Valorization of Gleditsia triacanthos Invasive Plant Cellulose Microfibers and Phenolic Compounds for Obtaining Multi-Functional Wound Dressings with Antimicrobial and Antioxidant Properties
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization of Phenolic Compounds of G. triachantos Leaves
2.1.1. Total Phenolic Compounds (TPC)
2.1.2. Ultra-High-Performance Liquid Chromatography Diode Array Detector Electrospray Ionization Tandem Mass Spectrometry (UHPLC–DAD-ESI/MS)
2.2. Multi-Functionalized Cellulose Microfiber Fabrication
2.3. Characterization of Cellulose Microfibers (CM) and Multi-Functionalized Cellulose Microfibers (MFCM)
2.3.1. ATR-FTIR Analysis
2.3.2. Morphology of CM and MFCM
2.3.3. Surface Wettability
2.3.4. Water Absorptivity and Retention Properties
2.3.5. In Vitro Phenolic Compound Release Studies and Antioxidant Activity
2.4. Antimicrobial Activity
2.5. Assessment of Cells Viability and Cytotoxicity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Phenolic Compounds Extraction from G. triachantos Leaves and Chemical Characterization
4.2.1. Hydro-Alcoholic Extraction from G. triachantos Leaves
4.2.2. Total Phenolic Compounds and Flavonoids Contents
4.2.3. Ultra-High-Performance Liquid Chromatography Diode Array Detector Electrospray Ionization Tandem Mass Spectrometry
4.3. CM and MFCM Obtaining and Characterization
4.3.1. CM and MFCM Obtaining
4.3.2. ATR-FTIR
4.3.3. Morphology of CM and MFCM
4.3.4. Surface Wettability
4.3.5. Water Absorptivity and Retention Properties
4.3.6. In Vitro Phenolic Compounds Release Studies and Antioxidant Activity
4.4. Antimicrobial Activity
4.4.1. Sterilization of CM and MFCM
4.4.2. Evaluation of the Antimicrobial Activity
4.5. Assessment of Cell Viability and Cytotoxicity by MTT and LDH Assay
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2:2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) |
ATCC | American Type Culture Collection |
CA | Contact Angle |
CFU | Colony Forming Unit |
CM | Cellulose Microfibers |
DMSO | Dimethylsulfoxide |
DPPH | 1,1-diphenyl-2-picrylhydrazyl radical |
ECB | Ethanol-Chlorobenzene |
MFCM | Multi-functionalized cellulose microfibers (with a phenolic compound extract from G. triachantos leaves) |
FTIR | Fourier Transform Infrared |
ATR-FTIR | Attenuated Total Reflectance—Fourier Transform Infrared |
GAE | Gallic acid equivalents |
LDH | Lactate dehydrogenase |
MF | Microcellulose fibers |
MRSA | Methicillin-Resistant Staphylococcus aureus |
MTT | [3-(4,5-dimethylthiazol-2yl)]-2,5-diphenyltetrazolium bromide |
PAs | Phenolic acids |
PBS | Phosphate-buffered saline |
QE | Quercetin equivalents |
ROS | Reactive oxygen species |
SEM | Scanning electron microscopy |
TE | Trolox equivalents |
TEAC | Trolox equivalent antioxidant capacity |
TEMPO | (2,2,6,6-tetramethyl-1-piperidinyl)oxidanyl |
TPC | Total phenolic compounds |
UHPLC–DAD-ESI/MS | Ultra-high-performance liquid chromatography diode array detector electrospray ionization tandem mass spectrometry |
References
- Bacakova, L.; Pajorova, J.; Bacakova, M.; Skogberg, A.; Kallio, P.; Kolarova, K.; Svorcik, V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials 2019, 9, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, K.; Song, Y.; Liu, S.; Han, G.; Ben, H.; Ragauskas, A.J.; Jiang, W. Preparation and Characterization of Microcellulose and Nanocellulose Fibers from Artemisia Vulgaris Bast. Polymers 2019, 11, 907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.; Nordli, H.R.; Pukstad, B.; Kristofer Gamstedt, E.; Chinga-Carrasco, G. Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J. Mech. Behav. Biomed. Mater. 2017, 69, 377. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Lia, J. Smart drug delivery system based on nanocelluloses. J. Bioresour. Bioprod. 2017, 2, 1. [Google Scholar]
- Denet, A.-R.; Ucakar, B.; Préat, V. Transdermal Delivery of Timolol and Atenolol Using Electroporation and Iontophoresis in Combination: A Mechanistic Approach. Pharm. Res. 2003, 20, 1946. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, M.; Jawaid, M.; Karim, Z.; Abdullah, L.C. Morphological, Physiochemical and Thermal Properties of Microcrystalline Cellulose (MCC) Extracted from Bamboo Fiber. Molecules 2020, 25, 2824. [Google Scholar] [CrossRef]
- Elanthikkal, S.; Gopalakrishnapanicker, U.; Varghese, S.; Guthrie, J.T. Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydr. Polym. 2010, 80, 852. [Google Scholar] [CrossRef]
- Ferus, P.; Barta, M.; Konôpková, J.; Turčeková, S.; Maňka, P.; Bibeň, T. Diversity in honey locust (Gleditsia triacanthos L.) seed traits across Danube basin. Folia Oecologica 2013, 40, 163. [Google Scholar]
- Ferreras, A.E.; Funes, G.; Galetto, L. The role of seed germination in the invasion process of Honey locust (Gleditsia triacanthos L., Fabaceae): Comparison with a native confamilial. Plant Species Biol. 2015, 30, 126. [Google Scholar] [CrossRef]
- Ferreras, A.E.; Galetto, L. From seed production to seedling establishment: Important steps in an invasive process. Acta Oecologica 2010, 36, 211. [Google Scholar] [CrossRef]
- Svečnjak, L.; Marijanović, Z.; Okińczyc, P.; Marek Kuś, P.; Jerković, I. Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay. Antioxidants 2020, 9, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danial, W.H.; Abdul Majid, Z.; Mohd Muhid, M.N.; Triwahyono, S.; Bakar, M.B.; Ramli, Z. The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr. Polym. 2015, 118, 165. [Google Scholar] [CrossRef] [PubMed]
- Garside, P.; Wyeth, P. Identification of Cellulosic Fibres by FTIR Spectroscopy—Thread and Single Fibre Analysis by Attenuated Total Reflectance. Stud. Conserv. 2003, 48, 269. [Google Scholar] [CrossRef] [Green Version]
- Edelmann, A.; Diewok, J.; Schuster, K.C.; Lendl, B. Rapid Method for the Discrimination of Red Wine Cultivars Based on Mid-Infrared Spectroscopy of Phenolic Wine Extracts. J. Agric. Food Chem. 2001, 49, 1139. [Google Scholar] [CrossRef]
- Fernández, K.; Agosin, E. Quantitative Analysis of Red Wine Tannins Using Fourier-Transform Mid-Infrared Spectrometry. J. Agric. Food Chem. 2007, 55, 7294. [Google Scholar] [CrossRef]
- Laghi, L.; Versari, A.; Parpinello, G.P.; Nakaji, D.Y.; Boulton, R.B. FTIR Spectroscopy and Direct Orthogonal Signal Correction Preprocessing Applied to Selected Phenolic Compounds in Red Wines. Food Anal. Methods 2011, 4, 619. [Google Scholar] [CrossRef]
- Espinosa-Acosta, G.; Ramos-Jacques, A.; Molina, G.; Maya-Cornejo, J.; Esparza, R.; Hernandez-Martinez, A.; Sánchez-González, I.; Estevez, M. Stability Analysis of Anthocyanins Using Alcoholic Extracts from Black Carrot (Daucus Carota ssp. Sativus Var. Atrorubens Alef.). Molecules 2018, 23, 2744. [Google Scholar] [CrossRef] [Green Version]
- Qian, S.; Fang, X.; Dan, D.; Diao, E.; Lu, Z. Ultrasonic-assisted enzymatic extraction of a water soluble polysaccharide from dragon fruit peel and its antioxidant activity. RSC Adv. 2018, 8, 42145. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.I.; Neiva Correia, M.J.; Mateus, M.M.; Saraiva, J.A.; Vicente, A.A.; Moldão, M. Fourier Transform Infrared (FT-IR) Spectroscopy as a Possible Rapid Tool to Evaluate Abiotic Stress Effects on Pineapple By-Products. Appl. Sci. 2019, 9, 4141. [Google Scholar] [CrossRef] [Green Version]
- Barbehenn, R.; Cheek, S.; Gasperut, A.; Lister, E.; Maben, R. Phenolic Compounds in Red Oak and Sugar Maple Leaves Have Prooxidant Activities in the Midgut Fluids of Malacosoma disstria and Orgyia leucostigma Caterpillars. J. Chem. Ecol. 2005, 31, 969. [Google Scholar] [CrossRef] [Green Version]
- Shetty, B.S. Wound Healing and Indigenous Drugs: Role as Antioxidants: A Review. Res. Rev. J. Med. Heal. Sci. 2013, 2, 5. [Google Scholar]
- Fikru, A.; Makonnen, E.; Eguale, T.; Debella, A.; Abie Mekonnen, G. Evaluation of in vivo wound healing activity of methanol extract of Achyranthes aspera L. J. Ethnopharmacol. 2012, 143, 469. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.S.; Abou Zeid, A.H.; El Hawary, S.S.; Sleem, A.A.; Ashour, W.E. Flavonoid constituents, cytotoxic and antioxidant activities of Gleditsia triacanthos L. leaves. Saudi J. Biol. Sci. 2014, 21, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, J.R.; Lee, H.-I.; Choi, R.-Y.; Sim, M.-O.; Seo, K.-I.; Lee, M.-K. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice. Food Funct. 2016, 7, 689. [Google Scholar] [CrossRef]
- Karimi-Khouzani, O.; Heidarian, E.; Amini, S.A. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats. Pharmacol. Rep. 2017, 69, 830. [Google Scholar] [CrossRef]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p -Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952. [Google Scholar] [CrossRef]
- Che, D.N.; Cho, B.O.; Shin, J.Y.; Kang, H.J.; Kim, J.-S.; Oh, H.; Kim, Y.-S.; Jang, S. Il Apigenin Inhibits IL-31 Cytokine in Human Mast Cell and Mouse Skin Tissues. Molecules 2019, 24, 1290. [Google Scholar] [CrossRef] [Green Version]
- Xiong, G.; Ji, W.; Wang, F.; Zhang, F.; Xue, P.; Cheng, M.; Sun, Y.; Wang, X.; Zhang, T. Quercetin Inhibits Inflammatory Response Induced by LPS from Porphyromonas gingivalis in Human Gingival Fibroblasts via Suppressing NF- κ B Signaling Pathway. BioMed Res. Int. 2019, 2019, 6282635. [Google Scholar] [CrossRef] [Green Version]
- Semwal, D.; Semwal, R.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Du, C.; Beaman, H.T.; Monroe, M.B.B. Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure–Property Relationships. Pharmaceutics 2020, 12, 419. [Google Scholar] [CrossRef]
- Saleh, D.O.; Kassem, I.; Melek, F.R. Analgesic activity of Gleditsia triacanthos methanolic fruit extract and its saponin-containing fraction. Pharm Biol. 2016, 54, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Liu, Y.; Zhang, F.; Lei, F.; Wang, K.; Jiang, J. Physicochemical characterization of Gleditsia triacanthos galactomannan during deposition and maturation. Int. J. Biol. Macromol. 2020, 144, 821. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, X.; Liu, C.; Pan, R.; Dong, X.; Li, Y. Nanocellulose Mechanically Isolated from Amorpha fruticosa Linn. ACS Sustain. Chem. Eng. 2017, 5, 4414. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Jummaat, F.; Yahya, E.B.; Olaiya, N.G.; Adnan, A.S.; Abdat, M.; N. A. M., N.; Halim, A.S.; Kumar, U.S.U.; Bairwan, R.; et al. A Review on Micro- to Nanocellulose Biopolymer Scaffold Forming for Tissue Engineering Applications. Polymers 2020, 12, 2043. [Google Scholar] [CrossRef] [PubMed]
- Yamane, C.; Aoyagi, T.; Ago, M.; Ago, M.; Sato, K.; Okajima, K.; Takahashi, T. Two Different Surface Properties of Regenerated Cellulose due to Structural Anisotropy. Polym. J. 2006, 38, 819. [Google Scholar] [CrossRef] [Green Version]
- Ngadaonye, J.I.; Geever, L.M.; Killion, J.; Higginbotham, C.L. Development of novel chitosan-poly(N,N-diethylacrylamide) IPN films for potential wound dressing and biomedical applications. J. Polym. Res. 2013, 20, 161. [Google Scholar] [CrossRef]
- Kickhöfen, B.; Wokalek, H.; Scheel, D.; Ruh, H. Chemical and physical properties of a hydrogel wound dressing. Biomaterials 1986, 7, 67. [Google Scholar] [CrossRef]
- Schafer, M.; Werner, S. Oxidative stress in normal and impaired wound repair. Pharmacol. Res. 2008, 58, 165. [Google Scholar] [CrossRef]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, G.G.F.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian J. Microbiol. 2000, 31, 247. [Google Scholar] [CrossRef]
- Salaheen, S.; Peng, M.; Joo, J.; Teramoto, H.; Biswas, D. Eradication and Sensitization of Methicillin Resistant Staphylococcus aureus to Methicillin with Bioactive Extracts of Berry Pomace. Front. Microbiol. 2017, 8, 253. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.J.; Ferreira, I.C.F.R.; Froufe, H.J.C.; Abreu, R.M.V.; Martins, A.; Pintado, M. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol. 2013, 115, 346. [Google Scholar] [CrossRef] [PubMed]
- Merkl, R.; Hrádková, I.; Filip, V.; Šmidrkal, J. Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J. Food Sci. 2010, 28, 275. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, N.S.; Panda, S.K.; Navitha, M.; Asha, K.K.; Anandan, R.; Mathew, S. Vanillic acid and coumaric acid grafted chitosan derivatives: Improved grafting ratio and potential application in functional food. J. Food Sci. Technol. 2015, 52, 7153. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99. [Google Scholar] [CrossRef]
- Ciucure, C.T.; Geană, E. Phenolic compounds profile and biochemical properties of honeys in relationship to the honey floral sources. Phytochem. Anal. 2019, 30, 481. [Google Scholar] [CrossRef]
- Gaur, R.; Azizi, M.; Gan, J.; Hansal, P.; Harper, K.; Mannan, R.; Panchal, A.; Patel, K.; Patel, M.; Patel, N.; et al. British Pharmacopoeia; Crown, Inc.: London, UK, 2009; Volume 3, p. 9983. [Google Scholar]
- Stan, G.E.; Tite, T.; Popa, A.-C.; Chirica, I.M.; Negrila, C.C.; Besleaga, C.; Zgura, I.; Sergentu, A.C.; Popescu-Pelin, G.; Cristea, D.; et al. The Beneficial Mechanical and Biological Outcomes of Thin Copper-Gallium Doped Silica-Rich Bio-Active Glass Implant-Type Coatings. Coatings 2020, 10, 1119. [Google Scholar] [CrossRef]
- Lu, B.; Wang, T.; Li, Z.; Dai, F.; Lv, L.; Tang, F.; Yu, K.; Liu, J.; Lan, G. Healing of skin wounds with a chitosan–gelatin sponge loaded with tannins and platelet-rich plasma. Int. J. Biol. Macromol. 2016, 82, 884. [Google Scholar] [CrossRef]
- Madhu, G.; Bose, V.C.; Aiswaryaraj, A.S.; Maniammal, K.; Biju, V. Defect dependent antioxidant activity of nanostructured nickel oxide synthesized through a novel chemical method. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 429, 44. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231. [Google Scholar] [CrossRef]
- Ong, S.Y.; Wu, J.; Moochhala, S.M.; Tan, M.H.; Lu, J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 2008, 29, 4323. [Google Scholar] [CrossRef] [PubMed]
- Serbezeanu, D.; Vlad-Bubulac, T.; Rusu, D.; Grădișteanu Pircalabioru, G.; Samoilă, I.; Dinescu, S.; Aflori, M. Functional Polyimide-Based Electrospun Fibers for Biomedical Application. Material 2019, 12, 3201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strains | Time | CM | MFCM |
---|---|---|---|
Staphylococcus aureus MRSA clinical strain | 0 | 0.997 ± 0.045 | 0.995 ± 0.026 |
24 | 0.522 ± 0.021 | 0.513 ± 0.005 | |
Enterococcus faecium ATCC DMS 13590 | 0 | 0.778 ± 0.014 | 0.752 ± 0.029 |
24 | 0.744 ± 0.009 | 0.747 ± 0.029 | |
Pseudomonas aeruginosa 6 clinical strain | 0 | 0.792 ± 0.085 | 0.681 ± 0.098 |
24 | 0.690 ± 0.075 | 0.591 ± 0.075 | |
Pseudomonas aeruginosa ATCC 27853 | 0 | 0.933 ± 0.077 | 0.725 ± 0.028 |
24 | 0.848 ± 0.172 | 0.701 ± 0.172 | |
Enterobacter cloacae clinical strain | 0 | 0.983 ± 0.016 | 0.987 ± 0.016 |
24 | 0.821 ± 0.003 | 0.732 ± 0.005 | |
Acinetobacter baumannii clinical strain | 0 | 0.890 ± 0.011 | 0.784 ± 0.021 |
24 | 0.723 ± 0.004 | 0.652 ± 0.011 | |
Escherichia coli ATCC 11229 | 0 | 0.761 ± 0.032 | 0.708 ± 0.035 |
24 | 0.894 ± 0.006 | 0.802 ± 0.051 | |
Candida albicans ATCC 10231 | 0 | 0.987 ± 0.035 | 0.969 ± 0.007 |
24 | 0.875 ± 0.006 | 0.776 ± 0.141 | |
Candida parapsilosis ATCC 22019 | 0 | 0.996 ± 0.021 | 0.996 ± 0.024 |
24 | 0.807 ± 0.01 | 0.732 ± 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinas, I.C.; Oprea, E.; Geana, E.-I.; Tutunaru, O.; Pircalabioru, G.G.; Zgura, I.; Chifiriuc, M.C. Valorization of Gleditsia triacanthos Invasive Plant Cellulose Microfibers and Phenolic Compounds for Obtaining Multi-Functional Wound Dressings with Antimicrobial and Antioxidant Properties. Int. J. Mol. Sci. 2021, 22, 33. https://doi.org/10.3390/ijms22010033
Marinas IC, Oprea E, Geana E-I, Tutunaru O, Pircalabioru GG, Zgura I, Chifiriuc MC. Valorization of Gleditsia triacanthos Invasive Plant Cellulose Microfibers and Phenolic Compounds for Obtaining Multi-Functional Wound Dressings with Antimicrobial and Antioxidant Properties. International Journal of Molecular Sciences. 2021; 22(1):33. https://doi.org/10.3390/ijms22010033
Chicago/Turabian StyleMarinas, Ioana Cristina, Eliza Oprea, Elisabeta-Irina Geana, Oana Tutunaru, Gratiela Gradisteanu Pircalabioru, Irina Zgura, and Mariana Carmen Chifiriuc. 2021. "Valorization of Gleditsia triacanthos Invasive Plant Cellulose Microfibers and Phenolic Compounds for Obtaining Multi-Functional Wound Dressings with Antimicrobial and Antioxidant Properties" International Journal of Molecular Sciences 22, no. 1: 33. https://doi.org/10.3390/ijms22010033
APA StyleMarinas, I. C., Oprea, E., Geana, E. -I., Tutunaru, O., Pircalabioru, G. G., Zgura, I., & Chifiriuc, M. C. (2021). Valorization of Gleditsia triacanthos Invasive Plant Cellulose Microfibers and Phenolic Compounds for Obtaining Multi-Functional Wound Dressings with Antimicrobial and Antioxidant Properties. International Journal of Molecular Sciences, 22(1), 33. https://doi.org/10.3390/ijms22010033