Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like—Recent Progress in Treatment
Abstract
:1. Introduction
2. Treatment of Pediatric ALL Ph+
3. Future Directions in Treatment
4. IKZF1 Deletions
5. Molecular Background of Ph-Like
6. Treatment of Ph-Like
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABL1 | V-abl Abelson murine leukemia viral oncogene homolog 1 |
ABL2 | V-abl Abelson murine leukemia viral oncogene homolog 2 |
AIEOP-BFM | Associazione Italiana di Ematologia-Oncologia Pediatrica–Berlin-Frankfurt-Münster |
ALL | acute lymphoblastic leukemia |
ALLO | hsct-allogenic hematopoietic stem cell transplantation |
ATF1 | activating transcription factor 1 |
ATF71P | activating transcription factor 7-interacting protein |
B-ALL | B-cells Acute Lymphoblastic Leukemia |
BCR | breakpoint cluster region |
BCR/ABL1 | BCR and ABL fusion gene |
BLNK | B-cell linker protein |
CENPC | centromeric protein c1 |
CIR | cumulative incidence of relapse |
COG | children oncology group |
CR1 | first complete remission |
CRLF2 | cytokine receptor-like factor 2 |
CSF1R | Colony Stimulating Factor 1 Receptor |
DFS | disease-free survival |
DGKH | diacylglycerol kinase, ETA, 130-KD |
EBF1 | early B-cell factor 1 |
EFS | event-free survival |
EPOR | erythropoietin receptor |
ETV6 | ets variant transcription factor 6 |
ETV6–RUNX1 | ETV6 and RUNX1 fusion gene |
FGFR1 | fibroblast growth factor receptor 1 |
FIP1L1 | actor interacting with PAPOLA and CPSF1 |
FISH | fluorescence in situ hybridization |
FLT3 | FMS-related tyrosine kinase 3 |
FOXP1 | forkhead box P1 |
FRS | event-free survival |
GATAD2A | gata zinc finger domain-containing protein A2 |
GNF2 | allosteric Bcr-abl inhibitors |
GNF5 | allosteric inhibitor of Bcr-Abl |
GOLGA5 | golgin A5 |
HSCT | hematopoietic sterm cell transplantation |
IGH | immunoglobulin heavy |
IGK | immunoglobulin kappa locus |
IL2RB | interleukin 2 receptor, beta |
IL7R | interleukin 7 receptor alpha chain |
IQGAP2 | IQ motif-containing GTPase-activating protein 2 |
JAK1 | Janus kinase 1 |
JAK2 | Janus kinase 2 |
JAK3 | Janus kinase 3 |
JAK-STAT | Janus kinase-signal transducer and activator of transcription |
KDM6A | lysine demethylase 6A |
LAIR1 | leukocyte associated immunoglobulin like receptor 1 |
LSM14A | mRNA processing body assembly factor |
LYN | LYN proto-oncogene |
MRD | minimal residual disease |
MS2010 | Malaysia–Singapore ALL 2010 study |
MYB | protooncogene, transcription factor |
MYH9 | myosin, heavy chain 9, nonmuscle |
NCOR1 | nuclear receptor corepressor 1 |
NGS | next generating sequencing |
NTRK3 | neurotrophic tyrosine kinase, receptor, type 3 |
NUP153 | nucleoporin 153 |
NUP214 | nucleoporin 214 |
P2RY8 | pyrimidinergic receptor P2Y, G protein coupled 8 |
PAG1 | phosphoprotein associated with glycosphingolipid-enriched microdomains 1 |
PAX5 | paired box gene 5 |
PCM1 | pericentriolar material 1 |
PDGFRA | Platelet-derived growth factor receptor alpha |
PDGFRB | Platelet-derived growth factor receptor beta |
Ph | Philadelphia chromosome |
Ph+- | Philadelphia chromosome positive |
PPFIBP1 | protein-tyrosine phosphatase, receptor type, F polypeptide-interacting protein-binding protein 1 |
PTK | protein tyrosine kinase |
PTK2B | protein-tyrosine kinase 2, beta |
RANBP2 | ran-binding protein 2 |
RCSD1 | RCSD domain containing 1 |
RFX3 | regulatory factor 3 |
SFPQ | splicing factor proline- and glutamine-rich |
SMARCA4 | SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4 |
SMU1 | DNA replication regulator and spliceosomal factor |
SNX1 | sorting nexin 1 |
SNX29 | sorting nexin 29 |
SPTAN1 | spectrin alpha, non-erythrocytic 1 |
SSBP2 | single-stranded DNA-binding protein 2 |
STAG2 | stromal antigen 2 |
STRN3 | striatin, calmodulin-binding protein 3 |
TARGET | Therapeutically Applicable Research to Generate Effective Treatments |
TBL1XR1 | transducin-beta-like 1 receptor 1 |
TERF2 | telomeric repeat-binding factor 2 |
THADA | thada armadillo repeat-containing protein |
TKI | tyrosine kinase inhibitors |
TMEM2 | transmembrane protein 2 |
TNFAIP3 | interacting protein 1 |
TNIP1 | TNFAIP3 interacting protein 1 |
TPR | translocated promoter region |
TSLP | thymic stroma lymphoprotein |
TYK2 | tyrosine kinase 2 |
USA | United States of America |
USP25 | ubiquitin-specific protease 25 |
ZC3HAV1 | zinc finger CCCH-type containing, antiviral 1 |
ZEB2 | zinc finger E box-binding homeobox 2 |
ZFAND3 | zinc finger AN1 domain-containing protein 3 |
ZMIZ1 | zinc finger miz-domain containing 1 |
ZMYM2 | zinc finger, MYM-type 2 |
ZNF274 | zinc finger protein 274 |
References
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and Adolescent Cancer Statistics, 2014. CA. Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.H.; Pei, D.; Campana, D.; Cheng, C.; Sandlund, J.T.; Bowman, W.P.; Hudson, M.M.; Ribeiro, R.C.; Raimondi, S.C.; Jeha, S.; et al. A Revised Definition for Cure of Childhood Acute Lymphoblastic Leukemia. Leukemia 2014, 28, 2336–2343. [Google Scholar] [CrossRef] [Green Version]
- Bernt, K.; Hunger, S. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front. Oncol. 2014, 4, 54. [Google Scholar] [CrossRef] [PubMed]
- Sattler, M.; Griffin, J.D. Molecular mechanisms of transformation by the BCR-ABL oncogene. Semin. Hematol. 2003, 40, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Pane, F.; Cimino, G.; Izzo, B.; Camera, A.; Vitale, A.; Quintarelli, C.; Picardi, M.; Specchia, G.; Mancini, M.; Cuneo, A.; et al. Significant reduction of the hybrid BCR/ABL transcripts after induction and consolidation therapy is a powerful predictor of treatment response in adult Philadelphia-positive acute lymphoblastic leukemia. Leukemia 2005, 19, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aricò, M.; Valsecchi, M.G.; Camitta, B.; Schrappe, M.; Chessells, J.; Baruchel, A.; Gaynon, P.; Silverman, L.; Janka-Schaub, G.; Kamps, W.; et al. Outcome of Treatment in Children with Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2000, 342, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Zawitkowska, J.; Lejman, M.; Romiszewski, M.; Matysiak, M.; Ćwiklińska, M.; Balwierz, W.; Owoc-Lempach, J.; Kazanowska, B.; Derwich, K.; Wachowiak, J.; et al. Results of Two Consecutive Treatment Protocols in Polish Children with Acute Lymphoblastic Leukemia. Sci. Rep. 2020, 10, 1–10. [Google Scholar]
- Oskarsson, T.; Söderhäll, S.; Arvidson, J.; Forestier, E.; Montgomery, S.; Bottai, M.; Lausen, B.; Carlsen, N.; Hellebostad, M.; Lähteenmäki, P.; et al. Relapsed Childhood Acute Lymphoblastic Leukemia in the Nordic Countries: Prognostic Factors, Treatment and Outcome. Haematologica 2016, 101, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Cazzaniga, G.; de Lorenzo, P.; Alten, J.; Röttgers, S.; Hancock, J.; Saha, V.; Castor, A.; Madsen, H.O.; Gandemer, V.; Cavé, H.; et al. Predictive Value of Minimal Residual Disease in Philadelphia-Chromosome-Positive Acute Lymphoblastic Leukemia Treated with Imatinib in the European Intergroup Study of Post-Induction Treatment of Philadelphia-Chromosome-Positive Acute Lymphoblastic Leukemia, Based on Immunoglobulin/T-Cell Receptor and BCR/ABL1 Methodologies. Haematologica 2018, 103, 107–115. [Google Scholar]
- Borowitz, M.J.; Devidas, M.; Hunger, S.P.; Bowman, W.P.; Carroll, A.J.; Carroll, W.L.; Linda, S.; Martin, P.L.; Pullen, D.J.; Viswanatha, D.; et al. Clinical Significance of Minimal Residual Disease in Childhood Acute Lymphoblastic Leukemia and Its Relationship to Other Prognostic Factors: A Children’s Oncology Group Study. Blood 2008, 111, 5477–5485. [Google Scholar] [CrossRef] [Green Version]
- Cario, G.; Leoni, V.; Conter, V.; Attarbaschi, A.; Zaliova, M.; Sramkova, L.; Cazzaniga, G.; Fazio, G.; Sutton, R.; Elitzur, S.; et al. Relapses and Treatment-Related Events Contributed Equally to Poor Prognosis in Children with ABL-Class Fusion Positive B-Cell Acute Lymphoblastic Leukemia Treated According to AIEOP-BFM Protocols. Haematologica 2020, 105, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, H.; Cazzaniga, G.; van der Velden, V.H.J.; Cayuela, J.M.; Schäfer, B.; Spinelli, O.; Akiki, S.; Avigad, S.; Bendit, I.; Borg, K.; et al. Standardisation and Consensus Guidelines for Minimal Residual Disease Assessment in Philadelphia-Positive Acute Lymphoblastic Leukemia (Ph + ALL) by Real-Time Quantitative Reverse Transcriptase PCR of E1a2 BCR-ABL1. Leukemia 2019, 33, 1910–1922. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Mullighan, C.G. Pediatric Acute Lymphoblastic Leukemia. Haematologica 2020, 105, 2524–2539. [Google Scholar] [CrossRef]
- Moorman, A.V. The Clinical Relevance of Chromosomal and Genomic Abnormalities in B-Cell Precursor Acute Lymphoblastic Leukaemia. Blood Rev. 2012, 26, 123–135. [Google Scholar] [CrossRef]
- Tran, T.H.; Harris, M.H.; Nguyen, J.V.; Blonquis, T.M.; Stevenson, K.E.; Stonerock, E.; Asselin, B.L.; Athale, U.H.; Clavell, L.A.; Cole, P.D.; et al. Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-lineage acute lymphoblastic leukemia. Blood Adv. 2018, 2, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Biondi, A.; Schrappe, M.; De Lorenzo, P.; Castor, A.; Lucchini, G.; Gandemer, V.; Pieters, R.; Stary, J.; Escherich, G.; Campbell, M.; et al. Imatinib after Induction for Treatment of Children and Adolescents with Philadelphia-Chromosome-Positive Acute Lymphoblastic Leukaemia (EsPhALL): A Randomised, Open-Label, Intergroup Study. Lancet Oncol. 2012, 13, 936–945. [Google Scholar] [CrossRef]
- Biondi, A.; Gandemer, V.; De Lorenzo, P.; Cario, G.; Campbell, M.; Castor, A.; Pieters, R.; Baruchel, A.; Vora, A.; Leoni, V.; et al. Imatinib Treatment of Paediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukaemia (EsPhALL2010): A Prospective, Intergroup, Open-Label, Single-Arm Clinical Trial. Lancet Haematol. 2018, 5, e641–e652. [Google Scholar] [CrossRef] [Green Version]
- Ribera, J.M.; Oriol, A.; González, M.; Vidriales, B.; Brunet, S.; Esteve, J.; Del Potro, E.; Rivas, C.; Moreno, M.J.; Tormo, M.; et al. Concurrent Intensive Chemotherapy and Imatinib before and after Stem Cell Transplantation in Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Final Results of the CSTIBES02 Trial. Haematologica 2010, 95, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soverini, S.; Albano, F.; Bassan, R.; Fabbiano, F.; Ferrara, F.; Foà, R.; Olivieri, A.; Rambaldi, A.; Rossi, G.; Sica, S.; et al. Next-Generation Sequencing for BCR-ABL1 Kinase Domain Mutations in Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: A Position Paper. Cancer Med. 2020, 9, 2960–2970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwaan, C.M.; Rizzari, C.; Mechinaud, F.; Lancaster, D.L.; Lehrnbecher, T.; van der Velden, V.H.J.; Beverloo, B.B.; den Boer, M.L.; Pieters, R.; Reinhardt, D.; et al. Dasatinib in Children and Adolescents with Relapsed or Refractory Leukemia: Results of the CA180-018 Phase I Dose-Escalation Study of the Innovative Therapies for Children with Cancer Consortium. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 2460–2468. [Google Scholar] [CrossRef] [PubMed]
- Slayton, W.B.; Schultz, K.R.; Kairalla, J.A.; Devidas, M.; Mi, X.; Pulsipher, M.A.; Chang, B.H.; Mullighan, C.; Iacobucci, I.; Silverman, L.B.; et al. Dasatinib Plus Intensive Chemotherapy in Children, Adolescents, and Young Adults With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Results of Children’s Oncology Group Trial AALL0622. J. Clin. Oncol. 2018, 36, 2306–2313. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Miyagawa, N.; Mitsui, K.; Matsuoka, M.; Kojima, Y.; Takahashi, H.; Ootsubo, K.; Nagai, J.; Ueno, H.; Ishibashi, T.; et al. TKI Dasatinib Monotherapy for a Patient with Ph-like ALL Bearing ATF7IP/PDGFRB Translocation. Pediatr. Blood Cancer 2015, 62, 1058–1060. [Google Scholar] [CrossRef] [PubMed]
- Fei, F.; Stoddart, S.; Müschen, M.; Kim, Y.M.; Groffen, J.; Heisterkamp, N. Development of resistance to dasatinib in Bcr/Abl-positive acute lymphoblastic leukemia. Leukemia 2010, 24, 813–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, T.H.; Hunger, S.P. ABL-Class Fusion Positive Acute Lymphoblastic Leukemia: Can Targeting ABL Cure ALL? Haematologica 2020, 105, 1754–1757. [Google Scholar] [CrossRef]
- Kebriaei, P.; Saliba, R.; Rondon, G.; Chiattone, A.; Luthra, R.; Anderlini, P.; Andersson, B.; Shpall, E.; Popat, U.; Jones, R.; et al. Long-Term Follow-up of Allogeneic Hematopoietic Stem Cell Transplantation for Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Impact of Tyrosine Kinase Inhibitors on Treatment Outcomes. Biol. Blood Marrow Transplant. 2012, 18, 584–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doki, N.; Ohashi, K.; Oshikawa, G.; Kobayashi, T.; Kakihana, K.; Sakamaki, H. Clinical Outcome of Hematopoietic Stem Cell Transplantation for Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia (Ph + ALL): Experience from a Single Institution. Pathol. Oncol. Res. 2014, 20, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hao, S.; Diong, C.; Goh, Y.T.; Gopalakrishnan, S.; Ho, A.; Hwang, W.; Koh, L.P.; Koh, M.; Lim, Z.Y.; et al. Pre-Transplant Achievement of Negativity in Minimal Residual Disease and French-American-British L1 Morphology Predict Superior Outcome after Allogeneic Transplant for Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia: An Analysis of Southeast. Leuk. Lymphoma 2015, 56, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Manabe, A.; Kawasaki, H.; Shimada, H.; Kato, I.; Kodama, Y.; Sato, A.; Matsumoto, K.; Kato, K.; Yabe, H.; Kudo, K.; et al. Imatinib Use Immediately before Stem Cell Transplantation in Children with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Results from Japanese Pediatric Leukemia/Lymphoma Study Group (JPLSG) Study Ph+ALL04. Cancer Med. 2015, 4, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Chen, X.; Cai, J.; Yu, J.; Gao, J.; Hu, S.; Zhai, X.; Liang, C.; Ju, X.; Jiang, H.; et al. Effect of Dasatinib vs Imatinib in the Treatment of Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA Oncol. 2020, 6, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.H. Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Childhood. Korean J. Pediatr. 2011, 54, 106–110. [Google Scholar] [CrossRef]
- Kantarjian, H.; Giles, F.; Wunderle, L.; Bhalla, K.; O’Brien, S.; Wassmann, B.; Tanaka, C.; Manley, P.; Rae, P.; Mietlowski, W.; et al. Nilotinib in Imatinib-Resistant CML and Philadelphia Chromosome–Positive ALL. N. Engl. J. Med. 2006, 354, 2542–2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, J.E.; Kantarjian, H.; Shah, N.P.; Bixby, D.; Mauro, M.J.; Flinn, I.; O’Hare, T.; Hu, S.; Narasimhan, N.I.; Rivera, V.M.; et al. Ponatinib in Refractory Philadelphia Chromosome–Positive Leukemias. N. Engl. J. Med. 2012, 367, 2075–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.D.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; et al. Ponatinib Efficacy and Safety in Philadelphia Chromosome–Positive Leukemia: Final 5-Year Results of the Phase 2 PACE Trial. Blood 2018, 132, 393–404. [Google Scholar] [CrossRef]
- Foà, R.; Bassan, R.; Vitale, A.; Elia, L.; Piciocchi, A.; Puzzolo, M.-C.; Canichella, M.; Viero, P.; Ferrara, F.; Lunghi, M.; et al. Dasatinib–Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults. N. Engl. J. Med. 2020, 383, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Slayton, W.B. Integrin VLA-5 and FAK Are Good Targets to Improve Treatment Response in the Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia. Front. Oncol. 2014, 4, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churchman, M.L.; Low, J.; Qu, C.; Paietta, E.M.; Lawryn, H.; Chang, Y.; Payne-turner, D.; Althoff, M.J.; Song, G.; Chen, S.; et al. Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell 2016, 28, 343–356. [Google Scholar] [CrossRef]
- Karol, S.E.; Cooper, T.M.; Bittencourt, H.; Gore, L.; O’Brien, M.M.; Fraser, C.; Gambart, M.; Cario, G.; Zwaan, C.M.; Bourquin, J.-P.; et al. Safety, efficacy, and PK of the BCL2 inhibitor venetoclax in combination with chemotherapy in pediatric and young adult patients with relapsed/refractory acute myeloid leukemia and acute lymphoblastic leukemia: Phase 1 study. Blood 2019, 134, 2649. [Google Scholar] [CrossRef]
- Pullarkat, V.A.; Lacayo, N.J.; Jabbour, E.; Rubnitz, J.E.; Bajel, A.; Laetsch, T.W.; Leonard, J.; Colace, S.I.; Khaw, S.L.; Fleming, S.A.; et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Frisch, A.; Ofran, Y. How i Diagnose and Manage Philadelphia Chromosome-like Acute Lymphoblastic Leukemia. Haematologica 2019, 104, 2135–2143. [Google Scholar] [CrossRef] [Green Version]
- Joice, R.; Nilsson, S.K.; Montgomery, J.; Dankwa, S.; Morahan, B.; Seydel, K.B.; Bertuccini, L.; Alano, P.; Kim, C.; Duraisingh, M.T.; et al. CREBBP Mutations in Relapsed Acute Lymphoblastic Leukaemia Charles. Nature 2014, 6, 1–16. [Google Scholar]
- Mullighan, C.; Su, X.; Zhang, J.; Radtke, I.; Phillips, L.A.A.; Miller, C.B.; Ma, J.; Liu, W.; Cheng, C.; Schulman, B.A.; et al. Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2009, 360, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Schwab, C.J.; Chilton, L.; Morrison, H.; Jones, L.; Al-Shehhi, H.; Erhorn, A.; Russell, L.J.; Moorman, A.V.; Harrison, C.J. Genes Commonly Deleted in Childhood B-Cell Precursor Acute Lymphoblastic Leukemia: Association with Cytogenetics and Clinical Features. Haematologica 2013, 98, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Fedullo, A.L.; Messina, M.; Elia, L.; Piciocchi, A.; Gianfelici, V.; Lauretti, A.; Soddu, S.; Puzzolo, M.C.; Minotti, C.; Ferrara, F.; et al. Prognostic Implications of Additional Genomic Lesions in Adult Philadelphia Chromosomepositive Acute Lymphoblastic Leukemia. Haematologica 2019, 104, 312–318. [Google Scholar] [CrossRef]
- Vairy, S.; Tran, T.H. IKZF1 Alterations in Acute Lymphoblastic Leukemia: The Good, the Bad and the Ugly. Blood Rev. 2020, 100677. [Google Scholar] [CrossRef] [PubMed]
- Churchman, M.L.; Qian, M.; te Kronnie, G.; Zhang, R.; Yang, W.; Zhang, H.; Lana, T.; Tedrick, P.; Baskin, R.; Verbist, K.; et al. Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. Cancer Cell 2018, 33, 937–948.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanulla, M.; Eì Ene Cavé, H.; Cavé, C.; Moorman, A.V. Blood Spotlight IKZF1 Deletions in Pediatric Acute Lymphoblastic Leukemia: Still a Poor Prognostic Marker? Blood 2020, 135, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Iacobucci, I.; Storlazzi, C.T.; Cilloni, D.; Lonetti, A.; Ottaviani, E.; Soverini, S.; Astolfi, A.; Chiaretti, S.; Vitale, A.; Messa, F.; et al. Identification and Molecular Characterization of Recurrent Genomic Deletions on 7p12 in the IKZF1 Gene in a Large Cohort of BCR-ABL1-Positive Acute Lymphoblastic Leukemia Patients: On Behalf of Gruppo Italiano Malattie Ematologiche Dell’Adulto Acute Leuke. Blood 2009, 114, 2159–2167. [Google Scholar] [CrossRef]
- Georgopoulos, K. Acute Lymphoblastic Leukemia—On the Wings of IKAROS. N. Engl. J. Med. 2009, 360, 524–526. [Google Scholar] [CrossRef]
- Stanulla, M.; Dagdan, E.; Zaliova, M.; Möricke, A.; Palmi, C.; Cazzaniga, G.; Eckert, C.; te Kronnie, G.; Bourquin, J.-P.; Bornhauser, B.; et al. IKZF1plus Defines a New Minimal Residual Disease–Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2018, 36, 1240–1249. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, D.; Moorman, A.V.; Wade, R.; Hancock, J.; Tan, R.M.R.; Bartram, J.; Moppett, J.; Schwab, C.; Patrick, K.; Harrison, C.J.; et al. Use of Minimal Residual Disease Assessment to Redefine Induction Failure in Pediatric Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2017, 35, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Perez-Andreu, V.; Roberts, K.G.; Harvey, R.C.; Yang, W.; Cheng, C.; Pei, D.; Xu, H.; Gastier-Foster, J.; Shuyu, E.; Lim, J.Y.; et al. Inherited GATA3 Variants Are Associated with Ph-like Childhood Acute Lymphoblastic Leukemia and Risk of Relapse. Nat. Genet. 2013, 45, 1494–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Andreu, V.; Roberts, K.G.; Xu, H.; Smith, C.; Zhang, H.; Yang, W.; Harvey, R.C.; Payne-Turner, D.; Devidas, M.; Cheng, I.M.; et al. A Genome-Wide Association Study of Susceptibility to Acute Lymphoblastic Leukemia in Adolescents and Young Adults. Blood 2015, 125, 680–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeoh, A.E.J.; Tan, D.; Li, C.K.; Hori, H.; Tse, E.; Pui, C.H. Management of Adult and Paediatric Acute Lymphoblastic Leukaemia in Asia: Resource-Stratified Guidelines from the Asian Oncology Summit 2013. Lancet Oncol. 2013, 14, e508–e523. [Google Scholar] [CrossRef] [Green Version]
- Yeoh, A.E.J.; Ariffin, H.; Chai, E.L.L.; Kwok, C.S.N.; Chan, Y.H.; Ponnudurai, K.; Campana, D.; Tan, P.L.; Chan, M.Y.; Kham, S.K.Y.; et al. Minimal Residual Disease-Guided Treatment Deintensification for Children with Acute Lymphoblastic Leukemia: Results from the Malaysia-Singapore Acute Lymphoblastic Leukemia 2003 Study. J. Clin. Oncol. 2012, 30, 2384–2392. [Google Scholar] [CrossRef] [PubMed]
- Palmi, C.; Lana, T.; Silvestri, D.; Savino, A.; Kronnie, G.T.; Conter, V.; Basso, G.; Biondi, A.; Valsecchi, M.G.; Cazzaniga, G. Impact of IKZF1 Deletions on IKZF1 Expression and Outcome in Philadelphia Chromosome Negative Childhood BCP-ALL. Reply to “Incidence and Biological Significance of IKZF1/Ikaros Gene Deletions in Pediatric Philadelphia Chromosome Negative and Philadelphia chromosome positive B-cell precursor acute lymphoblastic leukemia”. Haematologica 2013, 98, e164–e165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazzaniga, G.; van Delft, F.W.; Lo Nigro, L.; Ford, A.M.; Score, J.; Iacobucci, I.; Mirabile, E.; Taj, M.; Colman, S.M.; Biondi, A.; et al. Developmental Origins and Impact of BCR-ABL1 Fusion and IKZF1 Deletions in Monozygotic Twins with Ph+ Acute Lymphoblastic Leukemia. Blood 2011, 118, 5559–5564. [Google Scholar] [CrossRef] [PubMed]
- Cario, G.; Leoni, V.; Conter, V.; Baruchel, A.; Schrappe, M.; Biondi, A. BCR-ABL1-like acute lymphoblastic leukemia in childhood and targeted therapy. Haematologica 2020, 105, 2200–2204. [Google Scholar] [CrossRef]
- Kuiper, R.P.; Waanders, E.; Van Der Velden, V.H.J.; Van Reijmersdal, S.V.; Venkatachalam, R.; Scheijen, B.; Sonneveld, E.; Van Dongen, J.J.M.; Veerman, A.J.P.; van Leeuwen, F.N.; et al. IKZF1 Deletions Predict Relapse in Uniformly Treated Pediatric Precursor B-ALL. Leukemia 2010, 24, 1258–1264. [Google Scholar] [CrossRef]
- Collins-Underwood, J.R.; Mullighan, C.G. Genomic Profiling of High-Risk Acute Lymphoblastic Leukemia. Leukemia 2010, 24, 1676–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Bakhshi, S.; Kumar, L.; Kamal, V.K.; Kumar, R. Gene Copy Number Alteration Profile and Its Clinical Correlation in B-Cell Acute Lymphoblastic Leukemia. Leuk. Lymphoma 2017, 58, 333–342. [Google Scholar] [CrossRef]
- Yao, Q.M.; Liu, K.Y.; Gale, R.P.; Jiang, B.; Liu, Y.R.; Jiang, Q.; Jiang, H.; Zhang, X.H.; Zhang, M.J.; Chen, S.-S.; et al. Prognostic Impact of IKZF1 Deletion in Adults with Common B-Cell Acute Lymphoblastic Leukemia. BMC Cancer 2016, 16, 4–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Boer, M.L.; van Slegtenhorst, M.; De Menezes, R.X.; Cheok, M.H.; Buijs-Gladdines, J.G.; Peters, S.T.; Van Zutven, L.J.; Beverloo, H.B.; Van der Spek, P.J.; Escherich, G.; et al. A Subtype of Childhood Acute Lymphoblastic Leukaemia with Poor Treatment Outcome: A Genome-Wide Classification Study. Lancet Oncol. 2009, 10, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Roberts, K.G.; Pei, D.; Campana, D.; Payne-Turner, D.; Li, Y.; Cheng, C.; Sandlund, J.T.; Jeha, S.; Easton, J.; Becksfort, J.; et al. Outcomes of Children with BCR-ABL1-like Acute Lymphoblastic Leukemia Treated with Risk-Directed Therapy Based on the Levels of Minimal Residual Disease. J. Clin. Oncol. 2014, 32, 3012–3020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, K.G.; Li, Y.; Payne-Turner, D.; Harvey, R.C.; Yang, Y.-L.; Pei, D.; McCastlain, K.; Ding, L.; Lu, C.; Song, G.; et al. Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2014, 371, 1005–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herold, T.; Baldus, C.D.; Gökbuget, N. Ph-like Acute Lymphoblastic Leukemia in Older Adults. N. Engl. J. Med. 2014, 371, 2235. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, T.; Schwartz, S.; Bartram, C.R.; Gökbuget, N.; Hoelzer, D.; Dc, W. Patients’ Age and BCR-ABL Frequency in Adult B-Precursor ALL: A Retrospective Analysis from the GMALL Study Group. Blood 2008, 112, 918–919. [Google Scholar] [CrossRef] [PubMed]
- Rives, S.; Camós, M.; Estella, J.; Gómez, P.; Moreno, M.J.; Vivanco, J.L.; Melo, M.; Fernández-Delgado, R.; Verdeguer, A.; Fernández-Teijeiro, A.; et al. Longer Follow-up Confirms Major Improvement in Outcome in Children and Adolescents with Philadelphia Chromosome Acute Lymphoblastic Leukaemia Treated with Continuous Imatinib and Haematopoietic Stem Cell Transplantation. Results from the Spanish Cooperative Study SHOP/ALL-2005. Br. J. Haematol. 2013, 162, 419–421. [Google Scholar] [PubMed]
- Reshmi, S.C.; Harvey, R.C.; Roberts, K.G.; Stonerock, E.; Smith, A.; Jenkins, H.; Chen, I.M.; Valentine, M.; Liu, Y.; Li, Y.; et al. Targetable Kinase Gene Fusions in High-Risk B-ALL: A Study from the Children’s Oncology Group. Blood 2017, 129, 3352–3361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizcova, L.; Zemanova, Z.; Lhotska, H.; Zuna, J.; Hovorkova, L.; Mejstrikova, E.; Malinova, E.; Rabasova, J.; Raska, I.; Sramkova, L.; et al. An Unusual Case of High Hyperdiploid Childhood ALL with Cryptic BCR/ABL1 Rearrangement. Mol. Cytogenet. 2014, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schwab, C.; Enshaei, A.; Roberts, K.G.; Russell, L.J.; Harvey, R.C.; Chen, I.-M.L.; Willman, C.L.; Mullighan, C.; Vora, A.J.; Moorman, A.V.; et al. The Frequency and Outcome of Ph-like ALL Associated Abnormalities in Childhood Acute Lymphoblastic Leukaemia Treated on MRC UKALL2003. Blood 2016, 128, 2914. [Google Scholar] [CrossRef]
- Loh, M.L.; Zhang, J.; Harvey, R.C.; Roberts, K.; Payne-Turner, D.; Kang, H.; Wu, G.; Chen, X.; Becksfort, J.; Edmonson, M.; et al. Tyrosine Kinome Sequencing of Pediatric Acute Lymphoblastic Leukemia: A Report from the Children’s Oncology Group TARGET Project. Blood 2013, 121, 485–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, K.G. Why and How to Treat Ph-like ALL? Best Pract Res Clin Haematol. 2018, 31, 351–356. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, Y.; Lin, Y.; Tengwang, T.; Zhang, L. Use of Tyrosine Kinase Inhibitors for Paediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukaemia: A Systematic Review and Meta-Analysis. BMJ Open 2021, 11, e042814. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G.; Collins-Underwood, J.R.; Phillips, L.A.A.; Loudin, M.G.; Liu, W.; Zhang, J.; Ma, J.; Coustan-Smith, E.; Harvey, R.C.; Willman, C.L.; et al. Rearrangement of CRLF2 in B-Progenitor- and Down Syndrome-Associated Acute Lymphoblastic Leukemia. Nat. Genet. 2009, 41, 1243–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullighan, C.G. New Strategies in Acute Lymphoblastic Leukemia: Translating Advances in Genomics into Clinical Practice. Clin. Cancer Res. 2011, 17, 396–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Churchman, M.; Roberts, K.; Li, Y.; Liu, Y.; Harvey, R.C.; McCastlain, K.; Reshmi, S.C.; Payne-Turner, D.; Iacobucci, I.; et al. Genomic Analyses Identify Recurrent MEF2D Fusions in Acute Lymphoblastic Leukaemia. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Iacobucci, I. Truncating Erythropoietin Receptor Rearrangements in ALL. Cancer Cell 2016, 29, 186–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watowich, S.S. The Erythropoietin Receptor: Molecular Structure and Hematopoietic Signaling Pathways. J. Investig. Med. 2011, 59, 1067–1072. [Google Scholar] [CrossRef]
- Weston, B.W.; Hayden, M.A.; Roberts, K.G.; Bowyer, S.; Hsu, J.; Fedoriw, G.; Rao, K.W.; Mullighan, C.G. Tyrosine Kinase Inhibitor Therapy Induces Remission in a Patient With Refractory EBF1-PDGFRB–Positive Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2013, 31, e413–e416. [Google Scholar] [CrossRef] [PubMed]
- Lengline, E.; Beldjord, K.; Dombret, H.; Soulier, J.; Boissel, N.; Clappier, E. Successful Tyrosine Kinase Inhibitor Therapy in a Refractory B-Cell Precursor Acute Lymphoblastic Leukemia with EBF1-PDGFRB Fusion. Haematologica 2013, 98, 146–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Veer, A.; Waanders, E.; Pieters, R.; Willemse, M.E.; Van Reijmersdal, S.V.; Russell, L.J.; Harrison, C.J.; Evans, W.E.; Van Der Velden, V.H.J.; Hoogerbrugge, P.M.; et al. Independent Prognostic Value of BCR-ABL1-like Signature and IKZF1 Deletion, but Not High CRLF2 Expression, in Children with B-Cell Precursor ALL. Blood 2013, 122, 2622–2629. [Google Scholar] [CrossRef]
- Roberts, K.G.; Morin, R.D.; Zhang, J.; Hirst, M.; Zhao, Y.; Su, X.; Chen, S.-C.; Payne-Turner, D.; Churchman, M.L.; Harvey, R.C.; et al. Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell 2012, 22, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.C.; Yu, C.H.; Chen, Y.M.; Roberts, K.G.; Ni, Y.L.; Lin, K.-H.; Jou, S.T.; Lu, M.-Y.; Chen, S.-H.; Wu, K.H.; et al. Philadelphia Chromosome-Negative B-Cell Acute Lymphoblastic Leukaemia with Kinase Fusions in Taiwan. Sci. Rep. 2021, 11, 5802. [Google Scholar] [CrossRef]
- Safavi, S.; Olsson, L.; Biloglav, A.; Veerla, S.; Blendberg, M.; Tayebwa, J.; Behrendtz, M.; Castor, A.; Hansson, M.; Jonhansson, B.; et al. Genetic and Epigenetic Characterization of Hypodiploid Acute Lymphoblastic Leukemia. Oncotarget 2015, 6, 42793–42802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pui, C.H.; Williams, D.L.; Raimondi, S.C.; Rivera, G.K.; Look, A.T.; Dodge, R.K.; George, S.L.; Behm, F.G.; Murphy, S.B. Hypodiploidy Is Associated with a Poor Prognosis in Childhood Acute Lymphoblastic Leukemia. Blood 1987, 70, 247–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, C.J.; Moorman, A.V.; Broadfield, Z.J.; Cheung, K.L.; Harris, R.L.; Jalali, G.R.; Robinson, H.M.; Barber, K.E.; Richards, S.M.; Mitchell, C.D.; et al. Three Distinct Subgroups of Hypodiploidy in Lymphoblastic Leukaemia. Br. J. Haematol. 2004, 125, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Holmfeldt, L.; Wei, L.; Diaz-Flores, E.; Walsh, M.; Zhang, J.; Ding, L.; Payne-Turner, D.; Churchman, M.; Andersson, A.; Chen, S.-C.; et al. The Genomic Landscape of Hypodiploid Acute. Nat. Genet. 2013, 45, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Lee Harris, N.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 Revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herold, T.; Schneider, S.; Metzeler, K.H.; Neumann, M.; Hartmann, L.; Roberts, K.G.; Konstandin, N.P.; Greif, P.A.; Bräundl, K.; Ksienzyk, B.; et al. Adults with Philadelphia Chromosome–like Acute Lymphoblastic Leukemia Frequently Have Igh-CRLF2 and JAK2 Mutations, Persistence of Minimal Residual Disease and Poor Prognosis. Haematologica 2017, 102, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraz, P.; Payne, K.J.; Muffly, L. The Current Genomic and Molecular Landscape of Philadelphia-like Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2020, 21, 2193. [Google Scholar] [CrossRef] [Green Version]
- Mullighan, C.G. Molecular genetics of B-precursor acute lymphoblastic leukemia. J. Clin. Investig. 2012, 122, 3407–3415. [Google Scholar] [CrossRef] [Green Version]
- Tasian, S.K.; Doral, M.Y.; Borowitz, M.J.; Wood, B.L.; Chen, I.M.; Harvey, R.C.; Gastier-Foster, J.M.; Willman, C.L.; Hunger, S.P.; Mullighan, C.G.; et al. Aberrant STAT5 and PI3K/MTOR Pathway Signaling Occurs in Human CRLF2-Rearranged B-Precursor Acute Lymphoblastic Leukemia. Blood 2012, 120, 833–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanasi, I.; Ba, I.; Sirvent, N.; Braun, T.; Cuccuini, W.; Ballerini, P.; Duployez, N.; Tanguy-Schmidt, A.; Erômeerˆerôme Tamburini, J.; Ebastien Maury, S.; et al. Letters to Blood Efficacy of Tyrosine Kinase Inhibitors in Ph-like Acute Lymphoblastic Leukemia Harboring ABL-Class Rearrangements. Blood 2019, 134, 1351–1355. [Google Scholar] [CrossRef]
- Den Boer, M.L.; Cario, G.; Moorman, A.V.; Boer, J.M.; de Groot-Kruseman, H.A.; Fiocco, M.; Escherich, G.; Imamura, T.; Yeoh, J.; Sutton, R.; et al. Outcomes of Paediatric Patients with B-Cell Acute Lymphocytic Leukaemia with ABL-Class Fusion in the Pre-Tyrosine-Kinase Inhibitor Era: A Multicentre, Retrospective, Cohort Study. Lancet Haematol. 2021, 8, e55–e66. [Google Scholar] [CrossRef]
- Moorman, A.V.; Schwab, C.; Winterman, E.; Hancock, J.; Castleton, A.; Cummins, M.; Gibson, B.; Goulden, N.; Kearns, P.; James, B.; et al. Adjuvant Tyrosine Kinase Inhibitor Therapy Improves Outcome for Children and Adolescents with Acute Lymphoblastic Leukaemia Who Have an ABL-Class Fusion. Br. J. Haematol. 2020, 191, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Ernst, T.; Score, J.; Deininger, M.; Hidalgo-Curtis, C.; Lackie, P.; Ershler, W.B.; Goldman, J.M.; Cross, N.C.P.; Grand, F. Identification of FOXP1 and SNX2 as Novel ABL1 Fusion Partners in Acute Lymphoblastic Leukaemia. Br. J. Haematol. 2011, 153, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Soler, G.; Radford-Weiss, I.; Ben-Abdelali, R.; Mahlaoui, N.; Ponceau, J.F.; Macintyre, E.A.; Vekemans, M.; Bernard, O.A.; Romana, S.P. Fusion of ZMIZ1 to ABL1 in a B-Cell Acute Lymphoblastic Leukaemia with a t(9;10)(Q34;Q22.3) Translocation. Leukemia 2008, 22, 1278–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, L.J.; Capasso, M.; Vater, I.; Akasaka, T.; Bernard, O.A.; Calasanz, M.J.; Chandrasekaran, T.; Chapiro, E.; Gesk, S.; Griffiths, M.; et al. Deregulated Expression of Cytokine Receptor Gene, CRLF2, Is Involved in Lymphoid Transformation in B-Cell Precursor Acute Lymphoblastic Leukemia. Blood 2009, 114, 2688–2698. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Roberts, K.G.; Jabbour, E.; Patel, K.; Eterovic, A.K.; Chen, K.; Zweidler-McKay, P.; Lu, X.; Fawcett, G.; Wang, S.A.; et al. Ph-like Acute Lymphoblastic Leukemia: A High-Risk Subtype in Adults. Blood 2017, 129, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Lacronique, V.; Boureux, A.; Valle, V.D.; Poirel, H.; Quang, C.T.; Mauchauffé, M.; Berthou, C.; Lessard, M.; Berger, R.; Ghysdael, J.; et al. A TEL-JAK2 Fusion Protein with Constitutive Kinase Activity in Human Leukemia. Science 1997, 278, 1309–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poitras, J.L.; Cin, P.D.; Aster, J.C.; DeAngelo, D.J.; Morton, C.C. Novel SSBP2-JAK2 Fusion Gene Resulting from a t(5;9)(Q14.1;P24.1) in Pre-B Acute Lymphocytic Leukemia. Genes Chromosom. Cancer 2008, 47, 884–889. [Google Scholar] [CrossRef]
- Roberts, K.G.; Yang, Y.L.; Payne-Turner, D.; Lin, W.; Files, J.K.; Dickerson, K.; Gu, Z.; Taunton, J.; Janke, L.J.; Chen, T.; et al. Oncogenic Role and Therapeutic Targeting of ABL-Class and JAK-STAT Activating Kinase Alterations in Ph-like ALL. Blood Adv. 2017, 1, 1657–1671. [Google Scholar] [PubMed]
- Knezevich, S.R.; Garnett, M.J.; Pysher, T.J.; Beckwith, J.B.; Grundy, P.E.; Sorensen, P.H. ETV6-NTRK3 Gene Fusions and Trisomy 11 Establish a Histogenetic Link between Mesoblastic Nephroma and Congenital Fibrosarcoma. Cancer Res. 1998, 58, 5046–5048. [Google Scholar] [PubMed]
- Munthe-Kaas, M.C.; Forthun, R.B.; Brendehaug, A.; Eek, A.K.; Høysæter, T.; Osnes, L.T.N.; Prescott, T.; Spetalen, S.; Hovland, R. Partial Response to Sorafenib in a Child with a Myeloid/Lymphoid Neoplasm, Eosinophilia, and a ZMYM2-FLT3 Fusion. J. Pediatr. Hematol. Oncol. 2021, 43, e508–e511. [Google Scholar] [CrossRef]
- Chase, A.; Bryant, C.; Score, J.; Haferlach, C.; Grossmann, V.; Schwaab, J.; Hofmann, W.K.; Reiter, A.; Cross, N.C.P. Ruxolitinib as Potential Targeted Therapy for Patients with JAK2 Rearrangements. Haematologica 2013, 98, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, Y.; Qin, M.; Li, D.; Odhiambo, W.O.; Yuan, M.; Lv, Z.; Liu, C.; Ma, Y.; Dong, Y.; et al. Involvement of Blnk and Foxo1 in Tumor Suppression in BCR-ABL1-Transformed pro-B Cells. Oncol. Rep. 2021, 45, 693–705. [Google Scholar] [CrossRef] [PubMed]
Treatment Protocols | DFS 1 (%) | EFS 2 (%) | OS 3 (%) | Age < 10 Years (%) | Age ≥ 10 Years (%) | Serious Adverse Events (%) | p190 Transcript (%) | p210 Transcript (%) | MRD 4 (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Without using TKIs study 1986–1996 (n = 326) | - | - | 28.3 | 40.3 | 64 | 36 | - | - | - | - |
EsPhALL2004 | Good risk imatinib group (n = 46) | 72.9 | - | 78.5 | 61 | 39 | 28 | 92 | 8 | 63 |
Good risk no imatinib group (n = 44) | 61.7 | - | 64 | 46 | 32 | 90 | 10 | 35 | ||
Poor risk group (n = 70) | 53.5 | - | 62.9 | 41 | 59 | 34 | 78 | 23 | 96 | |
EsPhALL2010 | Good risk group (n = 102) | - | 62.7 | 75.7 | 65 | 35 | 50 | 78 | 22 | 15 |
Poor risk group (n = 53) | - | 46.3 | 63.6 | 51 | 49 | 55 | 98 | 2 | 52 |
Kinase Fusion Identified in Ph-Like ALL | Fusion Partners Gene | Treatment | References |
---|---|---|---|
ABL1 | CENPC, ETV6, LSM141, NUP153, NUP214, RANBP2, RSCD1, ZMIZ1, FOXP1, LSM14A, NUP153, NUP214, RANBP2, RCSD1, SFPQ, SNX1, SNX, SPTAN1, ZC3HAV1 | Imatinib, Dasatinib, GNF2 GNF5 | [82,96,97] |
ABL2 | PAG1, RSCD1, ZC3HAV1, | Imatinib/Dasatinib | [64] |
PDGFRB | SSBP2, TBL1XR1, EBF1, TNIP1, ZEB2, ATF71P, ETV6, PAX5, PCM1, PPF1BP1, RFX3, SSBP2, STRN3 | Dasatinib | [79,80,82] |
PDGFRA | FIP1L1 | Dasatinib | [98] |
CSF1R | SSBP2 | Dasatinib | [64] |
CRLF2 | IGH, P2RY8 | JAK2 inhibitor | [74,99] |
LYN | GATAD2A, NCOR1 | Imatinib/Dasatinib | [98] |
JAK2 | BCR, PAX5, PCM1, RFX3, USP25, ZNF274, ATF1, EBF1, ETV6, PAX5, PCM1, PPFIBP1, RFX3, SSBP2, STRN3, TERF2, TPR, USP25, ZNF274, GOLGA5, SMU1, SNX29, ZNF340 | JAK2 inhibitor | [82,100,101,102] |
EPOR | IGH, IGK, LAIR1, THADA | JAK2 inhibitor | [64,82,98] |
TYK2 | MYB, SMARCA4, | TYK2 inhibitor | [64] |
TSLP | IQGAP2 | JAK2 inhibitor | [64] |
DGKH | ZFAND3 | Unknow | [64] |
IL2RB | MYH9 | JAK1/JAK3 inhibitor or both | [64] |
NTRK3 | ETV6 | TRK inhibitor, Crizotinib | [103] |
PTK2B | KDM6A, STAG2, TMEM2 | FAK inhibitor | [64] |
FLT3 | ZMYM2 | FLT3 inhibitor | [104] |
FGFR1 | BCR | Sorafenib, Dasatinib, Ponatinib | [105] |
BLNK | DNNT | Unknown | [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarska, A.; Śliwa, P.; Zawitkowska, J.; Lejman, M. Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like—Recent Progress in Treatment. Int. J. Mol. Sci. 2021, 22, 6411. https://doi.org/10.3390/ijms22126411
Kaczmarska A, Śliwa P, Zawitkowska J, Lejman M. Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like—Recent Progress in Treatment. International Journal of Molecular Sciences. 2021; 22(12):6411. https://doi.org/10.3390/ijms22126411
Chicago/Turabian StyleKaczmarska, Agnieszka, Patrycja Śliwa, Joanna Zawitkowska, and Monika Lejman. 2021. "Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like—Recent Progress in Treatment" International Journal of Molecular Sciences 22, no. 12: 6411. https://doi.org/10.3390/ijms22126411
APA StyleKaczmarska, A., Śliwa, P., Zawitkowska, J., & Lejman, M. (2021). Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like—Recent Progress in Treatment. International Journal of Molecular Sciences, 22(12), 6411. https://doi.org/10.3390/ijms22126411