The Role of Extracellular Carbonic Anhydrase in Biogeochemical Cycling: Recent Advances and Climate Change Responses
Abstract
:1. Introduction
2. Biological Function of eCA in the Marine Environment
3. Extracellular Carbonic Anhydrase in a Changing Ocean
4. Enrichment of eCA in the Sea Surface Microlayer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aizawa, K.; Miyachi, S. Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiol. Lett. 1986, 39, 215–233. [Google Scholar] [CrossRef]
- Whittington, D.A.; Waheed, A.; Ulmasov, B.; Shah, G.N.; Grubb, J.H.; Sly, W.S.; Christianson, D.W. Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. Proc. Natl. Acad. Sci. USA 2001, 98, 9545–9550. [Google Scholar] [CrossRef] [Green Version]
- Badger, M.R.; Price, G.D. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Biol. 1994, 45, 369–392. [Google Scholar] [CrossRef]
- Smith, K.S.; Ferry, J.G. Prokaryotic carbonic anhydrases. FEMS Microbiol. Rev. 2000, 24, 335–366. [Google Scholar] [CrossRef] [PubMed]
- Aspatwar, A.; Haapanen, S.; Parkkila, S. An update on the metabolic roles of carbonic anhydrases in the model alga Chlamydomonas reinhardtii. Metabolites 2018, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.L.; Clement, R.; Kosta, A.; Maberly, S.C.; Gontero, B. A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J. 2019, 13, 2094–2106. [Google Scholar] [CrossRef] [Green Version]
- Del Prete, S.; Vullo, D.; Fisher, G.M.; Andrews, K.T.; Poulsen, S.-A.; Capasso, C.; Supuran, C.T. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—The η-carbonic anhydrases. Bioorg. Med. Chem. Lett. 2014, 24, 4389–4396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripp, B.C.; Smith, K.; Ferry, J.G. Carbonic anhydrase: New insights for an ancient enzyme. J. Biol. Chem. 2001, 276, 48615–48618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindskog, S. Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 1997, 74, 1–20. [Google Scholar] [CrossRef]
- Roberts, S.B.; Lane, T.W.; Morel, F.M.M. Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (bacillariophyceae). J. Phycol. 1997, 33, 845–850. [Google Scholar] [CrossRef]
- Yee, D.; Morel, F.M. In vivo substitution of zinc by cobalt in carbonic anhydrase of a marine diatom. Limnol. Oceanogr. 1996, 41, 573–577. [Google Scholar] [CrossRef]
- Xu, Y.; Feng, L.; Jeffrey, P.D.; Shi, Y.; Morel, F.M. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 2008, 452, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Hopkinson, B.M. Size scaling of extracellular carbonic anhydrase activity in centric marine diatoms. J. Phycol. 2015, 51, 255–263. [Google Scholar] [CrossRef]
- Jensen, E.L.; Maberly, S.C.; Gontero, B. Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae. Int. J. Mol. Sci. 2020, 21, 2922. [Google Scholar] [CrossRef] [PubMed]
- Tortell, P.D. Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnol. Oceanogr. 2000, 45, 744–750. [Google Scholar] [CrossRef]
- Rost, B.; Riebesell, U.; Burkhardt, S.; Sültemeyer, D. Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr. 2003, 48, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Nimer, N.A.; Iglesias-Rodriguez, M.D.; Merrett, M.J. Bicarbonate utilization by marine phytoplankton species. J. Phycol. 1997, 33, 625–631. [Google Scholar] [CrossRef]
- Mustaffa, N.I.H.; Striebel, M.; Wurl, O. Extracellular carbonic anhydrase: Method development and its application to natural seawater. Limnol. Oceanogr. Methods 2017, 15, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Rigobello-Masini, M.; Aidar, E.; Masini, J.C. Extra and intracelular activities of carbonic anhydrase of the marine microalga Tetraselmis gracilis (Chlorophyta). Braz. J. Microbiol. 2003, 34, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Moroney, J.V.; Husic, H.D.; Tolbert, N. Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol. 1985, 79, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.L.; Tortell, P.D. Bicarbonate transport and extracellular carbonic anhydrase activity in Bering Sea phytoplankton assemblages: Results from isotope disequilibrium experiments. Limnol. Oceanogr. 2006, 51, 2111–2121. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.L.; Tortell, P.D. Bicarbonate transport and extracellular carbonic anhydrase in marine diatoms. Physiol. Plant. 2008, 133, 106–116. [Google Scholar] [CrossRef]
- Smith-Harding, T.J.; Beardall, J.; Mitchell, J.G. The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri. J. Phycol. 2017, 53, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Häder, D.-P.; Gao, K. Interactions of anthropogenic stress factors on marine phytoplankton. Front. Environ. Sci. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Campbell, D.A. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: A review. Funct. Plant Biol. 2014, 41, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, S.; Amoroso, G.; Riebesell, U.; Sültemeyer, D. CO2 and HCO3- uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 2001, 46, 1378–1391. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Hong, H.; Su, X.; Liao, L.; Chang, S.; Lin, W. The physiological response of marine diatoms to ocean acidification: Differential roles of seawater pCO2 and pH. J. Phycol. 2019, 55, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Jin, P.; Zou, D.; Liu, Y.; Xia, J. Responses of carbonic anhydrases and Rubisco to abrupt CO2 changes of seawater in two marine diatoms. Environ. Sci. Pollut. Res. 2019, 26, 16388–16395. [Google Scholar] [CrossRef] [PubMed]
- Riebesell, U.; Zondervan, I.; Rost, B.; Tortell, P.D.; Zeebe, R.E.; Morel, F.M. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 2000, 407, 364–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, J.A. Carbon fixation and carbon availability in marine phytoplankton. Photosynth. Res. 1994, 39, 259–273. [Google Scholar] [CrossRef]
- Giordano, M.; Beardall, J.; Raven, J.A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 2005, 56, 99–131. [Google Scholar] [CrossRef] [Green Version]
- Young, J.N.; Heureux, A.M.C.; Sharwood, R.E.; Rickaby, R.E.M.; Morel, F.M.M.; Whitney, S.M. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J. Exp. Bot. 2016, 67, 3445–3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badger, M.R.; Andrews, T.J.; Whitney, S.M.; Ludwig, M.; Yellowlees, D.C.; Leggat, W.; Price, G.D. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 1998, 76, 1052–1071. [Google Scholar] [CrossRef]
- Heureux, A.M.C.; Young, J.N.; Whitney, S.M.; Eason-Hubbard, M.R.; Lee, R.B.Y.; Sharwood, R.E.; Rickaby, R.E.M. The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae. J. Exp. Bot. 2017, 68, 3959–3969. [Google Scholar] [CrossRef] [PubMed]
- Husic, D.W.; Husic, H.D.; Tolbert, N.E.; Black, C.C. The oxidative photosynthetic carbon cycle or C2 cycle. Crit. Rev. Plant Sci. 1987, 5, 45–100. [Google Scholar] [CrossRef]
- Samukawa, M.; Shen, C.; Hopkinson, B.M.; Matsuda, Y. Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana. Photosynth. Res. 2014, 121, 235–249. [Google Scholar] [CrossRef]
- Tachibana, M.; Allen, A.E.; Kikutani, S.; Endo, Y.; Bowler, C.; Matsuda, Y. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth. Res. 2011, 109, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Hopkinson, B.M.; Meile, C.; Shen, C. Quantification of Extracellular Carbonic Anhydrase Activity in Two Marine Diatoms and Investigation of Its Role. Plant Physiol. 2013, 162, 1142–1152. [Google Scholar] [CrossRef] [Green Version]
- Tortell, P.D.; Payne, C.; Gueguen, C.; Strzepek, R.F.; Boyd, P.W.; Rost, B. Inorganic carbon uptake by Southern Ocean phytoplankton. Limnol. Oceanogr. 2008, 53, 1266–1278. [Google Scholar] [CrossRef]
- Trimborn, S.; Wolf-Gladrow, D.; Richter, K.-U.; Rost, B. The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms. J. Exp. Mar. Biol. Ecol. 2009, 376, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Trimborn, S.; Lundholm, N.; Thoms, S.; Richter, K.U.; Krock, B.; Hansen, P.J.; Rost, B. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: The effect of pH-induced changes in seawater carbonate chemistry. Physiol. Plant. 2008, 133, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Morel, F.M.M.; Reinfelder, J.R.; Roberts, S.B.; Chamberlain, C.P.; Lee, J.G.; Yee, D. Zinc and carbon co-limitation of marine phytoplankton. Nature 1994, 369, 740–742. [Google Scholar] [CrossRef]
- Facchini, M.C.; Rinaldi, M.; Decesari, S.; Carbone, C.; Finessi, E.; Mircea, M.; Fuzzi, S.; Ceburnis, D.; Flanagan, R.; Nilsson, E.D.; et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Emerson, S. Enhanced transport of carbon dioxide during gas exchange. In Air-Water Gas Transfer; Jähne, B., Monahan, E., Eds.; AEON Verlag & Studio Hanau: Heidelberg, Germany, 1995; pp. 23–36. [Google Scholar]
- Lee, J.G.; Roberts, S.B.; Morel, F.M.M. Cadmium: A nutrient for the marine diatom Thalassiosira weissflogii. Limnol. Oceanogr. 1995, 40, 1056–1063. [Google Scholar] [CrossRef]
- Lee, J.G.; Morel, F.M.M. Replacement of zinc by cadmium in marine phytoplankton. Mar. Ecol. Prog. Ser. 1995, 127, 305–309. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Price, N.M. The Biogeochemical Cycles of Trace Metals in the Oceans. Science 2003, 300, 944–947. [Google Scholar] [CrossRef] [Green Version]
- Morel, F.M.M.; Lam, P.J.; Saito, M.A. Trace Metal Substitution in Marine Phytoplankton. Annu. Rev. Earth Planet Sci. 2020, 48, 491–517. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Sunda, W.G.; Lin, W.; Hong, H.; Shi, D. The effect of cell size on cellular Zn and Cd and Zn-Cd-CO2 colimitation of growth rate in marine diatoms. Limnol. Oceanogr. 2020, 65, 2896–2911. [Google Scholar] [CrossRef]
- Subhas, A.V.; Adkins, J.F.; Dong, S.; Rollins, N.E.; Berelson, W.M. The carbonic anhydrase activity of sinking and suspended particles in the North Pacific Ocean. Limnol. Oceanogr. 2019, 65, 637–651. [Google Scholar] [CrossRef]
- Liao, W.-H.; Yang, S.-C.; Ho, T.-Y. Trace metal composition of size-fractionated plankton in the Western Philippine Sea: The impact of anthropogenic aerosol deposition. Limnol. Oceanogr. 2017, 62, 2243–2259. [Google Scholar] [CrossRef]
- Gruber, N.; Clement, D.; Carter, B.R.; Feely, R.A.; van Heuven, S.; Hoppema, M.; Ishii, M.; Key, R.M.; Kozyr, A.; Lauvset, S.K.; et al. The oceanic sink for anthropogenic CO2; from 1994 to 2007. Science 2019, 363, 1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A; IPCC: Cambridge, UK, 2014. [Google Scholar]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf-Gladrow, D.A.; Riebesell, U.L.F.; Burkhardt, S.; Bijma, J. Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus B 1999, 51, 461–476. [Google Scholar] [CrossRef] [Green Version]
- Tortell, P.D.; DiTullio, G.R.; Sigman, D.M.; Morel, F.M. CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar. Ecol. Prog. Ser. 2002, 236, 37–43. [Google Scholar] [CrossRef]
- Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Laufkötter, C.; Vogt, M.; Gruber, N. Long-term trends in ocean plankton production and particle export between 1960–2006. Biogeosciences 2013, 10, 7373–7393. [Google Scholar] [CrossRef] [Green Version]
- Rost, B.; Kranz, S.; Richter, K.-U.; Tortell, P.D. Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton. Limnol. Oceanogr. Methods 2007, 5, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Roberts, K.; Granum, E.; Leegood, R.C.; Raven, J.A. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol. 2007, 145, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Del Prete, S.; Vullo, D.; De Luca, V.; Supuran, C.T.; Capasso, C. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA. J. Enzyme Inhib. Med. Chem. 2014, 29, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Elzenga, J.T.M.; Prins, H.B.A.; Stefels, J. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): A comparison with other marine algae using the isotopic disequilibrium technique. Limnol. Oceanogr. 2000, 45, 372–380. [Google Scholar] [CrossRef]
- Shi, Q.; Xiahou, W.; Wu, H. Photosynthetic responses of the marine diatom Thalassiosira pseudonana to CO2-induced seawater acidification. Hydrobiologia 2017, 788, 361–369. [Google Scholar] [CrossRef]
- Tortell, P.D.; Morel, F.M. Sources of inorganic carbon for phytoplankton in the eastern Subtropical and Equatorial Pacific Ocean. Limnol. Oceanogr. 2002, 47, 1012–1022. [Google Scholar] [CrossRef]
- Young, J.N.; Kranz, S.A.; Goldman, J.A.; Tortell, P.D.; Morel, F.M. Antarctic phytoplankton down-regulate their carbon-concentrating mechanisms under high CO2 with no change in growth rates. Mar. Ecol. Prog. Ser. 2015, 532, 13–28. [Google Scholar] [CrossRef]
- Kranz, S.A.; Young, J.N.; Hopkinson, B.M.; Goldman, J.A.; Tortell, P.D.; Morel, F.M. Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms. New Phytol. 2015, 205, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Deppeler, S.; Petrou, K.; Schulz, K.G.; Westwood, K.; Pearce, I.; McKinlay, J.; Davidson, A. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity. Biogeosciences 2018, 15, 209–231. [Google Scholar] [CrossRef] [Green Version]
- Rahlff, J.; Khodami, S.; Voskuhl, L.; Humphreys, M.; Stolle, C.; Arbizu, P.M.; Wurl, O.; Ribas-Ribas, M. Short-term responses to ocean acidification: Effects on relative abundance of eukaryotic plankton from the tropical Timor Sea. Mar. Ecol. Prog. Ser. 2020, 658, 59–74. [Google Scholar] [CrossRef]
- Tortell, P.D.; Martin, C.L.; Corkum, M.E. Inorganic carbon uptake and intracellular assimilation by subarctic Pacific phytoplankton assemblages. Limnol. Oceanogr. 2006, 51, 2102–2110. [Google Scholar] [CrossRef] [Green Version]
- Trimborn, S.; Brenneis, T.; Sweet, E.; Rost, B. Sensitivity of Antarctic phytoplankton species to ocean acidification: Growth, carbon acquisition, and species interaction. Limnol. Oceanogr. 2013, 58, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Neven, I.A.; Stefels, J.; van Heuven, S.M.A.C.; de Baar, H.J.W.; Elzenga, J.T.M. High plasticity in inorganic carbon uptake by Southern Ocean phytoplankton in response to ambient CO2. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 2636–2646. [Google Scholar] [CrossRef] [Green Version]
- Cassar, N.; Laws, E.A.; Bidigare, R.R.; Popp, B.N. Bicarbonate uptake by Southern Ocean phytoplankton. Glob. Biogeochem. 2004, 18, GB2003. [Google Scholar] [CrossRef]
- Silverman, D.; Tu, C. Buffer dependence of carbonic anhydrase catalyzed oxygen-18 exchange at equilibrium. J. Am. Chem. Soc. 1975, 97, 2263–2269. [Google Scholar] [CrossRef]
- Hopkinson, B.M.; Dupont, C.L.; Allen, A.E.; Morel, F.M.M. Efficiency of the CO2 concentrating mechanism of diatoms. Proc. Natl. Acad. Sci. USA 2011, 108, 3830–3837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortell, P.D.; Payne, C.D.; Li, Y.; Trimborn, S.; Rost, B.; Smith, W.O.; Riesselman, C.; Dunbar, R.B.; Sedwick, P.; DiTullio, G.R. CO2 sensitivity of Southern Ocean phytoplankton. Geophys. Res. Lett. 2008, 35, L04605. [Google Scholar] [CrossRef] [Green Version]
- Reinfelder, J.R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu. Rev. Mar. Sci. 2011, 3, 291–315. [Google Scholar] [CrossRef] [Green Version]
- Sett, S.; Schulz, K.G.; Bach, L.T.; Riebesell, U. Shift towards larger diatoms in a natural phytoplankton assemblage under combined high-CO2 and warming conditions. J. Plankton Res. 2018, 40, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Xu, J.; Gao, G.; Li, Y.; Hutchins, D.A.; Huang, B.; Wang, L.; Zheng, Y.; Jin, P.; Cai, X.; et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat. Clim. Chang. 2012, 2, 519–523. [Google Scholar] [CrossRef]
- Passow, U.; Carlson, C.A. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 2012, 470, 249–271. [Google Scholar] [CrossRef] [Green Version]
- Sunda, W.G.; Huntsman, S.A. Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: Implications for oceanic Cd cycling. Limnol. Oceanogr. 2000, 45, 1501–1516. [Google Scholar] [CrossRef]
- Gao, K.; Helbling, E.W.; Häder, D.-P.; Hutchins, D.A. Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar. Ecol. Prog. Ser. 2012, 470, 167–189. [Google Scholar] [CrossRef] [Green Version]
- Qu, L.; Campbell, D.A.; Gao, K. Ocean acidification interacts with growth light to suppress CO2 acquisition efficiency and enhance mitochondrial respiration in a coastal diatom. Mar. Pollut. Bull. 2021, 163, 112008. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, K.; Villafañe, V.; Helbling, E. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum. Biogeosciences 2012, 9, 3931–3942. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Gao, K. Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum. Chin. Sci. Bull. 2003, 48, 2616–2620. [Google Scholar] [CrossRef]
- Wu, H.; Gao, K. Ultraviolet radiation stimulated activity of extracellular carbonic anhydrase in the marine diatom Skeletonema costatum. Funct. Plant Biol. 2009, 36, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Jin, P.; Jiang, Y.; Yang, H.; Zhong, J.; Liang, Z.; Guo, Y.; Li, P.; Huang, Q.; Pan, J.; et al. Light alters the responses of two marine diatoms to increased warming. Mar. Environ. Res. 2020, 154, 104871. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.; Libby, W. Equilibration of atmospheric carbon dioxide with sea water: Possible enzymatic control of the rate. Science 1969, 164, 1395–1397. [Google Scholar] [CrossRef]
- Coleman, J.E. Chemical reactions of sulfonamides with carbonic anhydrase. Annu. Rev. Pharmacol. 1975, 15, 221–242. [Google Scholar] [CrossRef]
- Wurl, O.; Wurl, E.; Miller, L.; Johnson, K.; Vagle, S. Formation and global distribution of sea-surface microlayers. Biogeosciences 2011, 8, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Cunliffe, M.; Engel, A.; Frka, S.; Gašparović, B.; Guitart, C.; Murrell, J.C.; Salter, M.; Stolle, C.; Upstill-Goddard, R.; Wurl, O. Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 2013, 109, 104–116. [Google Scholar] [CrossRef]
- Wurl, O.; Stolle, C.; Van Thuoc, C.; The Thu, P.; Mari, X. Biofilm-like properties of the sea surface and predicted effects on air–sea CO2 exchange. Prog. Oceanogr. 2016, 144, 15–24. [Google Scholar] [CrossRef]
- Sieburth, J.M.; Willis, P.-J.; Johnson, K.M.; Burney, C.M.; Lavoie, D.M.; Hinga, K.R.; Caron, D.A.; FRENCH, F.W.; Johnson, P.W.; Davis, P.G. Dissolved organic matter and heterotrophic microneuston in the surface microlayers of the North Atlantic. Science 1976, 194, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.T.; Apts, C.W. The sea-surface microlayer: Phytoneuston productivity and effects of atmospheric particulate matter. Mar. Biol. 1984, 82, 293–300. [Google Scholar] [CrossRef]
- Hardy, J.T. The sea surface microlayer: Biology, chemistry and anthropogenic enrichment. Prog. Oceanogr. 1982, 11, 307–328. [Google Scholar] [CrossRef]
- Mustaffa, N.I.H.; Kallajoki, L.; Hillebrand, H.; Wurl, O.; Striebel, M. Sea surface phytoplankton community responses to nutrient and light changes. Mar. Biol. 2020, 167, 1–15. [Google Scholar] [CrossRef]
- Hobson, L.A.; Hanson, C.E.; Holeton, C. An ecological basis for extracellular carbonic anhydrase in marine unicellular algae. J. Phycol. 2001, 37, 717–723. [Google Scholar] [CrossRef]
- Mustaffa, N.I.H.; Striebel, M.; Wurl, O. Enrichment of extracellular carbonic anhydrase in the sea surface microlayer and its effect on air-sea CO2 exchange. Geophys. Res. Lett. 2017, 44, 2017GL075797. [Google Scholar] [CrossRef] [Green Version]
- Wurl, O.; Obbard, J.P. A review of pollutants in the sea-surface microlayer (SML): A unique habitat for marine organisms. Mar. Pollut. Bull. 2004, 48, 1016–1030. [Google Scholar] [CrossRef]
- Ebling, A.M.; Landing, W.M. Trace elements in the sea surface microlayer: Rapid responses to changes in aerosol deposition. Elementa-Sci. Anthrop. 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Mustaffa, N.I.H.; Badewien, T.H.; Ribas-Ribas, M.; Wurl, O. High-resolution observations on enrichment processes in the sea-surface microlayer. Sci. Rep. 2018, 8, 13122. [Google Scholar] [CrossRef] [Green Version]
- Maki, J.S. Neuston Microbiology: Life at the Air–Water Interface. In Encyclopedia of Environmental Microbiology; Bitton, G., Ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Watson, A.J.; Schuster, U.; Shutler, J.D.; Holding, T.; Ashton, I.G.C.; Landschützer, P.; Woolf, D.K.; Goddijn-Murphy, L. Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nat. Commun. 2020, 11, 4422. [Google Scholar] [CrossRef]
- Keller, K. Chemical Enhancement of Carbon Dioxide Transfer Across the Air-Sea Interface. Massachusetts Institute of Technology. 1994. Available online: https://dspace.mit.edu/bitstream/handle/1721.1/35997/32162323-MIT.pdf?sequence=2 (accessed on 18 March 2018).
- Feely, R.A.; Wanninkhof, R.; Landschützer, P.; Carter, B.R.; Triñanes, J.A. Global ocean carbon cycle [in “State of the Climate in 2016”]. Bull. Am. Meteorol. Soc. 2017, 98, S89–S92. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.M.; Carlucci, A.F.; Henrichs, S.M.; Van Vleet, E.S.; Horrigan, S.G.; Reid, F.M.H.; Robertson, K.J. Chemical and microbiological studies of sea-surface films in the Southern Gulf of California and off the West Coast of Baja California. Mar. Chem. 1986, 19, 17–98. [Google Scholar] [CrossRef]
- Bischof, K.; Kräbs, G.; Wiencke, C.; Hanelt, D. Solar ultraviolet radiation affects the activity of ribulose-1, 5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green alga Ulva lactuca L. Planta 2002, 215, 502–509. [Google Scholar] [CrossRef]
- Kataria, S.; Jajoo, A.; Guruprasad, K.N. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. J. Photochem. Photobiol. B Biol. 2014, 137, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.E.; Zepp, R.G.; Lucas, R.M.; Madronich, S.; Austin, A.T.; Ballaré, C.L.; Norval, M.; Sulzberger, B.; Bais, A.F.; McKenzie, R.L. Solar ultraviolet radiation in a changing climate. Nat. Clim. Chang. 2014, 4, 434–441. [Google Scholar] [CrossRef]
- Frew, N.M.; Goldman, J.C.; Dennett, M.R.; Johnson, A.S. Impact of phytoplankton-generated surfactants on air-sea gas exchange. J. Geophys. Res. Oceans 1990, 95, 3337–3352. [Google Scholar] [CrossRef]
- Mustaffa, N.I.H.; Ribas-Ribas, M.; Banko-Kubis, H.M.; Wurl, O. Global reduction of in situ CO2 transfer velocity by natural surfactants in the sea-surface microlayer. Proc. R. Soc. A 2020, 476, 20190763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calleja, M.L.; Duarte, C.M.; Navarro, N.; Agustí, S. Control of air-sea CO2 disequilibria in the subtropical NE Atlantic by planktonic metabolism under the ocean skin. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Wurl, O.; Ekau, W.; Landing, W.M.; Zappa, C.J. Sea surface microlayer in a changing ocean–A perspective. Elementa-Sci. Anthrop. 2017, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-H.; Song, S.-H.; Qi, Y.-Z. A comparative study of phytoneuston and the phytoplankton community structure in Daya Bay, South China Sea. J. Sea Res. 2014, 85, 474–482. [Google Scholar] [CrossRef]
Experiment | Phytoplankton | Results | Observation Types | References |
---|---|---|---|---|
Ocean Acidification | Thalassiosira weissflogii | Decline in eCA expression with increasing CO2 concentrations | Laboratory | [26,27,28] |
Phaeodactylum tricornutum | Decline in eCA expression with increasing CO2 concentrations | Laboratory | [26,27,28] | |
Thalassiosira pseudonana | eCA activities were not affected by CO2 concentrations | Laboratory | [16,17,40,62,63] | |
Thalassiosira nitzschioides, Eucampia zodiacus, and Skeletonema costatum | eCA is important in bloom-forming diatom species. eCAdecline with increasing CO2 supply (800 µatm) | Laboratory | [40] | |
Antarctic phytoplankton (Chaetoceros debilis, Pseudo-nitzschia, Fragilariopsis kerguelensis, and Phaeocystis antarctica) | Preferences for Ci sources are partly species-specific. eCA activities of Pseudo-nitzschia and P. antartica increased under low pCO2 but the eCA activities of C. debilis and F. kerguelensis were unaffected by pCO2 | Field experiment | [70] | |
Equatorial Pacific Ocean natural assemblages | No eCA expression under high CO2 concentrations (750 µatm) | Field experiment | [64] | |
West Antarctic Peninsula diatom assemblages | Decline in eCA expression with increasing CO2 concentrations (800 µatm) | Field experiment | [65,66,67] | |
Timor Sea phytoplankton assemblages | eCA decreased faster in the low pH/high CO2 treatment compared to the in situ CO2 treatment | Field experiment | [18,68] | |
Subarctic Pacific diatom assemblages | eCA activity does not respond to increasing CO2, indicating direct HCO3− uptake | Field experiment | [69] | |
Southern Bering Sea | eCA activity does not respond to increasing CO2, indicating direct HCO3− uptake | Field experiment | [21] | |
Ross Sea diatom assemblages | Regulation of Ci uptake by phytoplankton is dependent on seasonal bloom | Field experiment | [69,75] | |
Southern Ocean phytoplankton assemblages | Substantial direct HCO3− uptake by phytoplankton | Field experiment | [71,72] | |
UV radiation | Skeletonema costatum | Degradation of eCA by 78% after 2 h exposure | Laboratory | [85] |
Light + Ocean acidification | Skeletonema costatum | Higher eCA activity under low CO2 and high light. Efficiency of CO2 uptake by S.costatum is dependent on the availability of light in addition to CO2 | Laboratory | [84] |
Light + warming | Thalassiosira weissflogii and Phaeodactylum tricornutum | Declined in eCA expression in T. weisfligii but not in P. tricornutum | Laboratory | [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustaffa, N.I.H.; Latif, M.T.; Wurl, O. The Role of Extracellular Carbonic Anhydrase in Biogeochemical Cycling: Recent Advances and Climate Change Responses. Int. J. Mol. Sci. 2021, 22, 7413. https://doi.org/10.3390/ijms22147413
Mustaffa NIH, Latif MT, Wurl O. The Role of Extracellular Carbonic Anhydrase in Biogeochemical Cycling: Recent Advances and Climate Change Responses. International Journal of Molecular Sciences. 2021; 22(14):7413. https://doi.org/10.3390/ijms22147413
Chicago/Turabian StyleMustaffa, Nur Ili Hamizah, Mohd Talib Latif, and Oliver Wurl. 2021. "The Role of Extracellular Carbonic Anhydrase in Biogeochemical Cycling: Recent Advances and Climate Change Responses" International Journal of Molecular Sciences 22, no. 14: 7413. https://doi.org/10.3390/ijms22147413
APA StyleMustaffa, N. I. H., Latif, M. T., & Wurl, O. (2021). The Role of Extracellular Carbonic Anhydrase in Biogeochemical Cycling: Recent Advances and Climate Change Responses. International Journal of Molecular Sciences, 22(14), 7413. https://doi.org/10.3390/ijms22147413