Polymer-Decorated Cellulose Nanocrystals as Environmentally Friendly Additives for Olefin-Based Drilling Fluids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CNC and CNC-g-PNIPAM
2.2. Characterization of the Olefin-Based Drilling Fluids
3. Materials and Methods
3.1. Materials
3.2. Preparation of Cellulose Nanocrystals (CNCs)
3.3. Surface Functionalization of Cellulose Nanocrystals (CNC-g-PNIPAM)
3.4. Infrared Spectroscopy
3.5. NMR Spectroscopy
3.6. X-ray Diffraction (XRD)
3.7. Zeta Potential
3.8. Dynamic Light Scattering (DLS)
3.9. Confocal Microscopy
3.10. Thermogravimetry
3.11. Preparation of the Drilling Fluids
3.12. Rheology
3.13. Electrical Stability
3.14. High-Temperature and High-Pressure (HTHP) Filtration Tests
3.15. Preparation of Water in Oil Dispersions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ansari, M.; Turney, D.E.; Morris, J.; Banerjee, S. Investigations of rheology and a link to microstructure of oil-based drilling fluids. J. Pet. Sci. Eng. 2021, 196, 108031. [Google Scholar] [CrossRef]
- Marques, N.D.N.; Garcia, C.S.D.N.; Madruga, L.Y.C.; Villetti, M.A.; de Souza Filho, M.S.M.; Ito, E.N.; Balaban, R.C. Turning industrial waste into a valuable bioproduct: Starch from mango kernel derivative to oil industry mango starch derivative in oil industry. J. Renew. Mater. 2019, 7, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Beg, M.; Kumar, P.; Choudhary, P.; Sharma, S. Effect of high temperature ageing on TiO2 nanoparticles enhanced drilling fluids: A rheological and filtration study. Upstream Oil Gas Technol. 2020, 5, 100019. [Google Scholar] [CrossRef]
- Wahid, N.; Yusof, M.A.M.; Hanafi, N.H. Optimum Nanosilica Concentration in Synthetic Based Mud (SBM) for High Temperature High Pressure Well. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Nusa Dua, Bali, Indonesia, 20 October 2015; p. 14. [Google Scholar]
- Said, M.M.; El-Sayed, A.-A.H. The use of palm oil fatty acid methyl ester as a base fluid for a flat rheology high-performance drilling fluid. J. Pet. Sci. Eng. 2018, 166, 969–983. [Google Scholar] [CrossRef]
- Growcock, F.B.; Frederick, T.P. Operational Limits of Synthetic Drilling Fluids. SPE Drill. Complet. 1996, 11, 132–136. [Google Scholar] [CrossRef]
- Rafati, R.; Smith, S.R.; Sharifi Haddad, A.; Novara, R.; Hamidi, H. Effect of nanoparticles on the modifications of drilling fluids properties: A review of recent advances. J. Pet. Sci. Eng. 2018, 161, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Chenevert, M.E.; Sharma, M.M.; Friedheim, J.E. Decreasing Water Invasion Into Atoka Shale Using Nonmodified Silica Nanoparticles. SPE Drill. Complet. 2012, 27, 103–112. [Google Scholar] [CrossRef]
- Ahmed, N.; Alam, M.S.; Salam, M.A. Experimental analysis of drilling fluid prepared by mixing iron (III) oxide nanoparticles with a KCl–Glycol–PHPA polymer-based mud used in drilling operation. J. Pet. Explor. Prod. Technol. 2020, 10, 3389–3397. [Google Scholar] [CrossRef]
- Grishkewich, N.; Mohammed, N.; Tang, J.; Tam, K.C. Recent advances in the application of cellulose nanocrystals. Curr. Opin. Colloid Interface Sci. 2017, 29, 32–45. [Google Scholar] [CrossRef]
- Li, M.-C.; Wu, Q.; Song, K.; Qing, Y.; Wu, Y. Cellulose Nanoparticles as Modifiers for Rheology and Fluid Loss in Bentonite Water-based Fluids. ACS Appl. Mater. Interfaces 2015, 7, 5006–5016. [Google Scholar] [CrossRef]
- Li, M.-C.; Wu, Q.; Song, K.; De Hoop, C.F.; Lee, S.; Qing, Y.; Wu, Y. Cellulose Nanocrystals and Polyanionic Cellulose as Additives in Bentonite Water-Based Drilling Fluids: Rheological Modeling and Filtration Mechanisms. Ind. Eng. Chem. Res. 2016, 55, 133–143. [Google Scholar] [CrossRef]
- Zoppe, J.O.; Venditti, R.A.; Rojas, O.J. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. J. Colloid Interface Sci. 2012, 369, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Zoppe, J.O.; Habibi, Y.; Rojas, O.J.; Venditti, R.A.; Johansson, L.-S.; Efimenko, K.; Österberg, M.; Laine, J. Poly(N-isopropylacrylamide) Brushes Grafted from Cellulose Nanocrystals via Surface-Initiated Single-Electron Transfer Living Radical Polymerization. Biomacromolecules 2010, 11, 2683–2691. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, R.; Deutschman, C.P.; Han, L.; Pope, M.A.; Tam, K.C. Cellulose nanocrystals in smart and stimuli-responsive materials: A review. Mater. Today Adv. 2020, 5, 100055. [Google Scholar] [CrossRef]
- Burdukova, E.; Li, H.; Bradshaw, D.J.; Franks, G.V. Poly (N-isopropylacrylamide) (PNIPAM) as a flotation collector: Effect of temperature and molecular weight. Miner. Eng. 2010, 23, 921–927. [Google Scholar] [CrossRef]
- Dong, W.; Pu, X.; Ren, Y.; Zhai, Y.; Gao, F.; Xie, W. Thermoresponsive Bentonite for Water-Based Drilling Fluids. Materials 2019, 12, 2125. [Google Scholar] [CrossRef] [Green Version]
- Zubik, K.; Singhsa, P.; Wang, Y.; Manuspiya, H.; Narain, R. Thermo-Responsive Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing. Polymers 2017, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Thambiraj, S.; Ravi Shankaran, D. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl. Surf. Sci. 2017, 412, 405–416. [Google Scholar] [CrossRef]
- Hebeish, A.; Farag, S.; Sharaf, S.; Shaheen, T.I. Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr. Polym. 2014, 102, 159–166. [Google Scholar] [CrossRef]
- Marques, N.N.; Lima, B.V.; Silveira, V.R.; Lima, B.L.B.; Maia, A.M.S.; Balaban, R.C. PNIPAM-based graft copolymers prepared using potassium persulfate as free-radical initiator: Synthesis reproducibility. Colloid Polym. Sci. 2016, 294, 981–991. [Google Scholar] [CrossRef]
- do Nascimento Marques, N.; de Lima, B.L.B.; de Carvalho Balaban, R. Carboxymethylcellulose Grafted to Amino-Terminated Poly(N-isopropylacrylamide): Preparation, Characterization and Evaluation of the Thermoassociative Behaviour at Low Concentrations. Macromol. Symp. 2016, 367, 126–135. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Wang, B.; Lu, Z. A novel thermoviscosifying water-soluble polymer: Synthesis and aqueous solution properties. J. Appl. Polym. Sci. 2010, 116, 3516–3524. [Google Scholar] [CrossRef]
- Gicquel, E.; Martin, C.; Heux, L.; Jean, B.; Bras, J. Adsorption versus grafting of poly(N-Isopropylacrylamide) in aqueous conditions on the surface of cellulose nanocrystals. Carbohydr. Polym. 2019, 210, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, F.; Jafari, S.M.; Taheri, R.A. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter. Int. J. Biol. Macromol. 2019, 137, 374–381. [Google Scholar] [CrossRef]
- Azzam, F.; Heux, L.; Putaux, J.L.; Jean, B. Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 2010, 11, 3652–3659. [Google Scholar] [CrossRef]
- Hemraz, U.D.; Lu, A.; Sunasee, R.; Boluk, Y. Structure of poly(N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J. Colloid Interface Sci. 2014, 430, 157–165. [Google Scholar] [CrossRef]
- Chang, C.-P.; Wang, I.C.; Hung, K.-J.; Perng, Y.-S. Preparation and Characterization of Nanocrystalline Cellulose by Acid Hydrolysis of Cotton Linter. Taiwan J. For. Sci. 2010, 25, 231–244. [Google Scholar]
- Sun, J.; Huang, X.; Jiang, G.; Lyu, K.; Liu, J.; Dai, Z. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation. Pet. Explor. Dev. 2018, 45, 764–769. [Google Scholar] [CrossRef]
- API. API RP 13B-2, Recommended Practice for Field Testing of Oil-Based Drilling Fluids; API: Washington, DC, USA, 2019. [Google Scholar]
- Parajuli, S.; Dorris, A.L.; Middleton, C.; Rodriguez, A.; Haver, M.O.; Hammer, N.I.; Ureña-Benavides, E. Surface and Interfacial Interactions in Dodecane/Brine Pickering Emulsions Stabilized by the Combination of Cellulose Nanocrystals and Emulsifiers. Langmuir ACS J. Surf. Colloids 2019, 35, 12061–12070. [Google Scholar] [CrossRef]
- Zakaria, M.; Husein, M.M.; Harland, G. Novel Nanoparticle-Based Drilling Fluid with Improved Characteristics. In Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 1 January 2012; p. 6. [Google Scholar]
- Mao, H.; Qiu, Z.; Shen, Z.; Huang, W. Hydrophobic associated polymer based silica nanoparticles composite with core–shell structure as a filtrate reducer for drilling fluid at utra-high temperature. J. Pet. Sci. Eng. 2015, 129, 1–14. [Google Scholar] [CrossRef]
- Mahmoud, O.; Nasr-El-Din, H.A.; Vryzas, Z.; Kelessidis, V.C. Nanoparticle-Based Drilling Fluids for Minimizing Formation Damage in HP/HT Applications. In Proceedings of the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, LA, USA, 24 February 2016; p. 26. [Google Scholar]
- Seetharaman, G.; Sangwai, J. Effect of Nanoparticles on the Performance of Drilling Fluids; Springer: Cham, Switzerland, 2020; pp. 279–297. [Google Scholar]
- Dehghanpour, H.; Kuru, E. Effect of viscoelasticity on the filtration loss characteristics of aqueous polymer solutions. J. Pet. Sci. Eng. 2011, 76, 12–20. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, G.; He, Y.; An, Y.; Zhang, S. Improvement of rheological properties of invert drilling fluids by enhancing interactions of water droplets using hydrogen bonding linker. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 467–475. [Google Scholar] [CrossRef]
- de Oliveira Taipina, M.; Ferrarezi, M.M.F.; Gonçalves, M.d.C. Morphological evolution of curauá fibers under acid hydrolysis. Cellulose 2012, 19, 1199–1207. [Google Scholar] [CrossRef]
- Morais, J.P.S.; Rosa, M.d.F.; de Souza Filho, M.d.s.M.; Nascimento, L.D.; do Nascimento, D.M.; Cassales, A.R. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 2013, 91, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
Sample | Zeta Potential (mV) | Hydrodynamic Diameter (nm) before Filtration 1 | Hydrodynamic Diameter (nm) after Filtration 1 | Hydrodynamic Diameter (nm) without Filtration 2 |
---|---|---|---|---|
CNC | −34.2 | - | 104.1 | - |
CNC-g-PNIPAM1 | −24.0 | 631.0 | 129.4 | 259.8 |
CNC-g-PNIPAM2 | −12.3 | 534.1 | 126.1 | 211.4 |
CNC-g-PNIPAM3 | −7.6 | 323.5 | 128.3 | 185.2 |
Drilling Fluid | Plastic Viscosity 1 (mPa s) | Yield Point 1 (Pa) | Electrical Stability (Volts) |
---|---|---|---|
SF | 25.2 | 3.3 | 466 |
F1 | 26.1 | 3.1 | 512 |
F2 | 25.8 | 2.9 | 462 |
F3 | 26.7 | 3.0 | 513 |
Sample | CNC (g) | NIPAM (g) | K2S2O8 (g) | Mass Yield (%) |
---|---|---|---|---|
CNC-g-PNIPAM1 | 1.5 | 0.5 | 0.045 | 94 |
CNC-g-PNIPAM2 | 1.0 | 1.0 | 0.090 | 94 |
CNC-g-PNIPAM3 | 0.5 | 1.5 | 0.135 | 95 |
PNIPAM | 0 | 2 | 0.180 | 88 |
Order of Addition | Constituents | Stirring Time (min) | Standard Fluid (SF) | F1 1 | F2 2 | F3 3 | Units |
---|---|---|---|---|---|---|---|
1 | Olefin | 1 | 186.8 | 186.8 | 186.8 | 186.8 | mL |
2 | BDF−TM 997 | 3 | 7 | 7 | 7 | 7 | g |
3 | BDF−TM 998 | 3 | 3 | 3 | 3 | 3 | g |
4 | Lime | 5 | 5 | 5 | 5 | 5 | g |
5 | ADAPTA® L | 5 | 2 | 2 | 2 | 2 | g |
6 | Tau-MOD® | 5 | 2 | 2 | 2 | 2 | g |
7 | Brine (35 wt% NaCl) | 10 | 127.3 | 127.3 | 127.3 | 127.3 | mL |
8 | Calcite | 5 | 10 | 10 | 10 | 10 | g |
9 | CNC-g-NIPAM | 5 | - | 0.25 | 0.25 | 0.25 | g |
10 | Barite | 10 | 72.6 | 72.6 | 72.6 | 72.6 | g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, J.A.; Marques, N.d.N.; Villetti, M.A.; Balaban, R.d.C. Polymer-Decorated Cellulose Nanocrystals as Environmentally Friendly Additives for Olefin-Based Drilling Fluids. Int. J. Mol. Sci. 2021, 22, 352. https://doi.org/10.3390/ijms22010352
Pinheiro JA, Marques NdN, Villetti MA, Balaban RdC. Polymer-Decorated Cellulose Nanocrystals as Environmentally Friendly Additives for Olefin-Based Drilling Fluids. International Journal of Molecular Sciences. 2021; 22(1):352. https://doi.org/10.3390/ijms22010352
Chicago/Turabian StylePinheiro, José Aurélio, Nívia do Nascimento Marques, Marcos Antônio Villetti, and Rosangela de Carvalho Balaban. 2021. "Polymer-Decorated Cellulose Nanocrystals as Environmentally Friendly Additives for Olefin-Based Drilling Fluids" International Journal of Molecular Sciences 22, no. 1: 352. https://doi.org/10.3390/ijms22010352
APA StylePinheiro, J. A., Marques, N. d. N., Villetti, M. A., & Balaban, R. d. C. (2021). Polymer-Decorated Cellulose Nanocrystals as Environmentally Friendly Additives for Olefin-Based Drilling Fluids. International Journal of Molecular Sciences, 22(1), 352. https://doi.org/10.3390/ijms22010352