Investigation of the Antibacterial Properties of Silver-Doped Amorphous Carbon Coatings Produced by Low Pressure Magnetron Assisted Acetylene Discharges
Abstract
:1. Introduction
2. Results
2.1. a-C:H:Ag Deposition and Physical Characterisation
2.1.1. Coating Production and Film Properties
2.1.2. SEM Analyses and Silver Concentration Evolution at the Surface of Coated Samples
2.1.3. Chemical Depth Composition and Ageing Behaviour
2.2. Asssessment of Antibacterial Activity
2.2.1. Fluorescent Test and Counting CFU
2.2.2. Multiple Exposures
3. Discussion
4. Materials and Methods
4.1. Preparation and Production of Coated a-C:H:Ag Samples
4.2. Characterization of Samples
4.3. Assessment of Antibacterial Properties
4.3.1. Growth of Bacterial Strains
4.3.2. CFU and LIVE/DEAD
- 100 µL were stained with a LIVE/DEAD BactLight Bacterial Viability kit (L7012 from Molecular probes) according to the manufacturer protocol and placed in a 96-well plate. The 96-well plate was read in fluorescence with a SpectraMax iD3 (Molecular Devices, San Jose, CA, USA). The excitation wavelength was 485 nm for both dyes. The emission wavelengths were 530 nm (SYTO9: live bacteria) and 630 nm (Propidium iodide: dead bacteria). The data acquisition was performed by using the SoftMax pro 7.1 software. To increase the statistical significance, each experiment was repeated three times in duplicate and each sample was analyzed twice.
- 100 µL of each sample from the 6-well plates described above (considered as the dilution 10−1) was collected and diluted in LB media from 10−1 to 10−8. 20 µL of each dilution was inoculated three times on LB agar square plates and incubated overnight at 37 °C, with 5% CO2. The plates were photographed and counted to determine the Colony Forming Units. To increase the statistical significance, each experiment was repeated three times in duplicate and each sample was inoculated three consecutive times for multiple exposure studies.
4.3.3. Modified KIRBY–BAUER TEST (HALO TEST)
4.3.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dellinger, E.P. Prevention of Hospital-Acquired Infections. Surg. Infect. 2016, 17, 422–426. [Google Scholar] [CrossRef]
- Shirol, S.S.; Nimbaragi, G.; Prabhu, M.; Ratkal, J. Abductor digiti minimi muscle flap in reconstruction of diabetic foot ulcers: A case series. Eur. J. Plast. Surg. 2014, 37, 227–232. [Google Scholar] [CrossRef]
- Zarb, P.; Coignard, B.; Griskeviciene, J.; Muller, A.; Vankerckhoven, V.; Weist, K.; Goossens, M.M.; Vaerenberg, S.; Hopkins, S.; Catry, B.; et al. The european centre for disease prevention and control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Eurosurveillance 2012, 17, 20316. [Google Scholar] [CrossRef]
- The Burden of Health CareAssociated Infection Worldwide: A Summary. 2004. Available online: https://www.who.int/gpsc/country_work/summary_20100430_en.pdf (accessed on 24 November 2021).
- Bartley, J.M.; Olmsted, R.N. Reservoirs of Pathogens Causing Health Care-Associated Infections in the 21st Century: Is Renewed Attention to Inanimate Surfaces Warranted? Clin. Microbiol. Newsl. 2008, 30, 113–117. [Google Scholar] [CrossRef]
- Page, K.; Wilson, M.; Parkin, I.P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J. Mater. Chem. 2009, 19, 3818–3831. [Google Scholar] [CrossRef]
- Oie, S.; Hosokawa, I.; Kamiya, A. Contamination of room door handles by methicillin-sensitive/ methicillin-resistant Staphylococcus aureus. J. Hosp. Infect. 2002, 51, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Wojgani, H.; Kehsa, C.; Cloutman-Green, E.; Gray, C.; Gant, V.; Klein, N. Hospital Door Handle Design and Their Contamination with Bacteria: A Real Life Observational Study. Are We Pulling against Closed Doors? PLoS ONE 2012, 7, e40171. [Google Scholar] [CrossRef]
- Schabrun, S.; Chipchase, L. Healthcare equipment as a source of nosocomial infection: A systematic review. J. Hosp. Infect. 2006, 63, 239–245. [Google Scholar] [CrossRef]
- Wang, X.; Du, Y.; Fan, L.; Liu, H.; Hu, Y. Chitosan- metal complexes as antimicrobial agent: Synthesis, characterization and Structure-activity study. Polym. Bull. 2005, 55, 105–113. [Google Scholar] [CrossRef]
- Medina, O.; Nocua, J.; Mendoza, F.; Gómez-Moreno, R.; Ávalos, J.; Rodríguez, C.; Morell, G. Bactericide and bacterial anti-adhesive properties of the nanocrystalline diamond surface. Diam. Relat. Mater. 2012, 22, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, M.; Mantovani, D.; Rosei, F. Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends Biotechnol. 2015, 33, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013, 34, 8533–8554. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Szymczak, M.; Maciejewska, M.; Laskowski, Ł.; Laskowska, M.; Ostaszewski, R.; Skiba, G.; Franiak-Pietryga, I. All that glitters is not silver-A new look at microbiological and medical applications of silver nanoparticles. Int. J. Mol. Sci. 2021, 22, 854. [Google Scholar] [CrossRef]
- Penninckx, S.; Heuskin, A.C.; Michiels, C.; Lucas, S. Gold nanoparticles as a potent radiosensitizer: A transdisciplinary approach from physics to patient. Cancers 2020, 12, 2021. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, K.H.; Min, J.; Kim, H.J.; Jee, J.P.; Park, B.J. Functionalized ZNO nanoparticles with gallic acid for antioxidant and antibacterial activity against methicillin-resistant S. aureus. Nanomaterials 2017, 7, 365. [Google Scholar] [CrossRef] [Green Version]
- Schuemann, J.; Bagley, A.F.; Berbeco, R.; Bromma, K.; Butterworth, K.T.; Byrne, H.L.; Chithrani, B.D.; Cho, S.H.; Cook, J.R.; Favaudon, V.; et al. Roadmap for metal nanoparticles in radiation therapy: Current status, translational challenges, and future directions. Phys. Med. Biol. 2020, 65, 21RM02. [Google Scholar] [CrossRef]
- Joshi, A.S.; Singh, P.; Mijakovic, I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. Int. J. Mol. Sci. 2020, 21, 7658. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, S.; Nazam, N.; Rizvi, S.M.D.; Ahmad, K.; Baig, M.H.; Lee, E.J.; Choi, I. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci. 2019, 20, 2468. [Google Scholar] [CrossRef] [Green Version]
- Penninckx, S.; Heuskin, A.C.; Michiels, C.; Lucas, S. The role of thioredoxin reductase in gold nanoparticle radiosensitization effects. Nanomedicine 2018, 13, 2917–2937. [Google Scholar] [CrossRef]
- Penninckx, S.; Heuskin, A.C.; Michiels, C.; Lucas, S. Thioredoxin reductase activity predicts gold nanoparticle radiosensitization effect. Nanomaterials 2019, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Wen, F.; Liu, J.; Xue, J. Colloid and Surface Science The Studies of Diamond-Like Carbon Films as Biomaterials: Review. Colloid Surf. Sci. 2017, 2, 81–95. [Google Scholar] [CrossRef]
- Kumarasinghe, K.G.U.R.; Silva, W.C.H.; Fernando, M.D.A.; Palliyaguru, L.; Jayawardena, P.S.; Shimomura, M.; Fernando, S.S.N.; Gunasekara, T.D.C.P.; Jayaweera, P.M. One-pot reducing agent-free synthesis of silver nanoparticles/nitrocellulose composite surface coating with antimicrobial and antibiofilm activities. BioMed Res. Int. 2021, 2021, 6666642. [Google Scholar] [CrossRef]
- Andra, S.; Kumar Balu, S.; Jeevanandam, J.; Muthalagu, M.; Danquah, M.K. Surface cationization of cellulose to enhance durable antibacterial finish in phytosynthesized silver nanoparticle treated cotton fabric. Cellulose 2021, 28, 5895–5910. [Google Scholar] [CrossRef]
- Lopez-Santos, C.; Colaux, J.L.; Gonzalez, J.C.; Lucas, S. Investigation of the growth mechanisms of a-CH x coatings deposited by pulsed reactive magnetron sputtering. J. Phys. Chem. C 2012, 116, 12017–12026. [Google Scholar] [CrossRef]
- Domínguez-Meister, S.; Rojas, T.C.; Frías, J.E.; Sánchez-López, J.C. Silver effect on the tribological and antibacterial properties of a-C:Ag coatings. Tribol. Int. 2019, 140, 105837. [Google Scholar] [CrossRef]
- Lan, W.C.; Ou, S.F.; Lin, M.H.; Ou, K.L.; Tsai, M.Y. Development of silver-containing diamond-like carbon for biomedical applications. Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms. Ceram. Int. 2013, 39, 4099–4104. [Google Scholar] [CrossRef]
- Baba, K.; Hatada, R.; Flege, S.; Ensinger, W.; Shibata, Y.; Nakashima, J.; Sawase, T.; Morimura, T. Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation. Vacuum 2013, 89, 179–184. [Google Scholar] [CrossRef]
- Cloutier, M.; Tolouei, R.; Lesage, O.; Lévesque, L.; Turgeon, S.; Tatoulian, M.; Mantovani, D. On the long term antibacterial features of silver-doped diamondlike carbon coatings deposited via a hybrid plasma process. Biointerphases 2014, 9, 029013. [Google Scholar] [CrossRef] [Green Version]
- Kwok, S.C.H.; Zhang, W.; Wan, G.J.; McKenzie, D.R.; Bilek, M.M.M.; Chu, P.K. Hemocompatibility and anti-bacterial properties of silver doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc deposition. Diam. Relat. Mater. 2007, 16, 1353–1360. [Google Scholar] [CrossRef]
- Cloutier, M.; Turgeon, S.; Busby, Y.; Tatoulian, M.; Pireaux, J.J.; Mantovani, D. Controlled Distribution and Clustering of Silver in Ag-DLC Nanocomposite Coatings Using a Hybrid Plasma Approach. ACS Appl. Mater. Interfaces 2016, 8, 21020–21027. [Google Scholar] [CrossRef]
- Karakaya, I.; Thompson, W.T. The Ag-C (Silver-Carbon) system. Bull. Alloy Phase Diagr. 1988, 9, 226–227. [Google Scholar] [CrossRef]
- Lucas, S.; Moskovkin, P. Simulation at high temperature of atomic deposition, islands coalescence, Ostwald and inverse Ostwald ripening with a general simple kinetic Monte Carlo code. Thin Solid Films 2010, 518, 5355–5361. [Google Scholar] [CrossRef]
- Choi, H.W.; Choi, J.H.; Lee, K.R.; Ahn, J.P.; Oh, K.H. Structure and mechanical properties of Ag-incorporated DLC films prepared by a hybrid ion beam deposition system. Thin Solid Films 2007, 516, 248–251. [Google Scholar] [CrossRef]
- Wang, L.J.; Zhang, F.; Fong, A.; Lai, K.M.; Shum, P.W.; Zhou, Z.F.; Gao, Z.F.; Fu, T. Effects of silver segregation on sputter deposited antibacterial silver-containing diamond-like carbon films. Thin Solid Films 2018, 650, 58–64. [Google Scholar] [CrossRef]
- Manninen, N.K.; Galindo, R.E.; Carvalho, S.; Cavaleiro, A. Silver surface segregation in Ag-DLC nanocomposite coatings. Surf. Coat. Technol. 2015, 267, 90–97. [Google Scholar] [CrossRef]
- Manninen, N.K.A.d.S. Silver Segregation in Ag/a-C Nanocomposite Coatings for Potential Application as Antibacterial Surfaces. Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 2015. [Google Scholar]
- Gudmundsson, J.T.; Lundin, D. Introduction to Magnetron Sputtering; Lundin, D., Minea, T., Gudmundsson, J.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–48. ISBN 9780128124543. [Google Scholar]
Characteristics | [Ag(6%)] | [Ag(22%)] |
---|---|---|
Mean Feret diameter (nm) | ||
Circularity | 0.88 | 0.91 |
Particle density (Part./μm2) | 49 | 188 |
Surface covered (%) | 4.8 | 14.4 |
Support Matrix | Ag Concentration (at.%) (S: Surface, B: Bulk) | Ag Morphology at Surface before Assay | Antibacterial Power (%) | Ref. |
---|---|---|---|---|
a-C | 7.4 B | NP | 67.44 | [27] |
12.6 B | NP | 96.94 | ||
23.4 B | NP | 85 | ||
ta-C | 70 S | Not specified | 98.12 | |
70 S | Not specified | 99.98 | [31] | |
90 S | Not specified | 99.99 | ||
a-C:H | 6.5 B | NP | [28] | |
16.7 B | NP | |||
20 B | NP | |||
51.2 B | NP | |||
71.4 B | NP | |||
a-C:H | 0.2 S | NP | 60.0 | [30] |
0.4 S | NP | 99.0 | ||
1.7 S | NP | 99.2 | ||
2.4 S | NP | 99.6 | ||
a-C:H | 6.5 S–5.5 B | NP | 99.99 | |
7 S–6 B | NP | 99.99 | This work | |
24 S–22 S | NP | 99.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Job, V.; Laloy, J.; Maloteau, V.; Haye, E.; Lucas, S.; Penninckx, S. Investigation of the Antibacterial Properties of Silver-Doped Amorphous Carbon Coatings Produced by Low Pressure Magnetron Assisted Acetylene Discharges. Int. J. Mol. Sci. 2022, 23, 563. https://doi.org/10.3390/ijms23010563
Job V, Laloy J, Maloteau V, Haye E, Lucas S, Penninckx S. Investigation of the Antibacterial Properties of Silver-Doped Amorphous Carbon Coatings Produced by Low Pressure Magnetron Assisted Acetylene Discharges. International Journal of Molecular Sciences. 2022; 23(1):563. https://doi.org/10.3390/ijms23010563
Chicago/Turabian StyleJob, Valentin, Julie Laloy, Vincent Maloteau, Emile Haye, Stéphane Lucas, and Sébastien Penninckx. 2022. "Investigation of the Antibacterial Properties of Silver-Doped Amorphous Carbon Coatings Produced by Low Pressure Magnetron Assisted Acetylene Discharges" International Journal of Molecular Sciences 23, no. 1: 563. https://doi.org/10.3390/ijms23010563
APA StyleJob, V., Laloy, J., Maloteau, V., Haye, E., Lucas, S., & Penninckx, S. (2022). Investigation of the Antibacterial Properties of Silver-Doped Amorphous Carbon Coatings Produced by Low Pressure Magnetron Assisted Acetylene Discharges. International Journal of Molecular Sciences, 23(1), 563. https://doi.org/10.3390/ijms23010563