Comparative Proteomic and Metabolomic Analysis of Human Osteoblasts, Differentiated from Dental Pulp Stem Cells, Hinted Crucial Signaling Pathways Promoting Osteogenesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. DPSCs Possess In Vitro Osteogenic Potential
2.2. Overview of Quantitative Proteomic and Metabolomic Profiling of DPSCs upon In Vitro Osteogenic Differentiation
2.3. Major Signaling Pathways Involved in Osteogenesis Were Well Represented among Differentially Abundant Proteins
2.4. Selected Pathways Potentially Associated with Bone Metabolism
2.4.1. Prevention of Oxidation Stress by FoxO Cascade, Hormone Synthesis, and Mineral Absorption Are Factors That May Affect the Mineralization Phase of Osteodifferentiation
2.4.2. Lipid Metabolism and PPAR Signaling Are Plausibly Connected to Energy Metabolism in the Context of Bone Development
2.5. Pathways Potentially Essential for Osteodifferentiation Hinted by Metabolomic Data
2.6. Proposed Proteins and Metabolites for Functional Validation in Patient Samples
3. Materials and Methods
3.1. Cell Cultures and Osteogenic Treatment
3.2. Alizarin Red S Staining and Quantification of Calcium Mineral Deposits
3.3. Immunocytochemistry
3.4. Protein Extraction
3.5. SDS-PAGE and Western Blotting
3.6. Protein Digestion by Filter-Aided Sample Preparation
3.7. Relative Label-Free Quantification by Mass Spectrometry
3.8. Metabolite Extraction
3.9. Identification and Quantification of Metabolites by Nuclear Magnetic Resonance
3.10. Statistical Analysis and Bioinformatics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manolagas, S.C. Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis. Endocr. Rev. 2000, 21, 115–137. [Google Scholar] [CrossRef] [Green Version]
- Office of the Surgeon General (US). The basics of bone in health and disease. In Bone Health and Osteoporosis: A Report of the Surgeon General; Department of Health and Human Services, Office of the Surgeon General: Rockville, MD, USA, 2004; pp. 16–38. [Google Scholar]
- Tu, K.N.; Lie, J.D.; Wan, C.K.V.; Cameron, M.; Austel, A.G.; Nguyen, J.K.; Van, K.; Hyun, D. Osteoporosis: A Review of Treatment Options. Pharm. Ther. 2018, 43, 92–104. [Google Scholar]
- Abdel Meguid, E.; Ke, Y.; Ji, J.; El-Hashash, A.H.K. Stem Cells Applications in Bone and Tooth Repair and Regeneration: New Insights, Tools, and Hopes. J. Cell. Physiol. 2018, 233, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Sobacchi, C.; Schulz, A.; Coxon, F.P.; Villa, A.; Helfrich, M.H. Osteopetrosis: Genetics, Treatment and New Insights into Osteoclast Function. Nat. Rev. Endocrinol. 2013, 9, 522–536. [Google Scholar] [CrossRef]
- Raggatt, L.J.; Partridge, N.C. Cellular and Molecular Mechanisms of Bone Remodeling. J. Biol. Chem. 2010, 285, 25103–25108. [Google Scholar] [CrossRef] [Green Version]
- Iñiguez-Ariza, N.M.; Clarke, B.L. Bone Biology, Signaling Pathways, and Therapeutic Targets for Osteoporosis. Maturitas 2015, 82, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Hoang-Kim, A.; Gelsomini, L.; Luciani, D.; Moroni, A.; Giannini, S. Fracture Healing and Drug Therapies in Osteoporosis. Clin. Cases Miner. Bone Metab. 2009, 6, 136–143. [Google Scholar]
- Aspenberg, P. Drugs and Fracture Repair. Acta Orthop. 2005, 76, 741–748. [Google Scholar] [CrossRef] [Green Version]
- Iaquinta, M.R.; Mazzoni, E.; Bononi, I.; Rotondo, J.C.; Mazziotta, C.; Montesi, M.; Sprio, S.; Tampieri, A.; Tognon, M.; Martini, F. Adult Stem Cells for Bone Regeneration and Repair. Front. Cell Dev. Biol. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Antebi, B.; Pelled, G.; Gazit, D. Stem Cell Therapy for Osteoporosis. Curr. Osteoporos. Rep. 2014, 12, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Pavone, V.; Testa, G.; Giardina, S.M.C.; Vescio, A.; Restivo, D.A.; Sessa, G. Pharmacological Therapy of Osteoporosis: A Systematic Current Review of Literature. Front. Pharmacol. 2017, 8, 803. [Google Scholar] [CrossRef]
- Hegde, V.; Jo, J.E.; Andreopoulou, P.; Lane, J.M. Effect of Osteoporosis Medications on Fracture Healing. Osteoporos. Int. 2016, 27, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Pavone, V.; Mangano, S.; Riccioli, M.; Arancio, A.; Evola, F.R.; Avonda, S.; Sessa, G. Normal Nutritional Components and Effects on Bone Metabolism in Prevention of Osteoporosis. J. Biol. Regul. Homeost. Agents 2015, 29, 729–736. [Google Scholar] [PubMed]
- Caplan, A.I.; Dennis, J.E. Mesenchymal Stem Cells as Trophic Mediators. J. Cell. Biochem. 2006, 98, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Kamali, A.; Moshiri, A.; Baghaban Eslaminejad, M. Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence? Cells Tissues Organs 2017, 204, 59–83. [Google Scholar] [CrossRef]
- Hayrapetyan, A.; Jansen, J.A.; van den Beucken, J.J.J.P. Signaling Pathways Involved in Osteogenesis and Their Application for Bone Regenerative Medicine. Tissue Eng. Part B Rev. 2015, 21, 75–87. [Google Scholar] [CrossRef]
- Yang, B.; Qiu, Y.; Zhou, N.; Ouyang, H.; Ding, J.; Cheng, B.; Sun, J. Application of Stem Cells in Oral Disease Therapy: Progresses and Perspectives. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindal, P.; Kasim, N.H.A.; Ramasamy, T.S.; Dabbagh, A.; Moharamzadeh, K.; Chai, W.L. 18—Dental pulp tissue engineering and regenerative endodontic therapy. In Biomaterials for Oral and Dental Tissue Engineering; Tayebi, L., Moharamzadeh, K., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 297–318. ISBN 978-0-08-100961-1. [Google Scholar]
- Liu, J.; Yu, F.; Sun, Y.; Jiang, B.; Zhang, W.; Yang, J.; Xu, G.-T.; Liang, A.; Liu, S. Concise Reviews: Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cells 2015, 33, 627–638. [Google Scholar] [CrossRef]
- Okajcekova, T.; Strnadel, J.; Pokusa, M.; Zahumenska, R.; Janickova, M.; Halasova, E.; Skovierova, H. A Comparative In Vitro Analysis of the Osteogenic Potential of Human Dental Pulp Stem Cells Using Various Differentiation Conditions. Int. J. Mol. Sci. 2020, 21, 2280. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Sun, Y.; Liu, Y.; Yuan, M.; Zhang, Z.; Hu, W. Modulation of the Differentiation of Dental Pulp Stem Cells by Different Concentrations of β-Glycerophosphate. Molecules 2012, 17, 1219–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karbanová, J.; Soukup, T.; Suchánek, J.; Pytlík, R.; Corbeil, D.; Mokrý, J. Characterization of Dental Pulp Stem Cells from Impacted Third Molars Cultured in Low Serum-Containing Medium. Cells Tissues Organs 2011, 193, 344–365. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-C.; Bae, H.; Kwon, I.-K.; Lee, E.-J.; Park, J.-H.; Khademhosseini, A.; Hwang, Y.-S. Osteoblastic/Cementoblastic and Neural Differentiation of Dental Stem Cells and Their Applications to Tissue Engineering and Regenerative Medicine. Tissue Eng. Part B Rev. 2012, 18, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Karbanová, J.; Soukup, T.; Suchánek, J.; Mokrý, J. Osteogenic Differentiation of Human Dental Pulp-Derived Stem Cells under Various Ex-Vivo Culture Conditions. Acta Med. 2010, 53, 79–84. [Google Scholar] [CrossRef]
- Kim, J.; Lee, G.; Chang, W.S.; Ki, S.H.; Park, J.-C. Comparison and Contrast of Bone and Dentin in Genetic Disorder, Morphology and Regeneration: A Review. J. Bone Metab. 2021, 28, 1–10. [Google Scholar] [CrossRef]
- MacDougall, M.J.; Javed, A. Dentin and Bone: Similar Collagenous Mineralized Tissues. In Bone and Development; Bronner, F., Farach-Carson, M.C., Roach, H.I., Eds.; Topics in Bone Biology; Springer: London, UK, 2010; pp. 183–200. ISBN 978-1-84882-822-3. [Google Scholar]
- Li, Z.; Yu, M.; Tian, W. An Inductive Signalling Network Regulates Mammalian Tooth Morphogenesis with Implications for Tooth Regeneration. Cell Prolif. 2013, 46, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Srinivasan, A.; Nikolajeff, F.; Kumar, S. Biomineralization Process in Hard Tissues: The Interaction Complexity within Protein and Inorganic Counterparts. Acta Biomater. 2021, 120, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Maraldi, T.; Riccio, M.; Pisciotta, A.; Zavatti, M.; Carnevale, G.; Beretti, F.; La Sala, G.B.; Motta, A.; De Pol, A. Human Amniotic Fluid-Derived and Dental Pulp-Derived Stem Cells Seeded into Collagen Scaffold Repair Critical-Size Bone Defects Promoting Vascularization. Stem Cell Res. Ther. 2013, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- D’Aquino, R.; De Rosa, A.; Lanza, V.; Tirino, V.; Laino, L.; Graziano, A.; Desiderio, V.; Laino, G.; Papaccio, G. Human Mandible Bone Defect Repair by the Grafting of Dental Pulp Stem/Progenitor Cells and Collagen Sponge Biocomplexes. Eur. Cell Mater. 2009, 18, 75–83. [Google Scholar] [CrossRef]
- Campos, J.M.; Sousa, A.C.; Caseiro, A.R.; Pedrosa, S.S.; Pinto, P.O.; Branquinho, M.V.; Amorim, I.; Santos, J.D.; Pereira, T.; Mendonça, C.M.; et al. Dental Pulp Stem Cells and Bonelike® for Bone Regeneration in Ovine Model. Regen. Biomater. 2019, 6, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Koga, T.; Minamizato, T.; Kawai, Y.; Miura, K.-I.; Takashi, I.; Nakatani, Y.; Sumita, Y.; Asahina, I. Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size. PLoS ONE 2016, 11, e0147235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, F.; Takeuchi, I.; Agata, H.; Kagami, H.; Shiono, H.; Kiyota, Y.; Honda, H.; Kato, R. Morphology-Based Prediction of Osteogenic Differentiation Potential of Human Mesenchymal Stem Cells. PLoS ONE 2013, 8, e55082. [Google Scholar] [CrossRef] [PubMed]
- Carluccio, M.; Ziberi, S.; Zuccarini, M.; Giuliani, P.; Caciagli, F.; Di Iorio, P.; Ciccarelli, R. Adult Mesenchymal Stem Cells: Is There a Role for Purine Receptors in Their Osteogenic Differentiation? Purinergic Signal. 2020, 16, 263–287. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, G.R.; Cartmell, S. Genes and Proteins Involved in the Regulation of Osteogenesis. Available online: https://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol3/index.html (accessed on 24 June 2021).
- Chau, J.F.L.; Leong, W.F.; Li, B. Signaling Pathways Governing Osteoblast Proliferation, Differentiation and Function. Histol. Histopathol. 2009, 24, 1593–1606. [Google Scholar] [CrossRef]
- Sanpaolo, E.R.; Rotondo, C.; Cici, D.; Corrado, A.; Cantatore, F.P. JAK/STAT Pathway and Molecular Mechanism in Bone Remodeling. Mol. Biol. Rep. 2020, 47, 9087–9096. [Google Scholar] [CrossRef]
- Tajima, K.; Takaishi, H.; Takito, J.; Tohmonda, T.; Yoda, M.; Ota, N.; Kosaki, N.; Matsumoto, M.; Ikegami, H.; Nakamura, T.; et al. Inhibition of STAT1 Accelerates Bone Fracture Healing. J. Orthop. Res. 2010, 28, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, L.; Zhang, H.; Yang, Z.; Qi, L.; Wang, Y.; Ren, S. The Participation of Fibroblast Growth Factor 23 (FGF23) in the Progression of Osteoporosis via JAK/STAT Pathway. J. Cell. Biochem. 2018, 119, 3819–3828. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chung, M.R.; Zhou, S.; Gong, X.; Xu, H.; Hong, Y.; Jin, A.; Huang, X.; Zou, W.; Dai, Q.; et al. STAT3 Controls Osteoclast Differentiation and Bone Homeostasis by Regulating NFATc1 Transcription. J. Biol. Chem. 2019, 294, 15395–15407. [Google Scholar] [CrossRef] [PubMed]
- De Paula, F.J.A.; Rosen, C.J. Bone Remodeling and Energy Metabolism: New Perspectives. Bone Res. 2013, 1, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Alves, R.D.A.M.; Eijken, M.; Swagemakers, S.; Chiba, H.; Titulaer, M.K.; Burgers, P.C.; Luider, T.M.; van Leeuwen, J.P.T.M. Proteomic Analysis of Human Osteoblastic Cells: Relevant Proteins and Functional Categories for Differentiation. J. Proteome Res. 2010, 9, 4688–4700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, C.; Ren, Y.; Barnett, A.S.; Mirando, A.J.; Rouse, D.; Mun, S.H.; Park-Min, K.-H.; McNulty, A.L.; Guilak, F.; Karner, C.M.; et al. Increased Ca2+ Signaling through CaV1.2 Promotes Bone Formation and Prevents Estrogen Deficiency–Induced Bone Loss. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, V.; Bryant, H.U.; Macdougald, O.A. Regulation of Bone Mass by Wnt Signaling. J. Clin. Investig. 2006, 116, 1202–1209. [Google Scholar] [CrossRef]
- Kim, J.H.; Liu, X.; Wang, J.; Chen, X.; Zhang, H.; Kim, S.H.; Cui, J.; Li, R.; Zhang, W.; Kong, Y.; et al. Wnt Signaling in Bone Formation and Its Therapeutic Potential for Bone Diseases. Ther. Adv. Musculoskelet. Dis. 2013, 5, 13–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, M.; Udagawa, N.; Uehara, S.; Maeda, K.; Yamashita, T.; Nakamichi, Y.; Kato, H.; Saito, N.; Minami, Y.; Takahashi, N.; et al. Noncanonical Wnt5a Enhances Wnt/β-Catenin Signaling during Osteoblastogenesis. Sci. Rep. 2014, 4, 4493. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Deng, C.; Li, Y.-P. TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation. Int. J. Biol. Sci. 2012, 8, 272–288. [Google Scholar] [CrossRef] [Green Version]
- Gaddy-Kurten, D.; Coker, J.K.; Abe, E.; Jilka, R.L.; Manolagas, S.C. Inhibin Suppresses and Activin Stimulates Osteoblastogenesis and Osteoclastogenesis in Murine Bone Marrow Cultures. Endocrinology 2002, 143, 74–83. [Google Scholar] [CrossRef]
- Waddington, R.J.; Roberts, H.C.; Sugars, R.V.; Schönherr, E. Differential Roles for Small Leucine-Rich Proteoglycans in Bone Formation. Eur. Cell. Mater. 2003, 6, 12–21, discussion 21. [Google Scholar] [CrossRef]
- Wu, M.; Chen, G.; Li, Y.-P. TGF-β and BMP Signaling in Osteoblast, Skeletal Development, and Bone Formation, Homeostasis and Disease. Bone Res. 2016, 4, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Dyne, K.M.; Valli, M.; Forlino, A.; Mottes, M.; Kresse, H.; Cetta, G. Deficient Expression of the Small Proteoglycan Decorin in a Case of Severe/Lethal Osteogenesis Imperfecta. Am. J. Med. Genet. 1996, 63, 161–166. [Google Scholar] [CrossRef]
- Yamakoshi, Y.; Kinoshita, S.; Izuhara, L.; Karakida, T.; Fukae, M.; Oida, S. DPP and DSP Are Necessary for Maintaining TGF-Β1 Activity in Dentin. J. Dent. Res. 2014, 93, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Yamakoshi, Y.; Simmer, J.P. Structural Features, Processing Mechanism and Gene Splice Variants of Dentin Sialophosphoprotein. Jpn. Dent. Sci. Rev. 2018, 54, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Teti, G.; Salvatore, V.; Ruggeri, A.; Manzoli, L.; Gesi, M.; Orsini, G.; Falconi, M. In Vitro Reparative Dentin: A Biochemical and Morphological Study. Eur. J. Histochem. 2013, 57. [Google Scholar] [CrossRef]
- Verdelis, K.; Ling, Y.; Sreenath, T.; Haruyama, N.; MacDougall, M.; van der Meulen, M.C.H.; Lukashova, L.; Spevak, L.; Kulkarni, A.B.; Boskey, A.L. DSPP Effects on in Vivo Bone Mineralization. Bone 2008, 43, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Jani, P.H.; Gibson, M.P.; Liu, C.; Zhang, H.; Wang, X.; Lu, Y.; Qin, C. Transgenic Expression of Dspp Partially Rescued the Long Bone Defects of Dmp1-Null Mice. Matrix Biol. 2016, 52–54, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, X.; Wang, W.; Liu, J. Insulin Stimulates Osteoblast Proliferation and Differentiation through ERK and PI3K in MG-63 Cells. Cell Biochem. Funct. 2010, 28, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Pramojanee, S.N.; Phimphilai, M.; Chattipakorn, N.; Chattipakorn, S.C. Possible Roles of Insulin Signaling in Osteoblasts. Endocr. Res. 2014, 39, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Xiao, G.; Jiang, D.; Franceschi, R.T. Critical Role of the Extracellular Signal–Regulated Kinase–MAPK Pathway in Osteoblast Differentiation and Skeletal Development. J. Cell. Biol. 2007, 176, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Teng, P.-N.; Jayaraman, T.; Onishi, S.; Li, J.; Bannon, L.; Huang, H.; Close, J.; Sfeir, C. Dentin Matrix Protein 1 (DMP1) Signals via Cell Surface Integrin. J. Biol. Chem. 2011, 286, 29462–29469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Wan, H.; Wang, P.; Liu, M.; Li, G.; Zhang, C.; Sun, Y. Extracellular Matrix Protein DMP1 Suppresses Osteogenic Differentiation of Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2018, 501, 968–973. [Google Scholar] [CrossRef]
- McGonnell, I.M.; Grigoriadis, A.E.; Lam, E.W.-F.; Price, J.S.; Sunters, A. A Specific Role for Phosphoinositide 3-Kinase and AKT in Osteoblasts? Front. Endocrinol. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Tsai, K.-S.; Kao, S.-Y.; Wang, C.-Y.; Wang, Y.-J.; Wang, J.-P.; Hung, S.-C. Type I Collagen Promotes Proliferation and Osteogenesis of Human Mesenchymal Stem Cells via Activation of ERK and Akt Pathways. J. Biomed. Mater. Res. A 2010, 94, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Izu, Y.; Ezura, Y.; Koch, M.; Birk, D.E.; Noda, M. Collagens VI and XII Form Complexes Mediating Osteoblast Interactions during Osteogenesis. Cell Tissue Res. 2016, 364, 623–635. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-Y.; He, S.-T.; Yan, F.-H.; Zhou, P.-F.; Luo, K.; Zhang, Y.-D.; Xiao, Y.; Lin, M.-K. Dental Pulp Stem Cells Express Tendon Markers under Mechanical Loading and Are a Potential Cell Source for Tissue Engineering of Tendon-like Tissue. Int. J. Oral Sci. 2016, 8, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Gong, Y.; Xu, L.; Zhou, M.; Li, J.; Song, J. Bidirectional Regulation of Osteogenic Differentiation by the FOXO Subfamily of Forkhead Transcription Factors in Mammalian MSCs. Cell Prolif. 2019, 52, e12540. [Google Scholar] [CrossRef] [Green Version]
- Ambrogini, E.; Almeida, M.; Martin-Millan, M.; Paik, J.-H.; Depinho, R.A.; Han, L.; Goellner, J.; Weinstein, R.S.; Jilka, R.L.; O’Brien, C.A.; et al. FoxO-Mediated Defense against Oxidative Stress in Osteoblasts Is Indispensable for Skeletal Homeostasis in Mice. Cell Metab. 2010, 11, 136–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of Apoptosis Signalling Pathways by Reactive Oxygen Species. Biochim. Biophys. Acta 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Ma, X.; Su, P.; Yin, C.; Lin, X.; Wang, X.; Gao, Y.; Patil, S.; War, A.R.; Qadir, A.; Tian, Y.; et al. The Roles of FoxO Transcription Factors in Regulation of Bone Cells Function. Int. J. Mol. Sci. 2020, 21, 692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagata, K.; Daitoku, H.; Takahashi, Y.; Namiki, K.; Hisatake, K.; Kako, K.; Mukai, H.; Kasuya, Y.; Fukamizu, A. Arginine Methylation of FOXO Transcription Factors Inhibits Their Phosphorylation by Akt. Mol. Cell. 2008, 32, 221–231. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, T.; Huang, P. Post-Translational Modifications of FOXO Family Proteins (Review). Mol. Med. Rep. 2016, 14, 4931–4941. [Google Scholar] [CrossRef] [PubMed]
- Sergi, C.; Shen, F.; Liu, S.-M. Insulin/IGF-1R, SIRT1, and FOXOs Pathways—An Intriguing Interaction Platform for Bone and Osteosarcoma. Front. Endocrinol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.-L.; Jiang, X.-T.; Ma, F.-F.; Han, J.; Tang, X.-L. Resveratrol Prevents Osteoporosis by Upregulating FoxO1 Transcriptional Activity. Int. J. Mol. Med. 2018, 41, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y. The Role of Interleukin-17 in Bone Metabolism and Inflammatory Skeletal Diseases. BMB Rep. 2013, 46, 479–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brylka, L.J.; Schinke, T. Chemokines in Physiological and Pathological Bone Remodeling. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almalki, S.G.; Agrawal, D.K. Effects of Matrix Metalloproteinases on the Fate of Mesenchymal Stem Cells. Stem Cell Res. Ther. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayami, T.; Kapila, Y.L.; Kapila, S. MMP-1 (Collagenase-1) and MMP-13 (Collagenase-3) Differentially Regulate Markers of Osteoblastic Differentiation in Osteogenic Cells. Matrix Biol. 2008, 27, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Fratzl-Zelman, N.; Glantschnig, H.; Rumpler, M.; Nader, A.; Ellinger, A.; Varga, F. The Expression of Matrix Metalloproteinase-13 and Osteocalcin in Mouse Osteoblasts Is Related to Osteoblastic Differentiation and Is Modulated by 1,25-Dihydroxyvitamin D3 and Thyroid Hormones. Cell Biol. Int. 2003, 27, 459–468. [Google Scholar] [CrossRef]
- Campos, J.L.O.; Doratioto, T.R.; Videira, N.B.; Ribeiro Filho, H.V.; Batista, F.A.H.; Fattori, J.; Indolfo, N.d.C.; Nakahira, M.; Bajgelman, M.C.; Cvoro, A.; et al. Protein Disulfide Isomerase Modulates the Activation of Thyroid Hormone Receptors. Front. Endocrinol. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Bassett, J.H.D.; Williams, G.R. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr. Rev. 2016, 37, 135–187. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, E.; Chitruń, A.; Ożyhar, A. Destabilised Human Transthyretin Shapes the Morphology of Calcium Carbonate Crystals. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 313–324. [Google Scholar] [CrossRef]
- Yin, W.; Li, Z.; Zhang, W. Modulation of Bone and Marrow Niche by Cholesterol. Nutrients 2019, 11, 1394. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, A.V.; Luu, W.; Sharpe, L.J.; Brown, A.J. Cholesterol-Mediated Degradation of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis. J. Biol. Chem. 2016, 291, 8363–8373. [Google Scholar] [CrossRef] [Green Version]
- Laird, E.; Ward, M.; McSorley, E.; Strain, J.J.; Wallace, J. Vitamin D and Bone Health; Potential Mechanisms. Nutrients 2010, 2, 693–724. [Google Scholar] [CrossRef] [Green Version]
- Pepa, G.D.; Brandi, M.L. Microelements for Bone Boost: The Last but Not the Least. Clin. Cases Miner. Bone Metab. 2016, 13, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Sankaramanivel, S.; Molgakar, M.Y.; Prakash, P.A.; Jaabir, M.S.M.; Gurunathan, S. Stem Cells and Metallothionein-A Review. Int. J. Curr. Res. Rev. 2017, 9, 54–61. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lin, H.-H.; Tsai, M.-H.; Lin, S.-P.; Chen, M.-H. Zinc Chloride for Odontogenesis of Dental Pulp Stem Cells via Metallothionein Up-Regulation. J. Endodont. 2011, 37, 211–216. [Google Scholar] [CrossRef]
- Zarjou, A.; Jeney, V.; Arosio, P.; Poli, M.; Zavaczki, E.; Balla, G.; Balla, J. Ferritin Ferroxidase Activity: A Potent Inhibitor of Osteogenesis. J. Bone Miner. Res. 2010, 25, 164–172. [Google Scholar] [CrossRef]
- Hu, J.-J.; Liu, Y.-W.; He, M.-Y.; Jin, D.; Zhao, H.; Yu, B. Proteomic Analysis on Effectors Involved in BMP-2-Induced Osteogenic Differentiation of Beagle Bone Marrow Mesenchymal Stem Cells. Proteome Sci. 2014, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Grygiel-Górniak, B. Peroxisome Proliferator-Activated Receptors and Their Ligands: Nutritional and Clinical Implications—A Review. Nutr. J. 2014, 13, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, J.; Berthou, F.; Trajkovski, M.; Maechler, P.; Foti, M.; Bonnet, N. Bone Regulates Browning and Energy Metabolism through Mature Osteoblast/Osteocyte PPARγ Expression. Diabetes 2017, 66, 2541–2554. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-H.; Jang, W.-G.; Oh, S.-H.; Kim, J.-W.; Lee, M.N.; Song, J.H.; Yang, J.-W.; Zang, Y.; Koh, J.-T. Fenofibrate Induces PPARα and BMP2 Expression to Stimulate Osteoblast Differentiation. Biochem. Biophys. Res. Commun. 2019, 520, 459–465. [Google Scholar] [CrossRef]
- Blair, H.C.; Kalyvioti, E.; Papachristou, N.I.; Tourkova, I.L.; Syggelos, S.A.; Deligianni, D.; Orkoula, M.G.; Kontoyannis, C.G.; Karavia, E.A.; Kypreos, K.E.; et al. Apolipoprotein A-1 Regulates Osteoblast and Lipoblast Precursor Cells in Mice. Lab. Investig. 2016, 96, 763–772. [Google Scholar] [CrossRef]
- Alekos, N.S.; Moorer, M.C.; Riddle, R.C. Dual Effects of Lipid Metabolism on Osteoblast Function. Front. Endocrinol. 2020, 11. [Google Scholar] [CrossRef]
- Van Gastel, N.; Stegen, S.; Eelen, G.; Schoors, S.; Carlier, A.; Daniëls, V.W.; Baryawno, N.; Przybylski, D.; Depypere, M.; Stiers, P.-J.; et al. Lipid Availability Determines Fate of Skeletal Progenitor Cells via SOX9. Nature 2020, 579, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.P.; Li, Z.; Zoch, M.L.; Frey, J.L.; Bowman, C.E.; Kushwaha, P.; Ryan, K.A.; Goh, B.C.; Scafidi, S.; Pickett, J.E.; et al. Fatty Acid Oxidation by the Osteoblast Is Required for Normal Bone Acquisition in a Sex- and Diet-Dependent Manner. JCI Insight 2017, 2. [Google Scholar] [CrossRef]
- Wang, H.; Ma, D.; Zhang, X.; Xu, S.; Ning, T.; Wu, B. Comparative Proteomic Profiling of Human Dental Pulp Stem Cells and Periodontal Ligament Stem Cells under in Vitro Osteogenic Induction. Arch. Oral Biol. 2018, 89, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Trayhurn, P. Thermogenesis. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 5762–5767. ISBN 978-0-12-227055-0. [Google Scholar]
- Lee, W.-C.; Guntur, A.R.; Long, F.; Rosen, C.J. Energy Metabolism of the Osteoblast: Implications for Osteoporosis. Endocr. Rev. 2017, 38, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Shum, L.C.; White, N.S.; Mills, B.N.; Bentley, K.L.d.M.; Eliseev, R.A. Energy Metabolism in Mesenchymal Stem Cells During Osteogenic Differentiation. Stem Cells Dev. 2016, 25, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibba, M.; Soll, D. Aminoacyl-TRNA Synthesis. Annu. Rev. Biochem. 2000, 69, 617–650. [Google Scholar] [CrossRef]
- Klontzas, M.E.; Vernardis, S.I.; Heliotis, M.; Tsiridis, E.; Mantalaris, A. Metabolomics Analysis of the Osteogenic Differentiation of Umbilical Cord Blood Mesenchymal Stem Cells Reveals Differential Sensitivity to Osteogenic Agents. Stem Cells Dev. 2017, 26, 723–733. [Google Scholar] [CrossRef]
- Freist, W.; Verhey, J.F.; Rühlmann, A.; Gauss, D.H.; Arnez, J.G. Histidyl-TRNA Synthetase. Biol. Chem. 1999, 380, 623–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holeček, M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020, 12, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, P.; Shi, A.; Shen, C.; Liu, Y.; Wu, G.; Feng, J. Human Salivary Histatin-1 (Hst1) Promotes Bone Morphogenetic Protein 2 (BMP2)-Induced Osteogenesis and Angiogenesis. FEBS Open Bio 2020, 10, 1503–1515. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. β-Alanyl-l-Histidinato Zinc and Bone Resorption. Gen. Pharmacol. 1995, 26, 1179–1183. [Google Scholar] [CrossRef]
- Chauhan, N.; Singh, Y. L-Histidine Controls the Hydroxyapatite Mineralization with Plate-like Morphology: Effect of Concentration and Media. Mater. Sci. Eng. 2021, 120, 111669. [Google Scholar] [CrossRef]
- Refaey, M.E.; Zhong, Q.; Ding, K.-H.; Shi, X.; Xu, J.; Bollag, W.B.; Hill, W.D.; Chutkan, N.; Robbins, R.; Nadeau, H.; et al. Impact of Dietary Aromatic Amino Acids on Osteoclastic Activity. Calcif. Tissue Int. 2014, 95, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Manoli, I.; Venditti, C.P. Disorders of Branched Chain Amino Acid Metabolism. Transl. Sci. Rare Dis. 2016, 1, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Kunimatsu, R.; Nakajima, K.; Awada, T.; Tsuka, Y.; Abe, T.; Ando, K.; Hiraki, T.; Kimura, A.; Tanimoto, K. Comparative Characterization of Stem Cells from Human Exfoliated Deciduous Teeth, Dental Pulp, and Bone Marrow-Derived Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2018, 501, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Distler, U.; Kuharev, J.; Navarro, P.; Tenzer, S. Label-Free Quantification in Ion Mobility-Enhanced Data-Independent Acquisition Proteomics. Nat. Protoc. 2016, 11, 795–812. [Google Scholar] [CrossRef]
- Sapcariu, S.C.; Kanashova, T.; Weindl, D.; Ghelfi, J.; Dittmar, G.; Hiller, K. Simultaneous Extraction of Proteins and Metabolites from Cells in Culture. MethodsX 2014, 1, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- Nagana Gowda, G.A.; Gowda, Y.N.; Raftery, D. Expanding the Limits of Human Blood Metabolite Quantitation Using NMR Spectroscopy. Anal. Chem. 2015, 87, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Fritsche-Guenther, R.; Bauer, A.; Gloaguen, Y.; Lorenz, M.; Kirwan, J.A. Modified Protocol of Harvesting, Extraction, and Normalization Approaches for Gas Chromatography Mass Spectrometry-Based Metabolomics Analysis of Adherent Cells Grown Under High Fetal Calf Serum Conditions. Metabolites 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, E.I.; Weng, S.; Gollub, J.; Jin, H.; Botstein, D.; Cherry, J.M.; Sherlock, G. GO::TermFinder—Open Source Software for Accessing Gene Ontology Information and Finding Significantly Enriched Gene Ontology Terms Associated with a List of Genes. Bioinformatics 2004, 20, 3710–3715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards More Transparent and Integrative Metabolomics Analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. ClusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Reimand, J.; Isserlin, R.; Voisin, V.; Kucera, M.; Tannus-Lopes, C.; Rostamianfar, A.; Wadi, L.; Meyer, M.; Wong, J.; Xu, C.; et al. Pathway Enrichment Analysis and Visualization of Omics Data Using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 2019, 14, 482–517. [Google Scholar] [CrossRef]
- Goedhart, J.; Luijsterburg, M.S. VolcaNoseR Is a Web App for Creating, Exploring, Labeling and Sharing Volcano Plots. Sci. Rep. 2020, 10, 20560. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
KEGG Identifier | Symbol | Protein Name | UniProt Identifier | Log2 Ratio Diff./Control |
---|---|---|---|---|
Ranked list of relevant enriched pathways | ||||
hsa03320 PPAR signaling pathway (11), p-value 0.00075 | ||||
hsa:123 | PLIN2 | perilipin 2 | Q99541 | 1.50 |
hsa:2181 | ACSL3 | acyl-CoA synthetase long chain family member 3 | O95573 | 2.17 |
hsa:2182 | ACSL4 | acyl-CoA synthetase long chain family member 4 | O60488 | 2.03 |
hsa:2710 | GK | glycerol kinase | P32189 | 1.53 |
hsa:336 | APOA2 | apolipoprotein A2 | P02652 | 5.14 |
hsa:345 | APOC3 | apolipoprotein C3 | P02656 | 2.18 |
hsa:4312 | MMP1 | matrix metallopeptidase 1 | P03956 | 3.09 |
hsa:51 | ACOX1 | acyl-CoA oxidase 1 | Q15067 | 2.41 |
hsa:51129 | ANGPTL4 | angiopoietin like 4 | Q9BY76 | 1.90 |
hsa:81616 | ACSBG2 | acyl-CoA synthetase bubblegum family member 2 | Q5FVE4 | 2.13 |
hsa:8310 | ACOX3 | acyl-CoA oxidase 3, pristanoyl | O15254 | 3.11 |
hsa00100 Steroid biosynthesis (3), p-value 0.00593 | ||||
hsa:1717 | DHCR7 | 7-dehydrocholesterol reductase | Q9UBM7 | 2.77 |
hsa:50814 | NSDHL | NAD(P)-dependent steroid dehydrogenase-like | Q15738 | 2.47 |
hsa:6307 | MSMO1 | methylsterol monooxygenase 1 | Q15800 | 2.38 |
hsa04657 IL-17 signaling pathway (6), p-value 0.01139 | ||||
hsa:2919 | CXCL1 | C-X-C motif chemokine ligand 1 | P09341 | 1.16 |
hsa:3320 | HSP90AA1 | heat shock protein 90 alpha family class A member 1 | P07900 | 1.99 |
hsa:4312 | MMP1 | matrix metallopeptidase 1 | P03956 | 3.09 |
hsa:4314 | MMP3 | matrix metallopeptidase 3 | P08254 | 4.04 |
hsa:6372 | CXCL6 | C-X-C motif chemokine ligand 6 | P80162 | 2.67 |
hsa:6374 | CXCL5 | C-X-C motif chemokine ligand 5 | P42830 | 2.04 |
hsa00071 Fatty acid degradation (9), p-value 0.01192 | ||||
hsa:10449 | ACAA2 | acetyl-CoA acyltransferase 2 | P42765 | 1.06 |
hsa:10455 | ECI2 | enoyl-CoA delta isomerase 2 | O75521 | 3.70 |
hsa:1892 | ECHS1 | enoyl-CoA hydratase, short chain 1 | P30084 | 1.23 |
hsa:2181 | ACSL3 | acyl-CoA synthetase long chain family member 3 | O95573 | 2.17 |
hsa:2182 | ACSL4 | acyl-CoA synthetase long chain family member 4 | O60488 | 2.03 |
hsa:3030 | HADHA | hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex sb. α | P40939 | 1.16 |
hsa:51 | ACOX1 | acyl-CoA oxidase 1 | Q15067 | 2.41 |
hsa:81616 | ACSBG2 | acyl-CoA synthetase bubblegum family member 2 | Q5FVE4 | 2.13 |
hsa:8310 | ACOX3 | acyl-CoA oxidase 3, pristanoyl | O15254 | 3.11 |
hsa04146 Peroxisome (9), p-value 0.01345 | ||||
hsa:10455 | ECI2 | enoyl-CoA delta isomerase 2 | O75521 | 3.70 |
hsa:10901 | DHRS4 | dehydrogenase/reductase 4 | Q9BTZ2 | 1.14 |
hsa:1891 | ECH1 | enoyl-CoA hydratase 1 | Q13011 | 1.45 |
hsa:2181 | ACSL3 | acyl-CoA synthetase long chain family member 3 | O95573 | 2.17 |
hsa:2182 | ACSL4 | acyl-CoA synthetase long chain family member 4 | O60488 | 2.03 |
hsa:3418 | IDH2 | isocitrate dehydrogenase (NADP(+)) 2 | P48735 | 1.21 |
hsa:51 | ACOX1 | acyl-CoA oxidase 1 | Q15067 | 2.41 |
hsa:6648 | SOD2 | superoxide dismutase 2 | P04179 | 3.17 |
hsa:8310 | ACOX3 | acyl-CoA oxidase 3, pristanoyl | O15254 | 3.11 |
hsa04068 FoxO signaling pathway (4), p-value 0.02370 | ||||
hsa:3276 | PRMT1 | protein arginine methyltransferase 1 | Q99873 | 2.31 |
hsa:3630 | INS | insulin | P01308 | 2.64 |
hsa:6648 | SOD2 | superoxide dismutase 2 | P04179 | 3.17 |
hsa:6774 | STAT3 | signal transducer and activator of transcription 3 | P40763 | −1.11 |
hsa00061 Fatty acid biosynthesis (3), p-value 0.02800 | ||||
hsa:2181 | ACSL3 | acyl-CoA synthetase long chain family member 3 | O95573 | 2.17 |
hsa:2182 | ACSL4 | acyl-CoA synthetase long chain family member 4 | O60488 | 2.03 |
hsa:81616 | ACSBG2 | acyl-CoA synthetase bubblegum family member 2 | Q5FVE4 | 2.13 |
hsa05323 Rheumatoid arthritis (8), p-value 0.03344 | ||||
hsa:10312 | TCIRG1 | T cell immune regulator 1, ATPase H+ transporting V0 subunit a3 | Q13488 | 1.25 |
hsa:2919 | CXCL1 | C-X-C motif chemokine ligand 1 | P09341 | 1.16 |
hsa:4312 | MMP1 | matrix metallopeptidase 1 | P03956 | 3.09 |
hsa:4314 | MMP3 | matrix metallopeptidase 3 | P08254 | 4.04 |
hsa:6372 | CXCL6 | C-X-C motif chemokine ligand 6 | P80162 | 2.67 |
hsa:6374 | CXCL5 | C-X-C motif chemokine ligand 5 | P42830 | 2.04 |
hsa:6387 | CXCL12 | C-X-C motif chemokine ligand 12 | P48061 | 2.41 |
hsa:9114 | ATP6V0D1 | ATPase H+ transporting V0 subunit d1 | P61421 | 1.50 |
hsa04918 Thyroid hormone synthesis (5), p-value 0.04442 | ||||
hsa:213 | ALB | albumin | P02768 | 2.45 |
hsa:3309 | HSPA5 | heat shock protein family A (Hsp70) member 5 | P11021 | 1.76 |
hsa:3709 | ITPR2 | inositol 1,4,5-trisphosphate receptor type 2 | Q14571 | 4.92 |
hsa:7276 | TTR | transthyretin | P02766 | 2.51 |
hsa:9601 | PDIA4 | protein disulfide isomerase family A member 4 | P13667 | 1.50 |
hsa04630 JAK-STAT signaling pathway (4), p-value 0.04770 | ||||
hsa:2273 | FHL1 | four and a half LIM domains 1 | Q13642 | −1.65 |
hsa:2670 | GFAP | glial fibrillary acidic protein | P14136 | −1.08 |
hsa:6772 | STAT1 | signal transducer and activator of transcription 1 | P42224 | −1.55 |
hsa:6774 | STAT3 | signal transducer and activator of transcription 3 | P40763 | −1.11 |
hsa04978 Mineral absorption (3), p-value 0.04882 | ||||
hsa:2495 | FTH1 | ferritin heavy chain 1 | P02794 | 1.77 |
hsa:261729 | STEAP2 | STEAP2 metalloreductase | Q8NFT2 | 2.60 |
hsa:4493 | MT1E | metallothionein 1E | P04732 | 6.56 |
List of not enriched pathways with recognized function in osteodifferentiation | ||||
hsa04020 Calcium signaling pathway (9) | ||||
hsa:2767 | GNA11 | G protein subunit alpha 11 | P29992 | −3.15 |
hsa:291 | SLC25A4 | solute carrier family 25 member 4 | P12235 | 1.05 |
hsa:293 | SLC25A6 | solute carrier family 25 member 6 | P12236 | 1.05 |
hsa:3709 | ITPR2 | inositol 1,4,5-trisphosphate receptor type 2 | Q14571 | 4.92 |
hsa:444 | ASPH | aspartate beta-hydroxylase | Q12797 | 1.07 |
hsa:7416 | VDAC1 | voltage dependent anion channel 1 | P21796 | 1.18 |
hsa:7417 | VDAC2 | voltage dependent anion channel 2 | P45880 | 1.14 |
hsa:7419 | VDAC3 | voltage dependent anion channel 3 | Q9Y277 | 1.36 |
hsa:9630 | GNA14 | G protein subunit alpha 14 | O95837 | −1.99 |
hsa04310 Wnt signaling pathway (1) | ||||
hsa:7474 | WNT5A | Wnt family member 5A | P41221 | 1.24 |
hsa04350 TGF-beta signaling pathway (2) | ||||
hsa:1634 | DCN | decorin | P07585 | 1.75 |
hsa:3624 | INHBA | inhibin subunit beta A | P08476 | 5.20 |
hsa04010 MAPK signaling pathway (10) | ||||
hsa:1398 | CRK | CRK proto-oncogene, adaptor protein | P46108 | −1.08 |
hsa:2768 | GNA12 | G protein subunit alpha 12 | Q03113 | −1.73 |
hsa:3481 | IGF2 | insulin like growth factor 2 | P01344 | 1.12 |
hsa:3630 | INS | insulin | P01308 | 2.64 |
hsa:4137 | MAPT | microtubule associated protein tau | P10636 | −3.43 |
hsa:51776 | MAP3K20 | mitogen-activated protein kinase kinase kinase 20 | Q9NYL2 | −1.32 |
hsa:5536 | PPP5C | protein phosphatase 5 catalytic subunit | P53041 | −1.17 |
hsa:781 | CACNA2D1 | calcium voltage-gated channel auxiliary subunit alpha2delta 1 | P54289 | −1.31 |
hsa:929 | CD14 | CD14 molecule | P08571 | 2.42 |
hsa:9448 | MAP4K4 | mitogen-activated protein kinase kinase kinase kinase 4 | O95819 | −3.12 |
hsa04151 PI3K-Akt signaling pathway (9) | ||||
hsa:1277 | COL1A1 | collagen type I alpha 1 chain | P02452 | −1.19 |
hsa:1282 | COL4A1 | collagen type IV alpha 1 chain | P02462 | −1.66 |
hsa:1291 | COL6A1 | collagen type VI alpha 1 chain | P12109 | −1.43 |
hsa:3320 | HSP90AA1 | heat shock protein 90 alpha family class A member 1 | P07900 | 1.99 |
hsa:3481 | IGF2 | insulin like growth factor 2 | P01344 | 1.12 |
hsa:3630 | INS | insulin | P01308 | 2.64 |
hsa:3912 | LAMB1 | laminin subunit beta 1 | P07942 | 1.17 |
hsa:3913 | LAMB2 | laminin subunit beta 2 | P55268 | −1.28 |
hsa:5649 | RELN | reelin | P78509 | −1.17 |
hsa04714 Thermogenesis (11) | ||||
hsa:10632 | ATP5MG | ATP synthase membrane subunit g | O75964 | 2.11 |
hsa:2181 | ACSL3 | acyl-CoA synthetase long chain family member 3 | O95573 | 2.17 |
hsa:2182 | ACSL4 | acyl-CoA synthetase long chain family member 4 | O60488 | 2.03 |
hsa:4719 | NDUFS1 | NADH:ubiquinone oxidoreductase core subunit S1 | P28331 | 1.02 |
hsa:4722 | NDUFS3 | NADH:ubiquinone oxidoreductase core subunit S3 | O75489 | 1.01 |
hsa:4729 | NDUFV2 | NADH:ubiquinone oxidoreductase core subunit V2 | P19404 | 1.10 |
hsa:57492 | ARID1B | AT-rich interaction domain 1B | Q8NFD5 | 1.20 |
hsa:60 | ACTB | actin beta | P60709 | 1.55 |
hsa:6389 | SDHA | succinate dehydrogenase complex flavoprotein subunit A | P31040 | 1.13 |
hsa:6390 | SDHB | succinate dehydrogenase complex iron sulfur subunit B | P21912 | 1.47 |
hsa:91942 | NDUFAF2 | NADH:ubiquinone oxidoreductase complex assembly factor 2 | Q8N183 | 2.97 |
hsa00970 Aminoacyl-tRNA biosynthesis (2) | ||||
hsa:23438 | HARS2 | histidyl-tRNA synthetase 2, mitochondrial | P49590 | 2.07 |
hsa:5859 | QARS1 | glutaminyl-tRNA synthetase 1 | P47897 | 1.04 |
hsa03050 Proteasome (2) | ||||
hsa:143471 | PSMA8 | proteasome 20S subunit alpha 8 | Q8TAA3 | −1.13 |
hsa:5715 | PSMD9 | proteasome 26S subunit, non-ATPase 9 | O00233 | −2.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nováková, S.; Danchenko, M.; Okajčeková, T.; Baranovičová, E.; Kováč, A.; Grendár, M.; Beke, G.; Pálešová, J.; Strnádel, J.; Janíčková, M.; et al. Comparative Proteomic and Metabolomic Analysis of Human Osteoblasts, Differentiated from Dental Pulp Stem Cells, Hinted Crucial Signaling Pathways Promoting Osteogenesis. Int. J. Mol. Sci. 2021, 22, 7908. https://doi.org/10.3390/ijms22157908
Nováková S, Danchenko M, Okajčeková T, Baranovičová E, Kováč A, Grendár M, Beke G, Pálešová J, Strnádel J, Janíčková M, et al. Comparative Proteomic and Metabolomic Analysis of Human Osteoblasts, Differentiated from Dental Pulp Stem Cells, Hinted Crucial Signaling Pathways Promoting Osteogenesis. International Journal of Molecular Sciences. 2021; 22(15):7908. https://doi.org/10.3390/ijms22157908
Chicago/Turabian StyleNováková, Slavomíra, Maksym Danchenko, Terézia Okajčeková, Eva Baranovičová, Andrej Kováč, Marián Grendár, Gábor Beke, Janka Pálešová, Ján Strnádel, Mária Janíčková, and et al. 2021. "Comparative Proteomic and Metabolomic Analysis of Human Osteoblasts, Differentiated from Dental Pulp Stem Cells, Hinted Crucial Signaling Pathways Promoting Osteogenesis" International Journal of Molecular Sciences 22, no. 15: 7908. https://doi.org/10.3390/ijms22157908
APA StyleNováková, S., Danchenko, M., Okajčeková, T., Baranovičová, E., Kováč, A., Grendár, M., Beke, G., Pálešová, J., Strnádel, J., Janíčková, M., Halašová, E., & Škovierová, H. (2021). Comparative Proteomic and Metabolomic Analysis of Human Osteoblasts, Differentiated from Dental Pulp Stem Cells, Hinted Crucial Signaling Pathways Promoting Osteogenesis. International Journal of Molecular Sciences, 22(15), 7908. https://doi.org/10.3390/ijms22157908