DNA-Grafted 3D Superlattice Self-Assembly
Abstract
:1. Introduction
2. Co-Crystallization of Different Building Blocks
2.1. Cocrystallization of Homogeneous Building Blocks
2.2. Cocrystallization of Heterogeneous Building Blocks
3. Assembly Methods for 3D Lattice
3.1. Connection via ssDNA
3.2. Connection via DNA Tile
3.3. Connection via DNA Origami Nanostructure
4. Dynamic Assemblies of 3D Lattice
5. Properties of DNA-Grafted 3D Lattice and Their Future Application
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noguchi, T.; Roy, B.; Yoshihara, D.; Sakamoto, J.; Yamamoto, T.; Shinkai, S. A Chiral Recognition System Orchestrated by Self-Assembly: Molecular Chirality, Self-Assembly Morphology, and Fluorescence Response. Angew. Chem. Int. Ed. 2017, 56, 12518–12522. [Google Scholar] [CrossRef]
- Damasceno, P.F.; Engel, M.; Glotzer, S.C. Predictive Self-Assembly of Polyhedra into Complex Structures. Science 2012, 337, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, A.V.; Han, D.; Shih, W.M.; Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 2011, 6, 763–772. [Google Scholar] [CrossRef]
- Bates, F.S.; Hillmyer, M.A.; Lodge, T.P.; Bates, C.M.; Delaney, K.T.; Fredrickson, G.H. Multiblock Polymers: Panacea or Pandora’s Box? Science 2012, 336, 434–440. [Google Scholar] [CrossRef]
- Cheng, H.F.; Wang, S.; Mirkin, C.A. Electron-Equivalent Valency through Molecularly Well-Defined Multivalent DNA. J. Am. Chem. Soc. 2021, 143, 1752–1757. [Google Scholar] [CrossRef]
- Park, S.Y.; Lytton-Jean, A.K.R.; Lee, B.; Weigand, S.; Schatz, G.C.; Mirkin, C.A. DNA-programmable nanoparticle crystallization. Nature 2008, 451, 553–556. [Google Scholar] [CrossRef]
- Nykypanchuk, D.; Maye, M.M.; van der Lelie, D.; Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451, 549–552. [Google Scholar] [CrossRef]
- Macfarlane, R.J.; Lee, B.; Jones, M.R.; Harris, N.; Schatz, G.C.; Mirkin, C.A. Nanoparticle Superlattice Engineering with DNA. Science 2011, 334, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Breed, D.R.; Manoharan, V.N.; Feng, L.; Hollingsworth, A.D.; Weck, M.; Pine, D.J. Colloids with valence and specific directional bonding. Nature 2012, 491, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Rosi, N.L.; Wang, Y.; Huo, F.; Mirkin, C.A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 2006, 128, 9286–9287. [Google Scholar] [CrossRef] [Green Version]
- McMillan, J.R.; Brodin, J.D.; Millan, J.A.; Lee, B.; de la Cruz, M.O.; Mirkin, C.A. Modulating Nanoparticle Superlattice Structure Using Proteins with Tunable Bond Distributions. J. Am. Chem. Soc. 2017, 139, 1754–1757. [Google Scholar] [CrossRef]
- Hayes, O.G.; McMillan, J.R.; Lee, B.; Mirkin, C.A. DNA-Encoded Protein Janus Nanoparticles. J. Am. Chem. Soc. 2018, 140, 9269–9274. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Wang, T.; Xin, H.L.; Li, H.; Gang, O. Lattice engineering through nanoparticle–DNA frameworks. Nat. Mater. 2016, 15, 654–661. [Google Scholar] [CrossRef]
- Liu, W.; Tagawa, M.; Xin, H.L.; Wang, T.; Emamy, H.; Li, H.; Yager, K.G.; Starr, F.W.; Tkachenko, A.V.; Gang, O. Diamond family of nanoparticle superlattices. Science 2016, 351, 582–586. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.R.; Macfarlane, R.J.; Lee, B.; Zhang, J.; Young, K.L.; Senesi, A.J.; Mirkin, C.A. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 2010, 9, 913–917. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.N.; Jones, M.R.; Brown, K.A.; Mirkin, C.A. Universal Noble Metal Nanoparticle Seeds Realized Through Iterative Reductive Growth and Oxidative Dissolution Reactions. J. Am. Chem. Soc. 2014, 136, 7603–7606. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.N.; Lin, H.-X.; Girard, M.; Olvera de la Cruz, M.; Mirkin, C.A. Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds. J. Am. Chem. Soc. 2016, 138, 14562–14565. [Google Scholar] [CrossRef]
- Lin, H.; Lee, S.; Sun, L.; Spellings, M.; Engel, M.; Glotzer, S.C.; Mirkin, C.A. Clathrate colloidal crystals. Science 2017, 355, 931–935. [Google Scholar] [CrossRef] [Green Version]
- Auyeung, E.; Cutler, J.I.; Macfarlane, R.J.; Jones, M.R.; Wu, J.; Liu, G.; Zhang, K.; Osberg, K.D.; Mirkin, C.A. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nat. Nanotechnol. 2012, 7, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef]
- Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.W. Hydrogen Storage in Metal-Organic Frameworks. Chem. Rev. 2012, 112, 782–835. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.; Briley, W.E.; Auyeung, E.; Cabezas, M.D.; Mirkin, C.A. Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264. [Google Scholar] [CrossRef]
- Kim, A.J.; Biancaniello, P.L.; Crocker, J.C. Engineering DNA-Mediated Colloidal Crystallization. Langmuir 2006, 22, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Van der Meulen, S.A.J.; Leunissen, M.E. Solid Colloids with Surface-Mobile DNA Linkers. J. Am. Chem. Soc. 2013, 135, 15129–15134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Zheng, X.; Ducrot, E.; Lee, M.-G.; Yi, G.-R.; Weck, M.; Pine, D.J. Synthetic Strategies Toward DNA-Coated Colloids that Crystallize. J. Am. Chem. Soc. 2015, 137, 10760–10766. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Zheng, X.; Ducrot, É.; Yodh, J.S.; Weck, M.; Pine, D.J. Crystallization of DNA-coated colloids. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Gang, O. Binary Heterogeneous Superlattices Assembled from Quantum Dots and Gold Nanoparticles with DNA. J. Am. Chem. Soc. 2011, 133, 5252–5254. [Google Scholar] [CrossRef]
- Macfarlane, R.J.; Jones, M.R.; Lee, B.; Auyeung, E.; Mirkin, C.A. Topotactic Interconversion of Nanoparticle Superlattices. Science 2013, 341, 1222–1225. [Google Scholar] [CrossRef]
- Zhang, C.; Macfarlane, R.J.; Young, K.L.; Choi, C.H.J.; Hao, L.; Auyeung, E.; Liu, G.; Zhou, X.; Mirkin, C.A. A general approach to DNA-programmable atom equivalents. Nat. Mater. 2013, 12, 741–746. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, F.; Yager, K.G.; van der Lelie, D.; Gang, O. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 2013, 8, 865–872. [Google Scholar] [CrossRef]
- Lu, F.; Yager, K.G.; Zhang, Y.; Xin, H.; Gang, O. Superlattices assembled through shape-induced directional binding. Nat. Commun. 2015, 6, 6912. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.N.; Jones, M.R.; Lee, B.; Mirkin, C.A. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater. 2015, 14, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Kallenbach, N.R.; Ma, R.-I.; Seeman, N.C. An immobile nucleic acid junction constructed from oligonucleotides. Nature 1983, 305, 829–831. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y.; Liu, H.; Ribbe, A.E.; Mao, C. Self-Assembly of Hexagonal DNA Two-Dimensional (2D) Arrays. J. Am. Chem. Soc. 2005, 127, 12202–12203. [Google Scholar] [CrossRef]
- Yan, H.; Park, S.H.; Finkelstein, G.; Reif, J.H.; LaBean, T.H. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Science 2003, 301, 1882–1884. [Google Scholar] [CrossRef]
- He, Y.; Tian, Y.; Ribbe, A.E.; Mao, C. Highly Connected Two-Dimensional Crystals of DNA Six-Point-Stars. J. Am. Chem. Soc. 2006, 128, 15978–15979. [Google Scholar] [CrossRef]
- He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A.E.; Jiang, W.; Mao, C. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 2008, 452, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Birktoft, J.J.; Chen, Y.; Wang, T.; Sha, R.; Constantinou, P.E.; Ginell, S.L.; Mao, C.; Seeman, N.C. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 2009, 461, 74–77. [Google Scholar] [CrossRef]
- Hao, Y.; Kristiansen, M.; Sha, R.; Birktoft, J.J.; Hernandez, C.; Mao, C.; Seeman, N.C. A device that operates within a self-assembled 3D DNA crystal. Nat. Chem. 2017, 9, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhao, Y.; Li, Z.; Wang, Y.; Sha, R.; Seeman, N.C.; Mao, C. Modulating Self-Assembly of DNA Crystals with Rationally Designed Agents. Angew. Chem. Int. Ed. 2018, 57, 16529–16532. [Google Scholar] [CrossRef] [PubMed]
- Simmons, C.R.; Zhang, F.; MacCulloch, T.; Fahmi, N.; Stephanopoulos, N.; Liu, Y.; Seeman, N.C.; Yan, H. Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals. J. Am. Chem. Soc. 2017, 139, 11254–11260. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, L.; Zheng, M.; Zhao, J.; Seeman, N.C.; Mao, C. Making Engineered 3D DNA Crystals Robust. J. Am. Chem. Soc. 2019, 141, 15850–15855. [Google Scholar] [CrossRef]
- Ohayon, Y.P.; Hernandez, C.; Chandrasekaran, A.R.; Wang, X.; Abdallah, H.O.; Jong, M.A.; Mohsen, M.G.; Sha, R.; Birktoft, J.J.; Lukeman, P.S.; et al. Designing Higher Resolution Self-Assembled 3D DNA Crystals via Strand Terminus Modifications. ACS Nano 2019, 13, 7957–7965. [Google Scholar] [CrossRef] [PubMed]
- Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, Y.G.; Douglas, S.M.; Liu, M.H.; Sharma, T.; Cheng, A.C.; Leung, A.; Liu, Y.; Shih, W.M.; Yan, H. Multilayer DNA Origami Packed on a Square Lattice. J. Am. Chem. Soc. 2009, 131, 15903–15908. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H. DNA Origami with Complex Curvatures in Three-Dimensional Space. Science 2011, 332, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Pal, S.; Yang, Y.; Jiang, S.; Nangreave, J.; Liu, Y.; Yan, H. DNA Gridiron Nanostructures Based on Four-Arm Junctions. Science 2013, 339, 1412–1415. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhou, Z.; Ma, N.; Yang, S.; Li, K.; Teng, C.; Ke, Y.; Tian, Y. DNA Origami-Enabled Biosensors. Sensors 2020, 20, 6899. [Google Scholar] [CrossRef]
- Wang, S.; Lu, S.; Zhao, J.; Huang, J.; Yang, X. Real-Time Study of the Interaction between G-Rich DNA Oligonucleotides and Lead Ion on DNA Tetrahedron-Functionalized Sensing Platform by Dual Polarization Interferometry. Acs Appl. Mater. Interfaces 2017, 9, 41568–41576. [Google Scholar] [CrossRef]
- Wang, S.; Lu, S.; Zhao, J.; Ye, J.; Huang, J.; Yang, X. An electric potential modulated cascade of catalyzed hairpin assembly and rolling chain amplification for microRNA detection. Biosens. Bioelectron. 2019, 126, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, J.; Lu, S.; Sun, J.; Yang, X. A duplex connection can further illuminate G-quadruplex/crystal violet complex. Chem. Commun. 2019, 55, 1911–1914. [Google Scholar] [CrossRef] [PubMed]
- Petersen, P.; Tikhomirov, G.; Qian, L. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, J.; Zhao, J.; Lu, S.; Yang, X. Photo-Induced Electron Transfer-Based Versatile Platform with G-Quadruplex/Hemin Complex as Quencher for Construction of DNA Logic Circuits. Anal. Chem. 2018, 90, 3437–3442. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lu, S.; Zhao, J.; Yang, X. A Ratiometric Fluorescent DNA Radar Based on Contrary Response of DNA/Silver Nanoclusters and G-Quadruplex/Crystal Violet. ACS Appl. Mater. Interfaces 2019, 11, 25066–25073. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Lu, S.; Huang, J.; Yang, X. Establishment of logic gates based on conformational changes in multiple-factor biomolecule interaction process by dual polarization interferometry. Anal. Chem. 2019, 91, 6971–6975. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Song, C.; Nangreave, J.; Liu, X.W.; Lin, L.; Qiu, D.L.; Wang, Z.G.; Zou, G.Z.; Liang, X.J.; Yan, H.; et al. DNA Origami as a Carrier for Circumvention of Drug Resistance. J. Am. Chem. Soc. 2012, 134, 13396–13403. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, T.; Liu, W.; Xin, H.L.; Li, H.; Ke, Y.; Shih, W.M.; Gang, O. Prescribed Nanoparticle Cluster Architectures and LowDimensional Arrays. Nat. Nanotechnol. 2015, 10, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Lhermitte, J.R.; Bai, L.; Vo, T.; Xin, H.L.; Li, H.; Li, R.; Fukuto, M.; Yager, K.G.; Kahn, J.S.; et al. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater. 2020, 19, 789–796. [Google Scholar] [CrossRef]
- Zhang, T.; Hartl, C.; Frank, K.; Heuer-Jungemann, A.; Fischer, S.; Nickels, P.C.; Nickel, B.; Liedl, T. 3D DNA Origami Crystals. Adv. Mater. 2018, 30. [Google Scholar] [CrossRef]
- Ji, M.; Liu, J.; Dai, L.; Wang, L.; Tian, Y. Programmable Cocrystallization of DNA Origami Shapes. J. Am. Chem. Soc. 2020, 142, 21336–21343. [Google Scholar] [CrossRef]
- Oh, T.; Park, S.S.; Mirkin, C.A. Stabilization of Colloidal Crystals Engineered with DNA. Adv. Mater. 2019, 31. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.E.; Wang, M.X.; Shade, C.M.; Rouge, J.L.; Brown, K.A.; Mirkin, C.A. Modulating the Bond Strength of DNA-Nanoparticle Superlattices. ACS Nano 2016, 10, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Zhang, Y.; Kumar, S.K.; Gang, O. Dynamic Tuning of DNA-Nanoparticle Superlattices by Molecular Intercalation of Double Helix. J. Am. Chem. Soc. 2015, 137, 4030–4033. [Google Scholar] [CrossRef]
- Samanta, D.; Iscen, A.; Laramy, C.R.; Ebrahimi, S.B.; Bujold, K.E.; Schatz, G.C.; Mirkin, C.A. Multivalent Cation-Induced Actuation of DNA-Mediated Colloidal Superlattices. J. Am. Chem. Soc. 2019, 141, 19973–19977. [Google Scholar] [CrossRef]
- Srivastava, S.; Nykypanchuk, D.; Maye, M.M.; Tkachenko, A.V.; Gang, O. Super-compressible DNA nanoparticle lattices. Soft Matter 2013, 9, 10452–10457. [Google Scholar] [CrossRef]
- Mason, J.A.; Laramy, C.R.; Lai, C.-T.; O’Brien, M.N.; Lin, Q.-Y.; Dravid, V.P.; Schatz, G.C.; Mirkin, C.A. Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals. J. Am. Chem. Soc. 2016, 138, 8722–8725. [Google Scholar] [CrossRef]
- Zhu, J.H.; Kim, Y.; Lin, H.X.; Wang, S.Z.; Mirkin, C.A. pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds. J. Am. Chem. Soc. 2018, 140, 5061–5064. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lin, H.; Kim, Y.; Yang, M.; Skakuj, K.; Du, J.S.; Lee, B.; Schatz, G.C.; van Duyne, R.P.; Mirkin, C.A. Light-Responsive Colloidal Crystals Engineered with DNA. Adv. Mater. 2020, 32, 1906600. [Google Scholar] [CrossRef]
- Urbach, Z.J.; Park, S.S.; Weigand, S.L.; Rix, J.E.; Lee, B.; Mirkin, C.A. Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA. Angew. Chem. Int. Ed. 2020, 59, 4111–4115. [Google Scholar]
- Young, K.L.; Ross, M.B.; Blaber, M.G.; Rycenga, M.; Jones, M.R.; Zhang, C.; Senesi, A.J.; Lee, B.; Schatz, G.C.; Mirkin, C.A. Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties. Adv. Mater. 2014, 26, 653–659. [Google Scholar] [CrossRef]
- Sun, L.; Lin, H.X.; Park, D.J.; Bourgeois, M.R.; Ross, M.B.; Ku, J.C.; Schatz, G.C.; Mirkin, C.A. Polarization-Dependent Optical Response in Anisotropic Nanoparticle-DNA Superlattices. Nano Lett. 2017, 17, 2313–2318. [Google Scholar] [CrossRef]
- Park, D.J.; Ku, J.C.; Sun, L.; Lethiec, C.M.; Stern, N.P.; Schatz, G.C.; Mirkin, C.A. Directional emission from dye-functionalized plasmonic DNA superlattice microcavities. Proc. Natl. Acad. Sci. USA 2017, 114, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-state Physiics and Electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, L.; Hedhili, M.N.; Zhang, H.; Wang, P. Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO2 Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting. Nano Lett. 2013, 13, 14–20. [Google Scholar] [CrossRef]
- Yanik, M.F.; Fan, S.H.; Soljacic, M.; Joannopoulos, J.D. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett. 2003, 28, 2506–2508. [Google Scholar] [CrossRef]
- Rao, A.B.; Shaw, J.; Neophytou, A.; Morphew, D.; Sciortino, F.; Johnston, R.L.; Chakrabarti, D. Leveraging Hierarchical Self-Assembly Pathways for Realizing Colloidal Photonic Crystals. ACS Nano 2020, 14, 5348–5359. [Google Scholar] [CrossRef]
- He, M.; Gales, J.P.; Ducrot, É.; Gong, Z.; Yi, G.-R.; Sacanna, S.; Pine, D.J. Colloidal diamond. Nature 2020, 585, 524–529. [Google Scholar] [CrossRef]
- Park, S.H.; Park, H.; Hur, K.; Lee, S. Design of DNA Origami Diamond Photonic Crystals. ACS Appl. Bio Mater. 2019, 3, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Majewski, P.W.; Michelson, A.; Cordeiro, M.A.L.; Tian, C.; Ma, C.; Kisslinger, K.; Tian, Y.; Liu, W.; Stach, E.A.; Yager, K.G.; et al. Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Sci. Adv. 2021, 7, eabf0617. [Google Scholar] [CrossRef] [PubMed]
- Shani, L.; Michelson, A.N.; Minevich, B.; Fleger, Y.; Stern, M.; Shaulov, A.; Yeshurun, Y.; Gang, O. DNA-assembled superconducting 3D nanoscale architectures. Nat. Commun. 2020, 11, 5697. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Li, J.; Liu, J.P.; Wang, Z.L.; Sun, S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.J.; Carter, D.J.D.; Macfarlane, R.J. Using DNA to Control the Mechanical Response of Nanoparticle Superlattices. J. Am. Chem. Soc. 2020, 142, 19181–19188. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Ye, X.C.; Chen, J.; Qi, L.; Diaz, R.E.; Doan-Nguyen, V.; Xing, G.Z.; Kagan, C.R.; Li, J.; Gorte, R.J.; et al. Engineering Catalytic Contacts and Thermal Stability: Gold/Iron Oxide Binary Nanocrystal Superlattices for CO Oxidation. J. Am. Chem. Soc. 2013, 135, 1499–1505. [Google Scholar] [CrossRef]
- Kang, Y.J.; Ye, X.C.; Chen, J.; Cai, Y.; Diaz, R.E.; Adzic, R.R.; Stach, E.A.; Murray, C.B. Design of Pt-Pd Binary Superlattices Exploiting Shape Effects and Synergistic Effects for Oxygen Reduction Reactions. J. Am. Chem. Soc. 2013, 135, 42–45. [Google Scholar] [CrossRef] [PubMed]
Strategies | Driving Factors | References |
---|---|---|
Design | Sticky end sequence | [6] |
Number and structure of linkers | [51] | |
Complementary shape of blunt end | [59] | |
Chemical stimulus | Ruthenium coordination complexes | [62] |
Ethidium bromide | [63] | |
Multivalent cations (Ag+, Ni2+, Co2+, Mn2+, Cu2+, Ca2+, Na+, K+, Mg2+, NH4+) | [64] | |
Polyethylene glycol | [65] | |
Ethanol | [66] | |
pH | [67] | |
Physical stimulus | Light | [68] |
Magnetic field | [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xie, X.; Chen, Z.; Ma, N.; Zhang, X.; Li, K.; Teng, C.; Ke, Y.; Tian, Y. DNA-Grafted 3D Superlattice Self-Assembly. Int. J. Mol. Sci. 2021, 22, 7558. https://doi.org/10.3390/ijms22147558
Wang S, Xie X, Chen Z, Ma N, Zhang X, Li K, Teng C, Ke Y, Tian Y. DNA-Grafted 3D Superlattice Self-Assembly. International Journal of Molecular Sciences. 2021; 22(14):7558. https://doi.org/10.3390/ijms22147558
Chicago/Turabian StyleWang, Shuang, Xiaolin Xie, Zhi Chen, Ningning Ma, Xue Zhang, Kai Li, Chao Teng, Yonggang Ke, and Ye Tian. 2021. "DNA-Grafted 3D Superlattice Self-Assembly" International Journal of Molecular Sciences 22, no. 14: 7558. https://doi.org/10.3390/ijms22147558
APA StyleWang, S., Xie, X., Chen, Z., Ma, N., Zhang, X., Li, K., Teng, C., Ke, Y., & Tian, Y. (2021). DNA-Grafted 3D Superlattice Self-Assembly. International Journal of Molecular Sciences, 22(14), 7558. https://doi.org/10.3390/ijms22147558