 21(9), 3360. https://doi.org/10.3390/ijms21093360