Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects
Abstract
:1. Introduction
1.1. Epilepsy: A Spectrum of Disorders
1.2. Temporal Lobe Epilepsy (TLE)
2. MiRNAs: Localization, Functions, and Roles during Neurodegeneration
MiRNAs and Epilepsy
3. The Chaperone System and the Chaperonopathies
3.1. Molecular Chaperones in Epilepsy
3.1.1. sHsp
3.1.2. Hsp60
3.1.3. Hsp70
3.1.4. Hsp90
4. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, B.S.; Lowenstein, D.H. Epilepsy. N. Engl. J. Med. 2003, 349, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. Neurol. 2019, 18, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.S.; van Emde Boas, W.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J. Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46, 470–472. [Google Scholar] [CrossRef]
- Berg, A.T.; Berkovic, S.; Brodie, M.J.; Buchhalter, J.; Cross, H.; Boas, W.V.E.; Engel, J.; French, J.; Glauser, T.A.; Mathern, G.W.; et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010, 51, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshe, S.; Peltola, J.; Perez, E.R.; et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshe, S.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Beghi, E. The Epidemiology of Epilepsy. Neuroepidemiology 2020, 54, 185–191. [Google Scholar] [CrossRef]
- Sheng, J.; Liu, S.; Qin, H.; Li, B.; Zhang, X. Drug-Resistant Epilepsy and Surgery. Curr. Neuropharmacol. 2018, 16, 17–28. [Google Scholar] [CrossRef]
- Kwan, P.; Brodie, M.J. Potential Role of Drug Transporters in the Pathogenesis of Medically Intractable Epilepsy. Epilepsia 2005, 46, 224–235. [Google Scholar] [CrossRef]
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Hauser, W.A.; Mathern, G.; Moshe, S.; Perucca, E.; Wiebe, S.; French, J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2009, 51, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.O.; Huang, Y.Z.; Leonard, A.S. Molecular Signaling Mechanisms Underlying Epileptogenesis. Sci. STKE 2006, 2006, re12. [Google Scholar] [CrossRef] [PubMed]
- Shorvon, S.; Guerrini, R. Acute symptomatic seizures--should we retain the term? Epilepsia 2010, 51, 722–723. [Google Scholar] [CrossRef]
- Hoppe, C.; Elger, C.E.; Helmstaedter, C. Long-term memory impairment in patients with focal epilepsy. Epilepsia 2007, 48, 26–29. [Google Scholar] [CrossRef]
- Rayner, G.; Siveges, B.; Allebone, J.; Pieters, J.; Wilson, S.J. Contribution of autobiographic memory impairment to subjective memory complaints in focal epilepsy. Epilepsy Behav. 2020, 102, 106636. [Google Scholar] [CrossRef] [PubMed]
- Jardim, A.P.; Duarte, J.T.C.; Lancellotti, C.L.P.; Carrete, H., Jr.; Centeno, R.S.; Scorza, C.A.; Cavalheiro, E.A.; Guaranha, M.S.B.; Yacubian, E.M.T. Granule cell dispersion is associated with hippocampal neuronal cell loss, initial precipitating injury, and other clinical features in mesial temporal lobe epilepsy and hippocampal sclerosis. Seizure 2021, in press. [Google Scholar] [CrossRef]
- Mo, J.; Zhao, B.; Adler, S.; Zhang, J.; Shao, X.; Ma, Y.; Sang, L.; Hu, W.; Zhang, C.; Wang, Y.; et al. Quantitative assessment of structural and functional changes in temporal lobe epilepsy with hippocampal sclerosis. Quant. Imaging Med. Surg. 2021, 11, 1782–1795. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, G.N.M.; Kummer, A.; Salgado, J.V.; Portela, E.J.; Sousa-Pereira, S.R.; David, A.; Teixeira, A.L. Psychiatric disorders in temporal lobe epilepsy: An overview from a tertiary service in Brazil. Seizure 2010, 19, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Asadi-Pooya, A.A.; Stewart, G.R.; Abrams, D.J.; Sharan, A. Prevalence and Incidence of Drug-Resistant Mesial Temporal Lobe Epilepsy in the United States. World Neurosurg. 2017, 99, 662–666. [Google Scholar] [CrossRef]
- Wiebe, S.; Blume, W.T.; Girvin, J.P.; Eliasziw, M.; Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group. A Randomized, Controlled Trial of Surgery for Temporal-Lobe Epilepsy. N. Engl. J. Med. 2001, 345, 311–318. [Google Scholar] [CrossRef]
- Wiebe, S.; Jette, N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat. Rev. Neurol. 2012, 8, 669–677. [Google Scholar] [CrossRef]
- de Tisi, J.; Bell, G.S.; Peacock, J.L.; McEvoy, A.W.; Harkness, W.F.; Sander, J.; Duncan, J.S. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: A cohort study. Lancet 2011, 378, 1388–1395. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Wiebe, S.; French, J.; Sperling, M.; Williamson, P.; Spencer, D.; Gumnit, R.; Zahn, C.; Westbrook, E.; Enos, B. Practice Parameter: Temporal Lobe and Localized Neocortical Resections for Epilepsy. Epilepsia 2003, 44, 741–751. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Hutvagner, G.; McLachlan, J.; Pasquinelli, A.E.; Bálint, É.; Tuschl, T.; Zamore, P.D. A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA. Science 2001, 293, 834–838. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Jeon, K.; Lee, J.; Kim, S.; Kim, V.N. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 2002, 21, 4663–4670. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; et al. The nuclear RNase III Drosha initiates microRNA processing. Nat. Cell Biol. 2003, 425, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Bohnsack, M.T.; Czaplinski, K.; Görlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, A.; Robertson, B.; Dalby, A.B.; Marshall, W.S.; Karpilow, J.; Leake, D.; Khvorova, A.; Baskerville, S. Double-stranded regions are essential design components of potent inhibitors of RISC function. RNA 2007, 13, 723–730. [Google Scholar] [CrossRef] [Green Version]
- Lewis, B.P.; Shih, I.-H.; Jones-Rhoades, M.W.; Bartel, D.P.; Burge, C.B. Prediction of Mammalian MicroRNA Targets. Cell 2003, 115, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Jin, Y. MicroRNA in cell differentiation and development. Sci. China Ser. C Life Sci. 2009, 52, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-F.; Mandel, E.M.; Thomson, J.M.; Wu, Q.; E Callis, T.; Hammond, S.M.; Conlon, F.L.; Wang, D.-Z. The Role of MicroRNA-1 and MicroRNA-133 in Skeletal Muscle Proliferation and Differentiation. Nat. Genet. 2005, 38, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Tzur, G.; Israel, A.; Levy, A.; Benjamin, H.; Meiri, E.; Shufaro, Y.; Meir, K.; Khvalevsky, E.; Spector, Y.; Rojansky, N.; et al. Comprehensive Gene and microRNA Expression Profiling Reveals a Role for microRNAs in Human Liver Development. PLoS ONE 2009, 4, e7511. [Google Scholar] [CrossRef] [Green Version]
- Bian, S.; Sun, T. Functions of Noncoding RNAs in Neural Development and Neurological Diseases. Mol. Neurobiol. 2011, 44, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, J. MicroRNA Dysregulation in Epilepsy: From Pathogenetic Involvement to Diagnostic Biomarker and Therapeutic Agent Development. Front. Mol. Neurosci. 2021, 14, 650372. [Google Scholar] [CrossRef] [PubMed]
- Aronica, E.; Fluiter, K.; Iyer, A.; Zurolo, E.; Vreijling, J.; van Vliet, E.; Baayen, J.C.; Gorter, J.A. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur. J. Neurosci. 2010, 31, 1100–1107. [Google Scholar] [CrossRef]
- Omran, A.; Peng, J.; Zhang, C.; Xiang, Q.-L.; Xue, J.; Gan, N.; Kong, H.; Yin, F. Interleukin-1β and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 2012, 53, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Kan, A.A.; van Erp, S.; Derijck, A.A.H.A.; De Wit, M.; Hessel, E.V.S.; O’Duibhir, E.; de Jager, W.; Van Rijen, P.C.; Gosselaar, P.H.; De Graan, P.N.E.; et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell. Mol. Life Sci. 2012, 69, 3127–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKiernan, R.C.; Jiménez-Mateos, E.; Sano, T.; Bray, I.; Stallings, R.L.; Simon, R.P.; Henshall, D.C. Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. Exp. Neurol. 2012, 237, 346–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Omran, A.; Ashhab, M.U.; Kong, H.; Gan, N.; He, F.; Yin, F. Expression Patterns of miR-124, miR-134, miR-132, and miR-21 in an Immature Rat Model and Children with Mesial Temporal Lobe Epilepsy. J. Mol. Neurosci. 2013, 50, 291–297. [Google Scholar] [CrossRef]
- Kaalund, S.S.; Veno, M.; Bak, M.; Møller, R.; Laursen, H.; Madsen, F.; Broholm, H.; Quistorff, B.; Uldall, P.; Tommerup, N.; et al. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-Convergence on axonal guidance. Epilepsia 2014, 55, 2017–2027. [Google Scholar] [CrossRef] [Green Version]
- Zucchini, S.; Marucci, G.; Paradiso, B.; Lanza, G.; Roncon, P.; Cifelli, P.; Ferracin, M.; Giulioni, M.; Michelucci, R.; Rubboli, G.; et al. Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology. PLoS ONE 2014, 9, e105521. [Google Scholar] [CrossRef]
- Alsharafi, W.A.; Xiao, B.; Abuhamed, M.M.; Luo, Z. miRNAs: Biological and clinical determinants in epilepsy. Front. Mol. Neurosci. 2015, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, X.; Chen, L.; Zhang, Y.; Xuefeng, W.; Liu, J.; Jiang, G.; Li, J.; Zhang, X.; Wang, K.; et al. The microRNA miR-124 suppresses seizure activity and regulates CREB1 activity. Expert Rev. Mol. Med. 2016, 18, e4. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Mateos, E.; Engel, T.; Merino-Serrais, P.; McKiernan, R.C.; Tanaka, K.; Mouri, G.; Sano, T.; O’Tuathaigh, C.; Waddington, J.L.; Prenter, S.; et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat. Med. 2012, 18, 1087–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, G.; Henshall, D.C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat. Rev. Neurol. 2020, 16, 506–519. [Google Scholar] [CrossRef]
- Li, M.-M.; Li, X.-M.; Zheng, X.-P.; Yu, J.-T.; Tan, L. MicroRNAs dysregulation in epilepsy. Brain Res. 2014, 1584, 94–104. [Google Scholar] [CrossRef]
- Yenari, M.A.; Fink, S.L.; Sun, G.H.; Chang, L.K.; Patel, M.; Kunis, D.M.; Onley, D.; Ho, D.Y.; Sapolsky, R.M.; Steinbrg, G.K. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann. Neurol. 1998, 44, 584–591. [Google Scholar] [CrossRef]
- Hu, F.; Zhou, J.; Lu, Y.; Guan, L.; Wei, N.-N.; Tang, Y.; Wang, K. Inhibition of Hsp70 Suppresses Neuronal Hyperexcitability and Attenuates Epilepsy by Enhancing A-Type Potassium Current. Cell Rep. 2019, 26, 168–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldbaum, S.; Patel, M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 2010, 88, 23–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, K.; Zhang, C.; Long, L.; Long, X.; Feng, L.; Li, Y.; Xiao, B. Expression profile of microRNAs in rat hippocampus following lithium–pilocarpine-induced status epilepticus. Neurosci. Lett. 2011, 488, 252–257. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, H.; Xie, W.; Meng, F.; Zhang, K.; Jiang, Y.; Zhang, X.; Zhang, J. Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis. Oncotarget 2017, 8, 4136–4146. [Google Scholar] [CrossRef]
- Bidmon, H.-J.; Görg, B.; Palomero-Gallagher, N.; Behne, F.; Lahl, R.; Pannek, H.W.; Speckmann, E.-J.; Zilles, K. Heat Shock Protein-27 Is Upregulated in the Temporal Cortex of Patients with Epilepsy. Epilepsia 2004, 45, 1549–1559. [Google Scholar] [CrossRef]
- Schwob, J.; Fuller, T.; Price, J.; Olney, J. Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: A histological study. Neuroscience 1980, 5, 991–1014. [Google Scholar] [CrossRef]
- Plumier, J.-C.; Armstrong, J.; Landry, J.; Babity, J.; Robertson, H.; Currie, R. Expression of the 27,000 mol. wt heat shock protein following kainic acid-induced status epilepticus in the rat. Neuroscience 1996, 75, 849–856. [Google Scholar] [CrossRef]
- Kato, K.; Katoh-Semba, R.; Takeuchi, I.K.; Ito, H.; Kamei, K. Responses of Heat Shock Proteins hsp27, αB-Crystallin, and hsp70 in Rat Brain After Kainic Acid-Induced Seizure Activity. J. Neurochem. 2002, 73, 229–236. [Google Scholar] [CrossRef]
- Sarnat, H.B.; Flores-Sarnat, L. α-B-Crystallin as a Tissue Marker of Epileptic Foci in Paediatric Resections. Can. J. Neurol. Sci. 2009, 36, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Marino Gammazza, A.; Colangeli, R.; Orban, G.; Pierucci, M.; Di Gennaro, G.; Lo Bello, M.; D’Aniello, A.; Bucchieri, F.; Pomara, C.; Valentino, M.; et al. Hsp60 response in experimental and human temporal lobe epilepsy. Sci. Rep. 2015, 5, 9434. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-Y.; Yang, J.-L.; Chen, L.-J.; Zhang, Y.; Yang, M.-L.; Wu, Y.-Y.; Li, F.-Q.; Tang, M.-H.; Liang, S.-F.; Wei, Y.-Q. Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 2008, 8, 582–603. [Google Scholar] [CrossRef] [PubMed]
- Krueger, A.M.R.; Armstrong, J.N.; Plumier, J.-C.; Robertson, H.A.; Currie, R. Cell specific expression of Hsp70 in neurons and glia of the rat hippocampus after hyperthermia and kainic acid-induced seizure activity. Mol. Brain Res. 1999, 71, 265–278. [Google Scholar] [CrossRef]
- Gass, P.; Prior, P.; Kiessling, M. Correlation between seizure intensity and stress protein expression after limbic epilepsy in the rat brain. Neuroscience 1995, 65, 27–36. [Google Scholar] [CrossRef]
- Gonzalez, M.F.; Shiraishi, K.; Hisanaga, K.; Sagar, S.M.; Mandabach, M.; Sharp, F.R. Heat shock proteins as markers of neural injury. Mol. Brain Res. 1989, 6, 93–100. [Google Scholar] [CrossRef]
- Lowenstein, D.H.; Simon, R.P.; Sharp, F.R. The pattern of 72-kDa heat shock protein-like immunoreactivity in the rat brain following flurothyl-induced status epilepticus. Brain Res. 1990, 531, 173–182. [Google Scholar] [CrossRef]
- Shimosaka, S.; So, Y.T.; Simon, R.P. Distribution of HSP72 induction and neuronal death following limbic seizures. Neurosci. Lett. 1992, 138, 202–206. [Google Scholar] [CrossRef]
- Yang, T.; Hsu, C.; Liao, W.; Chuang, J.S. Heat shock protein 70 expression in epilepsy suggests stress rather than protection. Acta Neuropathol. 2007, 115, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Kandratavicius, L.; Hallak, J.E.; Carlotti, C.G.; Assirati, J.A.; Leite, J.P. Hippocampal expression of heat shock proteins in mesial temporal lobe epilepsy with psychiatric comorbidities and their relation to seizure outcome. Epilepsia 2014, 55, 1834–1843. [Google Scholar] [CrossRef]
- Gualtieri, F.; Nowakowska, M.; Von Rüden, E.-L.; Seiffert, I.; Potschka, H. Epileptogenesis-Associated Alterations of Heat Shock Protein 70 in a Rat Post-Status Epilepticus Model. Neuroscience 2019, 415, 44–58. [Google Scholar] [CrossRef]
- Kamel, M.M.; Mounir, S.M.; Okaily, N.I.; Abdelzaher, M.H.; Hassan, M.H. Possible Role of Heat Shock Protein 70 in Childhood Seizures. Int. J. Epilepsy 2018, 5, 087–091. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Lui, C.-C.; Lee, C.-C.; Chen, S.-D.; Chang, W.-N.; Lu, C.-H.; Chen, N.-C.; Chang, A.Y.W.; Chan, S.H.H.; Chuang, Y.-C. Clinical significance of serological biomarkers and neuropsychological performances in patients with temporal lobe epilepsy. BMC Neurol. 2012, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Oraby, A.M.; Raouf, E.A.; El-Saied, M.M.; Abou-Khadra, M.K.; Helal, S.I.; Hashish, A. Cognitive Function and Heat Shock Protein 70 in Children with Temporal Lobe Epilepsy. J. Child. Neurol. 2017, 32, 41–45. [Google Scholar] [CrossRef]
- Sha, L.; Wang, X.; Li, J.; Shi, X.; Wu, L.; Shen, Y.; Xu, Q. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J. Exp. Med. 2016, 214, 547–563. [Google Scholar] [CrossRef] [Green Version]
- Sha, L.; Chen, T.; Deng, Y.; Du, T.; Ma, K.; Zhu, W.; Shen, Y.; Xu, Q. Hsp90 inhibitor HSP990 in very low dose upregulates EAAT2 and exerts potent antiepileptic activity. Theranostics 2020, 10, 8415–8429. [Google Scholar] [CrossRef] [PubMed]
- Gorter, J.A.; Iyer, A.; White, I.; Colzi, A.; van Vliet, E.A.; Sisodiya, S.; Aronica, E. Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol. Dis. 2014, 62, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-W.; Kim, S.-C.; Hong, S.-H.; Lee, H.-J. Secretable Small RNAs via Outer Membrane Vesicles in Periodontal Pathogens. J. Dent. Res. 2017, 96, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Gourlay, J.; Morokoff, A.; Luwor, R.; Zhu, H.-J.; Kaye, A.H.; Stylli, S. The emergent role of exosomes in glioma. J. Clin. Neurosci. 2017, 35, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Pulliam, L. Exosomes as mediators of neuroinflammation. J. Neuroinflamm. 2014, 11, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, J.-B. The adhesion molecule ICAM-1 and its regulation in relation with the blood–brain barrier. J. Neuroimmunol. 2002, 128, 58–68. [Google Scholar] [CrossRef]
- Schratt, G.M.; Tuebing, F.; Nigh, E.A.; Kane, C.G.; Sabatini, M.E.; Kiebler, M.; Greenberg, M.E. A brain-specific microRNA regulates dendritic spine development. Nat. Cell Biol. 2006, 439, 283–289. [Google Scholar] [CrossRef]
- Christensen, M.; Larsen, L.A.; Kauppinen, S.; Schratt, G. Recombinant adeno-associated virus-mediated microRNA delivery into the postnatal mouse brain reveals a role for miR-134 in dendritogenesis in vivo. Front. Neural Circuits 2010, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Bencúrová, P.; Baloun, J.; Musilova, K.; Radova, L.; Tichy, B.; Pail, M.; Zeman, M.; Brichtova, E.; Hermanova, M.; Pospisilova, S.; et al. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus. Epilepsia 2017, 58, 1782–1793. [Google Scholar] [CrossRef] [Green Version]
- Baumann, V.; Winkler, J. MiRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem. 2014, 6, 1967–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macario, A.J.L.; Conway de Macario, E. Sick chaperones, cellular stress, and disease. N. Engl. J. Med. 2005, 353, 1489–1501. [Google Scholar] [CrossRef] [PubMed]
- Macario, A.J.L.; Conway de Macario, E. Molecular mechanisms in chaperonopathies: Clues to understanding the histopathological abnormalities and developing novel therapies. J. Pathol. 2020, 250, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Kocaturk, N.M.; Gozuacik, D. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Front. Cell Dev. Biol. 2018, 6, 128. [Google Scholar] [CrossRef]
- Tekirdag, K.; Cuervo, A.M. Chaperone-mediated autophagy and endosomal microautophagy: Jointed by a chaperone. J. Biol. Chem. 2018, 293, 5414–5424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, B.; Fares, M.A.; Lund, P.A. Chaperonin 60: A paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol. Rev. 2013, 88, 955–987. [Google Scholar] [CrossRef]
- Macario, A.J.L.; Conway de Macario, E.; Cappello, F. The Chaperonopathies. Diseases with Defective Molecular Chaperones, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Calderwood, S.K.; Gong, J. Heat Shock Proteins Promote Cancer: It’s a Protection Racket. Trends Biochem. Sci. 2016, 41, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, C.J. Protein moonlighting: What is it, and why is it important? Philos. Trans. R. Soc. B Biol. Sci. 2018, 373. [Google Scholar] [CrossRef]
- Saini, J.; Sharma, P.K. Clinical, Prognostic and Therapeutic Significance of Heat Shock Proteins in Cancer. Curr. Drug Targets 2017, 19, 1478–1490. [Google Scholar] [CrossRef]
- Milani, A.; Basirnejad, M.; Bolhassani, A. Heat-shock proteins in diagnosis and treatment: An overview of different biochemical and immunological functions. Immunotherapy 2019, 11, 215–239. [Google Scholar] [CrossRef]
- Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019, 9, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macario, A.J.L. Heat-shock proteins and molecular chaperones: Implications for pathogenesis, diagnostics, and therapeutics. Int. J. Clin. Lab. Res. 1995, 25, 59–70. [Google Scholar] [CrossRef]
- Sasahira, M.; Lowry, T.; Simon, R.P.; Greenberg, D.A. Epileptic tolerance: Prior seizures protect against seizure-induced neuronal injury. Neurosci. Lett. 1995, 185, 95–98. [Google Scholar] [CrossRef]
- Stringer, J.L.; Agarwal, K.S.; Dure, L.S. Is cell death necessary for hippocampal mossy fiber sprouting? Epilepsy Res. 1997, 27, 67–76. [Google Scholar] [CrossRef]
- Henshall, D.C.; Murphy, B. Modulators of neuronal cell death in epilepsy. Curr. Opin. Pharmacol. 2008, 8, 75–81. [Google Scholar] [CrossRef]
- Romi, F.; Helgeland, G.; Gilhus, N.E. Heat-Shock Proteins in Clinical Neurology. Eur. Neurol. 2011, 66, 65–69. [Google Scholar] [CrossRef]
- Franklin, T.; Krueger-Naug, A.M.; Clarke, D.B.; Arrigo, A.-P.; Currie, R.W. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int. J. Hyperth. 2005, 21, 379–392. [Google Scholar] [CrossRef]
- Akbar, M.T.; Lundberg, A.M.; Liu, K.; Vidyadaran, S.; Wells, K.E.; Dolatshad, H.; Wynn, S.; Wells, D.; Latchman, D.S.; de Belleroche, J. The Neuroprotective Effects of Heat Shock Protein 27 Overexpression in Transgenic Animals against Kainate-induced Seizures and Hippocampal Cell Death. J. Biol. Chem. 2003, 278, 19956–19965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, Z.-Q.; Sun, J.-J.; Wang, X.-F.; Li, M.-W.; Liu, X.-Z.; Wang, L.-Y.; Zhu, X.; Xiao, F.; Li, J.-M.; Gong, Y.; et al. HSPBAP1 is found extensively in the anterior temporal neocortex of patients with intractable epilepsy. Synapse 2007, 61, 741–747. [Google Scholar] [CrossRef]
- Jiang, M.; Ma, Y.; Cheng, H.; Ni, X.; Guo, L.; Xie, Y.; Mao, Y. Molecular cloning and characterization of a novel human gene (HSPBAP1) from human fetal brain. Cytogenet. Cell Genet. 2001, 95, 48–51. [Google Scholar] [CrossRef]
- Patel, M. Mitochondrial dysfunction and oxidative stress: Cause and consequence of epileptic seizures. Free Radic. Biol. Med. 2004, 37, 1951–1962. [Google Scholar] [CrossRef] [PubMed]
- Bruce, A.J.; Baudry, M. Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic. Biol. Med. 1995, 18, 993–1002. [Google Scholar] [CrossRef]
- Gluck, M.R.; Jayatilleke, E.; Shaw, S.; Rowan, A.; Haroutunian, V. CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Res. 2000, 39, 63–71. [Google Scholar] [CrossRef]
- Lan, J.; Henshall, D.C.; Simon, R.P.; Chen, J. Formation of the Base Modification 8-Hydroxyl-2–Deoxyguanosine and DNA Fragmentation Following Seizures Induced by Systemic Kainic Acid in the Rat. J. Neurochem. 2001, 74, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Liang, L.-P.; Ii, L.J.R. Enhanced hippocampal F2-isoprostane formation following kainate-induced seizures. J. Neurochem. 2008, 79, 1065–1069. [Google Scholar] [CrossRef] [PubMed]
- Kudin, A.P.; Kudina, T.A.; Seyfried, J.; Vielhaber, S.; Beck, H.; Elger, C.E.; Kunz, W.S. Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur. J. Neurosci. 2002, 15, 1105–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, L.-P.; Patel, M. Seizure-induced changes in mitochondrial redox status. Free Radic. Biol. Med. 2006, 40, 316–322. [Google Scholar] [CrossRef]
- Ostermann, J.; Horwich, A.L.; Neupert, W.; Hartl, F.-U. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nat. Cell Biol. 1989, 341, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cechetto, J.D.; Soltys, B.J.; Gupta, R.S. Localization of Mitochondrial 60-kD Heat Shock Chaperonin Protein (Hsp60) in Pituitary Growth Hormone Secretory Granules and Pancreatic Zymogen Granules. J. Histochem. Cytochem. 2000, 48, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappello, F.; Conway de Macario, E.; Marasà, L.; Zummo, G.; Macario, A.J.L. Hsp60 expression, new locations, functions, and perspectives for cancer diagnosis and therapy. Cancer Biol. Ther. 2008, 7, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Beere, H.M.; Wolf, B.B.; Cain, K.; Mosser, D.D.; Mahboubi, A.; Kuwana, T.; Tailor, P.; Morimoto, R.I.; Cohen, G.M.; Green, D.R. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2000, 2, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Gabai, V.; Yaglom, J.A.; Volloch, V.; Meriin, A.B.; Force, T.; Koutroumanis, M.; Massie, B.; Mosser, D.D.; Sherman, M.Y. dHsp72-Mediated Suppression of c-Jun N-Terminal Kinase Is Implicated in Development of Tolerance to Caspase-Independent Cell Death. Mol. Cell. Biol. 2000, 20, 6826–6836. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.; Srinivasula, S.M.; Balkir, L.; Robbins, P.D.; Alnemri, E.S. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat. Cell Biol. 2000, 2, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G. Heat Shock Protein 70 Neutralizes Apoptosis-Inducing Factor. Sci. World J. 2001, 1, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Ravagnan, L.; Gurbuxani, S.; Susin, S.A.; Maisse, C.; Daugas, E.; Zamzami, N.; Mak, T.; Jäättelä, M.; Penninger, J.; Garrido, C.; et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol. 2001, 3, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, J.; Huh, S.; Seo, J.; Choi, E. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J. 2001, 20, 446–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.-S.; Cho, S.-G.; Kim, C.K.; Hwang, H.S.; Noh, K.T.; Kim, M.-S.; Huh, S.-H.; Kim, M.J.; Ryoo, K.; Kim, E.K.; et al. Heat Shock Protein Hsp72 Is a Negative Regulator of Apoptosis Signal-Regulating Kinase 1. Mol. Cell. Biol. 2002, 22, 7721–7730. [Google Scholar] [CrossRef] [Green Version]
- Stankiewicz, A.R.; Lachapelle, G.; Foo, C.P.Z.; Radicioni, S.M.; Mosser, D.D. Hsp70 Inhibits Heat-induced Apoptosis Upstream of Mitochondria by Preventing Bax Translocation. J. Biol. Chem. 2005, 280, 38729–38739. [Google Scholar] [CrossRef] [Green Version]
- Leak, R.K. Heat shock proteins in neurodegenerative disorders and aging. J. Cell Commun. Signal. 2014, 8, 293–310. [Google Scholar] [CrossRef]
Molecule | State | Possible Role | Reference | |
---|---|---|---|---|
MiRNAs | miR-146a | Upregulated in chronic stages following epileptic status in TLE patients | Enhancer of neuroinflammation | [35,36] |
miR-221, miR-222 | Downregulated in MTLE-HS patients | Enhancer of neuroinflammation | [37] | |
miR-184 | Upregulated in KA-treated mice | Promotion of epileptic tolerance and neuronal survival in response to seizures | [38] | |
miR-21, miR-132 | Upregulated in chronic stages following epileptic status in TLE patients | Enhancer of neuroinflammation | [39] | |
miR-124 | Downregulated in patients with epilepsy and in rats after drug-induced seizures | Antiepileptic effect and seizure suppression following miRNA upregulation | [43] | |
miR-134 | Upregulated in experimental and human epilepsy | Enhancer of epileptic seizures and hyperexcitable state | [44] | |
miRNA-21, miRNA-22, miR-34a, and miR-125a | Decreased in post status epilepticus rat hippocampus and peripheral blood | Possible involvement in molecular mechanisms of neuronal death, inflammation, and epileptogenesis | [50] | |
miR-8071 | Downregulated in exosomes from MTLE-HS patients | Biomarker for disease duration or seizure frequency | [51] | |
Molecular chaperones | Hsp27 | High levels in neocortex of epileptic patients | Marker to localize the brain regions affected by seizures | [52] |
Focal increased levels in rat brain areas affected by seizures | Marker of epileptic regions | [52,53,54,55] | ||
α-B crystallin | Increased levels in specific brain regions from epileptic children | Tissue marker for epileptic foci | [56] | |
Hsp60 | Increased levels in the dentate gyrus and hippocampus proper and plasma from MDA-stimulated rats | Biomarker of hippocampal stress | [57] | |
High levels in plasma from TLE patients | Biomarker of hippocampal stress | [57] | ||
Decreased levels in the hippocampus of epileptic rats | Induction of oxidative stress and neuronal excitability | [58] | ||
Hsp70 | Increased level of heat-inducible Hsp70 in brains damaged by seizures | Neuroprotective | [59] | |
Increased level of Hsp72 in rat epileptic brain regions | Marker of brain injury and/or neuroprotection | [47,60,61,62,63] | ||
High levels at the beginning of epileptogenesis | Indicator for the localization of stressed neurons in the acute phase of epilepsy | [64] | ||
Decreased levels in CA4 and subiculum from TLE patients post-surgery | Marker of seizure activity | [65] | ||
High expression of Hsp72 in the early phase following status epilepticus in a TLE rat model | Enhancer of a hyperexcitable epileptic network | [66] | ||
High levels in KA-induced model of TLE | Enhancer of a hyperexcitable epileptic network through the degradation of the Kv4 channels complexes | [48] | ||
High levels in serum from epileptic patients | Biomarker for epileptic condition | [67,68,69,70] | ||
Hsp90 | Chaperone-induced inhibition | Increase in glutamate transporter-1 (GLT-1) and seizure suppression | [70,71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zummo, L.; Vitale, A.M.; Caruso Bavisotto, C.; De Curtis, M.; Garbelli, R.; Giallonardo, A.T.; Di Bonaventura, C.; Fanella, M.; Conway de Macario, E.; Cappello, F.; et al. Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects. Int. J. Mol. Sci. 2021, 22, 8601. https://doi.org/10.3390/ijms22168601
Zummo L, Vitale AM, Caruso Bavisotto C, De Curtis M, Garbelli R, Giallonardo AT, Di Bonaventura C, Fanella M, Conway de Macario E, Cappello F, et al. Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects. International Journal of Molecular Sciences. 2021; 22(16):8601. https://doi.org/10.3390/ijms22168601
Chicago/Turabian StyleZummo, Leila, Alessandra Maria Vitale, Celeste Caruso Bavisotto, Marco De Curtis, Rita Garbelli, Anna Teresa Giallonardo, Carlo Di Bonaventura, Martina Fanella, Everly Conway de Macario, Francesco Cappello, and et al. 2021. "Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects" International Journal of Molecular Sciences 22, no. 16: 8601. https://doi.org/10.3390/ijms22168601
APA StyleZummo, L., Vitale, A. M., Caruso Bavisotto, C., De Curtis, M., Garbelli, R., Giallonardo, A. T., Di Bonaventura, C., Fanella, M., Conway de Macario, E., Cappello, F., Macario, A. J. L., & Marino Gammazza, A. (2021). Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects. International Journal of Molecular Sciences, 22(16), 8601. https://doi.org/10.3390/ijms22168601