Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses
Abstract
:1. Introduction
2. Sex Differences and the Influence of Sex Hormones in ENT Diseases: Sex Hormone Regulation of Inflammatory Responses and Their Resolution
2.1. Chronic Rhinosinusitis
2.1.1. Effect of Sex Hormones on Inflammatory Response in Chronic Rhinosinusitis
2.1.2. Effect of Sex Hormones on Resolution of Inflammatory Response in Chronic Rhinosinusitis
2.2. Age-Related Hearing Loss
2.2.1. Effect of Sex Hormones on Inflammatory Response in Age-Related Hearing Loss
2.2.2. Effect of Sex Hormones on Resolution of Inflammatory Response in Hearing Loss
2.3. Sjögren’s Syndrome
2.3.1. Effect of Sex Hormones on Inflammatory Response in Sjögren’s Syndrome
2.3.2. Effect of Sex Hormones on Resolution of Inflammatory Response in Sjögren’s Syndrome
2.4. Head and Neck Cancers
2.4.1. Effect of Sex Hormones on Inflammatory Response in Head and Neck Cancers
2.4.2. Effect of Sex Hormones on Resolution of Inflammatory Response in Head and Neck Cancers
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atkinson, J.C.; Fox, P.C. Sjogren’s Syndrome: Oral and Dental Considerations. J. Am. Dent. Assoc. 1993, 124, 74–76, 78–82, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Delaleu, N.; Jonsson, R.; Koller, M.M. Sjogren’s syndrome. Eur. J. Oral. Sci. 2005, 113, 101–113. [Google Scholar] [CrossRef]
- Bhurgri, Y.; Bhurgri, A.; Usman, A.; Pervez, S.; Kayani, N.; Bashir, I.; Ahmed, R.; Hasan, S.H. Epidemiological Review of Head and Neck Cancers in Karachi. Asian Pac. J. Cancer Prev. 2006, 7, 195. [Google Scholar] [PubMed]
- Dietz de Loos, D.A.; Hopkins, C.; Fokkens, W.J. Symptoms in Chronic Rhinosinusitis with and without Nasal Polyps. Laryngoscope 2013, 123, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, P.; Dhingra, S. Diseases of Ear, Nose and Throat-EBook; Elsevier: New Delhi, India, 2017; ISBN 81-312-4939-5. [Google Scholar]
- Michaels, L.; Hellquist, H.B. Ear, Nose and Throat Histopathology; Springer Science & Business Media: Berlin, Germany, 2001; ISBN 3-540-76142-X. [Google Scholar]
- Rao, S.V.K.; Mejia, G.; Roberts-Thomson, K.; Logan, R. Epidemiology of Oral Cancer in Asia in the Past Decade—An Update (2000–2012). Asian Pac. J. Cancer Prev. 2013, 14, 5567–5577. [Google Scholar] [CrossRef] [Green Version]
- Adel, M.; Liao, C.-T.; Lee, L.-Y.; Hsueh, C.; Lin, C.-Y.; Fan, K.-H.; Wang, H.-M.; Ng, S.-H.; Lin, C.-H.; Tsao, C.-K.; et al. Incidence and Outcomes of Patients With Oral Cavity Squamous Cell Carcinoma and Fourth Primary Tumors: A Long-Term Follow-up Study in a Betel Quid Chewing Endemic Area. Medicine 2016, 95, e2950. [Google Scholar] [CrossRef] [PubMed]
- Götz, C.; Drecoll, E.; Straub, M.; Bissinger, O.; Wolff, K.-D.; Kolk, A. Impact of HPV Infection on Oral Squamous Cell Carcinoma. Oncotarget 2016, 7, 76704–76712. [Google Scholar] [CrossRef] [Green Version]
- Hofauer, B.; Chaker, A.; Thürmel, K.; Knopf, A. Manifestations of Autoimmune Disorders in Otorhinolaryngology: Classical Symptoms and Diagnostic Approach. HNO 2017, 65, 695–708. [Google Scholar] [CrossRef]
- Ralli, M.; de Vincentiis, M. Autoimmunity and Otolaryngology Diseases. J. Immunol. Res. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Angeletti, D.; Iannella, G.; Ciofalo, A.; Re, M.; Plateroti, R.; Plateroti, P.; Pasquariello, B.; Manno, A.; Didona, D.; Magliulo, G. Otorhinolaryngological Manifestations in Sjogren Syndrome. Curr. Immunol. Rev. 2018, 14, 24–30. [Google Scholar] [CrossRef]
- Hou, T.; Hsu, H.; Lin, T.; Chang, Y.; Chen, W.; Kuo, P.; Lin, Y.; Chang, C.; Chen, J. Higher Risk of Dementia in Primary Sjogren’s Syndrome. Ann. Clin. Transl. Neurol. 2019, 6, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-H.; Perng, W.-T.; Chiou, J.-Y.; Wang, Y.-H.; Huang, J.-Y.; Wei, J.C.-C. Risk of Dementia among Patients with Sjogren’s Syndrome: A Nationwide Population-Based Cohort Study in Taiwan; Elsevier: Amsterdam, The Netherlands, 2019; Volume 48, pp. 895–899. [Google Scholar]
- ROSEN, S.; Olin, P. Hearing Loss and Coronary Heart Disease. Arch. Otolaryngol. 1965, 82, 236–243. [Google Scholar] [CrossRef]
- Lin, C.; Lee, K.; Yu, S.; Lin, Y. Effect of Comorbid Diabetes and Hypercholesterolemia on the Prognosis of Idiopathic Sudden Sensorineural Hearing Loss. Laryngoscope 2016, 126, 142–149. [Google Scholar] [CrossRef]
- Şereflican, M.; Kurt, Ö.K. Otorhinolaryngologic Manifestations in Obstructive Sleep Apnea. Acta Med. Anatol. 2016, 4, 32–36. [Google Scholar] [CrossRef]
- Lauretta, R.; Sansone, M.; Sansone, A.; Romanelli, F.; Appetecchia, M. Gender in Endocrine Diseases: Role of Sex Gonadal Hormones. Int. J. Endocrinol. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Foo, Y.Z.; Nakagawa, S.; Rhodes, G.; Simmons, L.W. The Effects of Sex Hormones on Immune Function: A Meta-analysis. Biol. Rev. 2017, 92, 551–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roved, J.; Westerdahl, H.; Hasselquist, D. Sex Differences in Immune Responses: Hormonal Effects, Antagonistic Selection, and Evolutionary Consequences. Horm. Behav. 2017, 88, 95–105. [Google Scholar] [CrossRef]
- Takahashi, T.; Iwasaki, A. Sex Differences in Immune Responses. Science 2021, 371, 347–348. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Penhale, W.; Talal, N. Sex Hormones, Immune Responses, and Autoimmune Diseases. Mechanisms of Sex Hormone Action. Am. J. Pathol. 1985, 121, 531. [Google Scholar]
- Taneja, V. Sex Hormones Determine Immune Response. Front. Immunol. 2018, 9, 1931. [Google Scholar] [CrossRef]
- Burrows, H. Biological Actions of Sex Hormones; Cambridge University Press: Cambridge, UK, 2013; ISBN 1-107-62550-5. [Google Scholar]
- Giron-Gonzalez, J.; Moral, F.J.; Elvira, J.; Garcia-Gil, D.; Guerrero, F.; Gavilan, I.; Escobar, L. Consistent Production of a Higher T~ H1: T~ H2 Cytokine Ratio by Stimulated T Cells in Men Compared with Women. Eur. J. Endocrinol. 2000, 143, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, R.; Chen, J.; Grolleau-Julius, A.; Murphy, H.S.; Richardson, B.C.; Yung, R.L. Estrogen Regulates CCR Gene Expression and Function in T Lymphocytes. J. Immunol. 2005, 174, 6023–6029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannenberg, G.; Serhan, C.N. Specialized pro-resolving lipid mediators in the inflammatory response: An update. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2010, 1801, 1260–1273. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Savill, J. Resolution of Inflammation: The Beginning Programs the End. Nat. Immunol. 2005, 6, 1191–1197. [Google Scholar] [CrossRef]
- Zahoor, I.; Giri, S. Specialized Pro-Resolving Lipid Mediators: Emerging Therapeutic Candidates for Multiple Sclerosis. Clin. Rev. Allergy Immunol. 2021, 60, 147–163. [Google Scholar] [CrossRef]
- Chiurchiù, V.; Leuti, A.; Dalli, J.; Jacobsson, A.; Battistini, L.; Maccarrone, M.; Serhan, C.N. Proresolving Lipid Mediators Resolvin D1, Resolvin D2, and Maresin 1 Are Critical in Modulating T Cell Responses. Sci. Transl. Med. 2016, 8, 353ra111. [Google Scholar] [CrossRef] [Green Version]
- Villa, A.; Rizzi, N.; Vegeto, E.; Ciana, P.; Maggi, A. Estrogen Accelerates the Resolution of Inflammation in Macrophagic Cells. Sci. Rep. 2015, 5, 15224. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, B.; Li, Y. Resolution of Cancer-Promoting Inflammation: A New Approach for Anticancer Therapy. Front. Immunol. 2017, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Loiola, R.A.; Wickstead, E.S.; Solito, E.; McArthur, S. Estrogen Promotes Pro-Resolving Microglial Behavior and Phagocytic Cell Clearance through the Actions of Annexin A1. Front. Endocrinol. 2019, 10, 420. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, Y.; Wang, L.; Yao, B.; Chen, T.; Li, Q.; Liu, Z.; Liu, R.; Niu, Y.; Song, T. Resolvin D1 Prevents Epithelial-Mesenchymal Transition and Reduces the Stemness Features of Hepatocellular Carcinoma by Inhibiting Paracrine of Cancer-Associated Fibroblast-Derived COMP. J. Exp. Clin. Cancer Res. 2019, 38, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-S.; Maruyama, C.L.; Easley, J.T.; Trump, B.G.; Baker, O.J. AT-RvD1 Promotes Resolution of Inflammation in NOD/ShiLtJ Mice. Sci. Rep. 2017, 7, 45525. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Novo, C.A.; Watelet, J.B.; Claeys, C.; Van Cauwenberge, P.; Bachert, C. Prostaglandin, Leukotriene, and Lipoxin Balance in Chronic Rhinosinusitis with and without Nasal Polyposis. J. Allergy Clin. Immunol. 2005, 115, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.D. Resolvin D1 and Resolvin E1 Promote the Resolution of Allergic Airway Inflammation via Shared and Distinct Molecular Counter-Regulatory Pathways. Front. Immun. 2012, 3, 390. [Google Scholar] [CrossRef] [Green Version]
- Kovats, S. Estrogen Receptors Regulate Innate Immune Cells and Signaling Pathways. Cell. Immunol. 2015, 294, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lélu, K.; Laffont, S.; Delpy, L.; Paulet, P.-E.; Périnat, T.; Tschanz, S.A.; Pelletier, L.; Engelhardt, B.; Guéry, J.-C. Estrogen Receptor α Signaling in T Lymphocytes Is Required for Estradiol-Mediated Inhibition of Th1 and Th17 Cell Differentiation and Protection against Experimental Autoimmune Encephalomyelitis. J. Immunol. 2011, 187, 2386–2393. [Google Scholar] [CrossRef] [Green Version]
- Phiel, K.L.; Henderson, R.A.; Adelman, S.J.; Elloso, M.M. Differential Estrogen Receptor Gene Expression in Human Peripheral Blood Mononuclear Cell Populations. Immunol. Lett. 2005, 97, 107–113. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, J.; Webb, D.C. Estrogen Stimulates Th2 Cytokine Production and Regulates the Compartmentalisation of Eosinophils during Allergen Challenge in a Mouse Model of Asthma. Int. Arch. Allergy Immunol. 2012, 158, 252–260. [Google Scholar] [CrossRef]
- Tchernitchin, A.N.; Barrera, J.; Arroyo, P.; Mena, M.A.; Vilches, K.; Grunert, G. Degranulatory Action of Estradiol on Blood Eosinophil Leukocytes in Vivo and in Vitro. Agents Actions 1985, 17, 60–66. [Google Scholar] [CrossRef]
- Gordon, J.L.; Peltier, A.; Grummisch, J.A.; Sykes Tottenham, L. Estradiol Fluctuation, Sensitivity to Stress, and Depressive Symptoms in the Menopause Transition: A Pilot Study. Front. Psychol. 2019, 10, 1319. [Google Scholar] [CrossRef]
- Riffo-Vasquez, Y.; Ligeiro de Oliveira, A.; Page, C.; Spina, D.; Tavares-de-Lima, W. Role of Sex Hormones in Allergic Inflammation in Mice. Clin. Exp. Allergy 2007, 37, 459–470. [Google Scholar] [CrossRef]
- Mainguy-Seers, S.; Picotte, K.; Lavoie, J. Efficacy of Tamoxifen for the Treatment of Severe Equine Asthma. J. Vet. Intern. Med. 2018, 32, 1748–1753. [Google Scholar] [CrossRef]
- Dong, Z.; Zhu, J.; Sun, S. The Effect of Tamoxifen on Experimental Nasal Hypersensitivity. Lin Chuang Er Bi Yan Hou Ke Za Zhi= J. Clin. Otorhinolaryngol. 1998, 12, 174–176. [Google Scholar]
- Jones, B.G.; Penkert, R.R.; Surman, S.L.; Sealy, R.E.; Pelletier, S.; Xu, B.; Neale, G.; Maul, R.W.; Gearhart, P.J.; Hurwitz, J. Matters of Life and Death: How Estrogen and Estrogen Receptor Binding to the Immunoglobulin Heavy Chain Locus May Influence Outcomes of Infection, Allergy, and Autoimmune Disease. Cell. Immunol. 2019, 346, 103996. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Zhang, N.; Bachert, C.; Zhang, L. Highlights of Eosinophilic Chronic Rhinosinusitis with Nasal Polyps in Definition, Prognosis, and Advancement; Wiley Online Library: Hoboken, NJ, USA, 2018; Volume 8, pp. 1218–1225. [Google Scholar]
- Machado-Carvalho, L.; Torres, R.; Perez-Gonzalez, M.; Alobid, I.; Mullol, J.; Pujols, L.; Roca-Ferrer, J.; Picado, C. Altered Expression and Signalling of EP2 Receptor in Nasal Polyps of AERD Patients: Role in Inflammation and Remodelling. Rhinology 2016, 54, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Bahçeci, S.; Şimşek, F.; Eren, E.; Aladaǧ, I. Akt and Estrogen Receptor Expression in Nasal Polyps. Indian J. Pathol. Microbiol. 2019, 62, 375. [Google Scholar] [CrossRef] [PubMed]
- Douin-Echinard, V.; Calippe, B.; Billon-Galès, A.; Fontaine, C.; Lenfant, F.; Trémollières, F.; Bayard, F.; Guéry, J.; Arnal, J.; Gourdy, P. Estradiol Administration Controls Eosinophilia through Estrogen Receptor-α Activation during Acute Peritoneal Inflammation. J. Leukoc. Biol. 2011, 90, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, A.; Ozcan, M. Levels of Th1 and Th2 Cytokines in Patients with Nasal Polyps. J. Clin. Exp. Investig. 2018, 9, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Segura, A.; Brieva, J.A.; Rodríguez, C. T Lymphocytes That Infiltrate Nasal Polyps Have a Specialized Phenotype and Produce a Mixed TH1/TH2 Pattern of Cytokines. J. Allergy Clin. Immunol. 1998, 102, 953–960. [Google Scholar] [CrossRef]
- Martin, J.T. Sexual Dimorphism in Immune Function: The Role of Prenatal Exposure to Androgens and Estrogens. Eur. J. Pharmacol. 2000, 405, 251–261. [Google Scholar] [CrossRef]
- Angele, M.K.; Knöferl, M.W.; Ayala, A.; Bland, K.I.; Chaudry, I.H. Testosterone and Estrogen Differently Effect Th1 and Th2 Cytokine Release Following Trauma-Haemorrhage. Cytokine 2001, 16, 22–30. [Google Scholar] [CrossRef]
- Gandhi, V.; Cephus, J.; Chowdhury, N.; Norlander, A.; Peebles, S.; Newcomb, D. Androgen Receptor Signaling Augments Regulatory T Cell Functions to Attenuate Allergic Airway Inflammation. J. Allergy Clin. Immunol. 2021, 147, AB3. [Google Scholar] [CrossRef]
- Walecki, M.; Eisel, F.; Klug, J.; Baal, N.; Paradowska-Dogan, A.; Wahle, E.; Hackstein, H.; Meinhardt, A.; Fijak, M. Androgen Receptor Modulates Foxp3 Expression in CD4+ CD25+ Foxp3+ Regulatory T-Cells. Mol. Biol. Cell 2015, 26, 2845–2857. [Google Scholar] [PubMed]
- Bloodworth, M.H.; Rusznak, M.; Bastarache, L.; Wang, J.; Newcomb, D.C. Estrogen Receptor-Alpha (ESR1) Polymorphism Rs1999805 Associates with Asthma. Ann. Allergy Asthma Immunol. Off. Publ. Am. Coll. Allergy Asthma Immunol. 2019, 122, 208. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, A.; Howard, T.D.; Vonk, J.M.; Ampleford, E.J.; Lange, L.A.; Bleecker, E.R.; Meyers, D.A.; Postma, D.S. Estrogen Receptor 1 Polymorphisms Are Associated with Airway Hyperresponsiveness and Lung Function Decline, Particularly in Female Subjects with Asthma. J. Allergy Clin. Immunol. 2006, 117, 604–611. [Google Scholar] [CrossRef]
- Espersen, J.; Weber, U.; Römer-Franz, A.; Lenarz, T.; Stolle, S.R.; Warnecke, A. Level of Sex Hormones and Their Association with Acetylsalicylic Acid Intolerance and Nasal Polyposis. PLoS ONE 2020, 15, e0243732. [Google Scholar]
- Vickery, T.W.; Armstrong, M.; Kofonow, J.M.; Robertson, C.E.; Kroehl, M.E.; Reisdorph, N.A.; Ramakrishnan, V.R.; Frank, D.N. Altered Tissue Specialized Pro-Resolving Mediators in Chronic Rhinosinusitis. Prostaglandins Leukot. Essent. Fat. Acids 2021, 164, 102218. [Google Scholar] [CrossRef]
- Takano, T.; Fiore, S.; Maddox, J.F.; Brady, H.R.; Petasis, N.A.; Serhan, C.N. Aspirin-Triggered 15-Epi-Lipoxin A4 (LXA4) and LXA4 Stable Analogues Are Potent Inhibitors of Acute Inflammation: Evidence for Anti-Inflammatory Receptors. J. Exp. Med. 1997, 185, 1693–1704. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.; Mohan, M.; Brennan, E.P.; Woodman, O.L.; Godson, C.; Kantharidis, P.; Ritchie, R.H.; Qin, C.X. Therapeutic Potential of Lipoxin A4 in Chronic Inflammation: Focus on Cardiometabolic Disease. ACS Pharmacol. Transl. Sci. 2020, 3, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, L.J.; Boddy, S.C.; Denison, F.C.; Sales, K.J.; Jabbour, H.N. A Role for Lipoxin A4 as an Anti-Inflammatory Mediator in the Human Endometrium. Reproduction 2011, 142, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.H.; Thul, S.; Andonova, T.; Lindquist-Liljeqvist, M.; Jin, H.; Skenteris, N.-T.; Arnardottir, H.; Maegdefessel, L.; Caidahl, K.; Perretti, M. Resolution of Inflammation through the Lipoxin and ALX/FPR2 Receptor Pathway Protects against Abdominal Aortic Aneurysms. JACC Basic Transl. Sci. 2018, 3, 719–727. [Google Scholar] [CrossRef]
- Sanak, M.; Levy, B.; Clish, C.; Chiang, N.; Gronert, K.; Mastalerz, L.; Serhan, C.; Szczeklik, A. Aspirin-Tolerant Asthmatics Generate More Lipoxins than Aspirin-Intolerant Asthmatics. Eur. Respir. J. 2000, 16, 44–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, T.M. Role of Omega-3 Polyunsaturated Fatty Acids in Treatment of Nasal Polyposis. Am. J. Rhinol. Allergy 2020, 34, 43–49. [Google Scholar] [CrossRef]
- Drake-Lee, A.; Lowe, D.; Swanston, A.; Grace, A. Clinical Profile and Recurrence of Nasal Polyps. J. Laryngol. Otol. 1984, 98, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Hulse, K.E.; Stevens, W.W.; Tan, B.K.; Norton, J.; Suh, L.; Kern, R.C.; Conley, D.; Chandra, R.; Peters, A.T.; Grammer, L.C. Sex-Specific Differences in Disease Severity in Patients with Chronic Rhinosinusitis with Nasal Polyps. J. Allergy Clin. Immunol. 2014, 133, AB169. [Google Scholar] [CrossRef]
- Szczuko, M.; Palma, J.; Kikut, J.; Komorniak, N.; Ziętek, M. Changes of Lipoxin Levels during Pregnancy and the Monthly-Cycle, Condition the Normal Course of Pregnancy or Pathology. Inflamm. Res. 2020, 69, 869–881. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, S.; Zhou, T.; Liao, T.; Huang, X.; Xiang, H.; Zhang, Q.; Huang, Y.; Lin, F.; Ye, D. Lipoxin A4 Interferes with Embryo Implantation via Suppression of Epithelial-mesenchymal Transition. Am. J. Reprod. Immunol. 2019, 81, e13107. [Google Scholar] [CrossRef]
- Homans, N.C.; Metselaar, R.M.; Dingemanse, J.G.; van der Schroeff, M.P.; Brocaar, M.P.; Wieringa, M.H.; Baatenburg de Jong, R.J.; Hofman, A.; Goedegebure, A. Prevalence of Age-related Hearing Loss, Including Sex Differences, in Older Adults in a Large Cohort Study. Laryngoscope 2017, 127, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Reed, N.S.; Altan, A.; Deal, J.A.; Yeh, C.; Kravetz, A.D.; Wallhagen, M.; Lin, F.R. Trends in Health Care Costs and Utilization Associated with Untreated Hearing Loss over 10 Years. JAMA Otolaryngol.-Head Neck Surg. 2019, 145, 27–34. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Hearing Health Care for Adults: Priorities for Improving Access and Affordability; National Academies Press: Washington, DC, USA, 2016; ISBN 0-309-43929-9. [Google Scholar]
- Hultcrantz, M.; Simonoska, R.; Stenberg, A.E. Estrogen and Hearing: A Summary of Recent Investigations. Acta Oto-Laryngol. 2006, 126, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Shuster, B.Z.; Depireux, D.A.; Mong, J.A.; Hertzano, R. Sex Differences in Hearing: Probing the Role of Estrogen Signaling. J. Acoust. Soc. Am. 2019, 145, 3656–3663. [Google Scholar] [CrossRef]
- Shock, N.W. Normal Human Aging: The Baltimore Longitudinal Study of Aging; NIH Publication: Washington, DC, USA, 1984. [Google Scholar]
- Lin, F.R.; Ferrucci, L.; Metter, E.J.; An, Y.; Zonderman, A.B.; Resnick, S.M. Hearing Loss and Cognition in the Baltimore Longitudinal Study of Aging. Neuropsychology 2011, 25, 763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curhan, S.G.; Eliassen, A.H.; Eavey, R.D.; Wang, M.; Lin, B.M.; Curhan, G.C. Menopause and Postmenopausal Hormone Therapy and Risk of Hearing Loss. Menopause 2017, 24, 1049. [Google Scholar] [CrossRef]
- Villavisanis, D.F.; Berson, E.R.; Lauer, A.M.; Cosetti, M.K.; Schrode, K.M. Sex-Based Differences in Hearing Loss: Perspectives From Non-Clinical Research to Clinical Outcomess. Otol. Neurotol. 2020, 41, 290–298. [Google Scholar] [CrossRef]
- Kilicdag, E.B.; Yavuz, H.; Bagis, T.; Tarim, E.; Erkan, A.N.; Kazanci, F. Effects of Estrogen Therapy on Hearing in Postmenopausal Women. Am. J. Obstet. Gynecol. 2004, 190, 77–82. [Google Scholar] [CrossRef]
- Tsinti, M.; Kassi, E.; Korkolopoulou, P.; Kapsogeorgou, E.; Moutsatsou, P.; Patsouris, E.; Manoussakis, M.N. Functional Estrogen Receptors Alpha and Beta Are Expressed in Normal Human Salivary Gland Epithelium and Apparently Mediate Immunomodulatory Effects. Eur. J. Oral Sci. 2009, 117, 498–505. [Google Scholar] [CrossRef]
- Williamson, T.T.; Ding, B.; Zhu, X.; Frisina, R.D. Hormone Replacement Therapy Attenuates Hearing Loss: Mechanisms Involving Estrogen and the IGF-1 Pathway. Aging Cell 2019, 18, e12939. [Google Scholar] [CrossRef]
- Morgan, T. Turner Syndrome: Diagnosis and Management. Am. Fam. Physician 2007, 76, 405–410. [Google Scholar] [PubMed]
- Shankar, R.K.; Backeljauw, P.F. Current Best Practice in the Management of Turner Syndrome. Ther. Adv. Endocrinol. Metab. 2018, 9, 33–40. [Google Scholar] [CrossRef] [Green Version]
- McFadden, D. Masculinization of the Mammalian Cochlea. Hear. Res. 2009, 252, 37–48. [Google Scholar] [CrossRef] [Green Version]
- McFadden, D.; Martin, G.K.; Stagner, B.B.; Maloney, M.M. Sex Differences in Distortion-Product and Transient-Evoked Otoacoustic Emissions Compared. J. Acoust. Soc. Am. 2009, 125, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.B.; Zuo, J. The Contribution of Immune Infiltrates to Ototoxicity and Cochlear Hair Cell Loss. Front. Cell. Neurosci. 2017, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Dai, M.; Fridberger, A.; Hassan, A.; DeGagne, J.; Neng, L.; Zhang, F.; He, W.; Ren, T.; Trune, D.; et al. Perivascular-Resident Macrophage-like Melanocytes in the Inner Ear Are Essential for the Integrity of the Intrastrial Fluid-Blood Barrier. Proc. Natl. Acad. Sci. USA 2012, 109, 10388–10393. [Google Scholar] [CrossRef] [Green Version]
- Delhez, A.; Lefebvre, P.; Péqueux, C.; Malgrange, B.; Delacroix, L. Auditory Function and Dysfunction: Estrogen Makes a Difference. Cell. Mol. Life Sci. 2020, 77, 619–635. [Google Scholar] [CrossRef]
- Charitidi, K.; Meltser, I.; Tahera, Y.; Canlon, B. Functional Responses of Estrogen Receptors in the Male and Female Auditory System. Hear. Res. 2009, 252, 71–78. [Google Scholar] [CrossRef]
- Stenberg, A.; Wang, H.; Fish Iii, J.; Schrott-Fischer, A.; Sahlin, L.; Hultcrantz, M. Estrogen Receptors in the Normal Adult and Developing Human Inner Ear and in Turner’s Syndrome. Hear. Res. 2001, 157, 87–92. [Google Scholar] [CrossRef]
- Nakamagoe, M.; Tabuchi, K.; Uemaetomari, I.; Nishimura, B.; Hara, A. Estradiol Protects the Cochlea against Gentamicin Ototoxicity through Inhibition of the JNK Pathway. Hear. Res. 2010, 261, 67–74. [Google Scholar] [CrossRef]
- Thakkar, R.; Wang, R.; Sareddy, G.; Wang, J.; Thiruvaiyaru, D.; Vadlamudi, R.; Zhang, Q.; Brann, D. NLRP3 Inflammasome Activation in the Brain after Global Cerebral Ischemia and Regulation by 17β-Estradiol. Oxidative Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, C.D.; Gilroy, D.W.; Serhan, C.N.; Stockinger, B.; Tak, P.P. The Resolution of Inflammation. Nat. Rev. Immunol. 2013, 13, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.H.; Solito, E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int. J. Mol. Sci. 2018, 19, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinec, F.; Webster, P.; Maricle, A.; Guerrero, D.; Chakravarti, D.; Chakravarti, B.; Gellibolian, R.; Kalinec, G. Glucocorticoid-stimulated, Transcription-independent Release of Annexin A1 by Cochlear Hensen Cells. Br. J. Pharmacol. 2009, 158, 1820–1834. [Google Scholar] [CrossRef] [Green Version]
- Tornabene, S.V.; Sato, K.; Pham, L.; Billings, P.; Keithley, E.M. Immune Cell Recruitment Following Acoustic Trauma. Hear. Res. 2006, 222, 115–124. [Google Scholar] [CrossRef]
- Hirose, K.; Discolo, C.M.; Keasler, J.R.; Ransohoff, R. Mononuclear Phagocytes Migrate into the Murine Cochlea after Acoustic Trauma. J. Comp. Neurol. 2005, 489, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Corminboeuf, O.; Leroy, X. FPR2/ALXR Agonists and the Resolution of Inflammation. J. Med. Chem. 2015, 58, 537–559. [Google Scholar] [CrossRef]
- Cooray, S.N.; Gobbetti, T.; Montero-Melendez, T.; McArthur, S.; Thompson, D.; Clark, A.J.; Flower, R.J.; Perretti, M. Ligand-Specific Conformational Change of the G-Protein–Coupled Receptor ALX/FPR2 Determines Proresolving Functional Responses. Proc. Natl. Acad. Sci. USA 2013, 110, 18232–18237. [Google Scholar] [CrossRef] [Green Version]
- Kain, V.; Jadapalli, J.K.; Tourki, B.; Halade, G.V. Inhibition of FPR2 Impaired Leukocytes Recruitment and Elicited Non-Resolving Inflammation in Acute Heart Failure. Pharmacol. Res. 2019, 146, 104295. [Google Scholar] [CrossRef]
- Wang, C.-S.; Wee, Y.; Yang, C.-H.; Melvin, J.E.; Baker, O.J. ALX/FPR2 Modulates Anti-Inflammatory Responses in Mouse Submandibular Gland. Sci. Rep. 2016, 6, 24244. [Google Scholar] [CrossRef]
- Wang, C.-S.; Baker, O.J. The G-Protein–Coupled Receptor ALX/Fpr2 Regulates Adaptive Immune Responses in Mouse Submandibular Glands. Am. J. Pathol. 2018, 188, 1555–1562. [Google Scholar] [CrossRef] [Green Version]
- Pontarini, E.; Lucchesi, D.; Bombardieri, M. Current Views on the Pathogenesis of Sjögren’s Syndrome. Curr. Opin. Rheumatol. 2018, 30, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Maslinska, M. The Role of Epstein–Barr Virus Infection in Primary Sjögren’s Syndrome. Curr. Opin. Rheumatol. 2019, 31, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Björk, A.; Mofors, J.; Wahren-Herlenius, M. Environmental Factors in the Pathogenesis of Primary Sjögren’s Syndrome. J. Intern. Med. 2020, 287, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Kawakami, A.; Eguchi, K. Mechanisms of Autoantibody Production and the Relationship between Autoantibodies and the Clinical Manifestations in Sjögren’s Syndrome. Transl. Res. 2006, 148, 281–288. [Google Scholar] [CrossRef]
- Elagib, K.E.; Tengner, P.; Levi, M.; Jonsson, R.; Thompson, K.M.; Natvig, J.B.; Wahren-Herlenius, M. Immunoglobulin Variable Genes and Epitope Recognition of Human Monoclonal Anti–Ro 52-kd in Primary Sjögren’s Syndrome. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1999, 42, 2471–2481. [Google Scholar] [CrossRef]
- Voulgarelis, M.; Tzioufas, A.G. Pathogenetic Mechanisms in the Initiation and Perpetuation of Sjögren’s Syndrome. Nat. Rev. Rheumatol. 2010, 6, 529. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.-C.; Chung, C.-R.; Horng, J.-T.; Chen, C.-L. A Bidirectional Study between Rheumatoid Arthritis and Sjogren’s Syndrome: A Population-Based Cohort Study in Taiwan. J. Comput. 2019, 30, 232–241. [Google Scholar]
- Harrold, L.R.; Shan, Y.; Rebello, S.; Kramer, N.; Connolly, S.E.; Alemao, E.; Kelly, S.; Kremer, J.M.; Rosenstein, E.D. Prevalence of Sjögren’s Syndrome Associated with Rheumatoid Arthritis in the USA: An Observational Study from the Corrona Registry. Clin. Rheumatol. 2020, 39, 1899–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pego-Reigosa, J.M.; Restrepo Vélez, J.; Baldini, C.; Rúa-Figueroa Fernández de Larrinoa, Í. Comorbidities (Excluding Lymphoma) in Sjögren’s Syndrome. Rheumatology 2021, 60, 2075–2084. [Google Scholar] [CrossRef]
- Giacomelli, R.; Afeltra, A.; Alunno, A.; Baldini, C.; Bartoloni-Bocci, E.; Berardicurti, O.; Carubbi, F.; Cauli, A.; Cervera, R.; Ciccia, F. International Consensus: What Else Can We Do to Improve Diagnosis and Therapeutic Strategies in Patients Affected by Autoimmune Rheumatic Diseases (Rheumatoid Arthritis, Spondyloarthritides, Systemic Sclerosis, Systemic Lupus Erythematosus, Antiphospholipid Syndrome and Sjogren’s Syndrome)?: The Unmet Needs and the Clinical Grey Zone in Autoimmune Disease Management. Autoimmun. Rev. 2017, 16, 911–924. [Google Scholar]
- Cheng, S.C.H.; Wu, V.W.C.; Kwong, D.L.W.; Ying, M.T.C. Assessment of Post-Radiotherapy Salivary Glands. Br. J. Radiol. 2011, 84, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Ship, J.A.; Hu, K. Radiotherapy-Induced Salivary Dysfunction; Elsevier: Amsterdam, The Netherlands, 2004; Volume 31, pp. 29–36. [Google Scholar]
- Chambers, M.S.; Garden, A.S.; Kies, M.S.; Martin, J.W. Radiation-induced Xerostomia in Patients with Head and Neck Cancer: Pathogenesis, Impact on Quality of Life, and Management. Head Neck J. Sci. Spec. Head Neck 2004, 26, 796–807. [Google Scholar] [CrossRef]
- Grundmann, O.; Mitchell, G.; Limesand, K. Sensitivity of Salivary Glands to Radiation: From Animal Models to Therapies. J. Dent. Res. 2009, 88, 894–903. [Google Scholar] [CrossRef]
- Straub, R.H. The Complex Role of Estrogens in Inflammation. Endocr. Rev. 2007, 28, 521–574. [Google Scholar] [CrossRef] [Green Version]
- Rubtsov, A.V.; Rubtsova, K.; Kappler, J.W.; Marrack, P. Genetic and Hormonal Factors in Female-Biased Autoimmunity. Autoimmun. Rev. 2010, 9, 494–498. [Google Scholar] [CrossRef] [Green Version]
- Legato, M.J.; Bilezikian, J.P. Principles of Gender-Specific Medicine; Gulf Professional Publishing: Houston, TX, USA, 2004; Volume 2, ISBN 0-12-440907-5. [Google Scholar]
- Wilder, R.L. Neuroendocrine-Immune System Interactions and Autoimmunity. Annu. Rev. Immunol. 1995, 13, 307–338. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, B.; Akyuz, S.; Jacobsson, M.E.; Nilsen, L.V.; Theander, E.; Jacobsson, L.H. Perinatal Characteristics and Risk of Developing Primary Sjögren’s Syndrome: A Case-Control Study. J. Rheumatol. 2005, 32, 665–668. [Google Scholar]
- Shelly, S.; Boaz, M.; Orbach, H. Prolactin and Autoimmunity. Autoimmun. Rev. 2012, 11, A465–A470. [Google Scholar] [CrossRef]
- Miller, V.M. Why Are Sex and Gender Important to Basic Physiology and Translational and Individualized Medicine? Am. J. Physiol.-Heart Circ. Physiol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Alunno, A.; Carubbi, F.; Bistoni, O.; Caterbi, S.; Bartoloni, E.; Mirabelli, G.; Cannarile, F.; Cipriani, P.; Giacomelli, R.; Gerli, R. T Regulatory and T Helper 17 Cells in Primary Sjögren’s Syndrome: Facts and Perspectives. Mediat. Inflamm. 2015, 2015. [Google Scholar] [CrossRef]
- Tabarkiewicz, J.; Pogoda, K.; Karczmarczyk, A.; Pozarowski, P.; Giannopoulos, K. The Role of IL-17 and Th17 Lymphocytes in Autoimmune Diseases. Arch. Immunol. Ther. Exp. 2015, 63, 435–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhou, P.; Wei, P.; Cong, X.; Wu, L.; Hua, H. Expression of Interleukin-17 in Primary Sjögren’s Syndrome and the Correlation with Disease Severity: A Systematic Review and Meta-analysis. Scand. J. Immunol. 2018, 87, e12649. [Google Scholar] [CrossRef] [Green Version]
- Matsui, K.; Sano, H. T Helper 17 Cells in Primary Sjögren’s Syndrome. J. Clin. Med. 2017, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Verstappen, G.M.; Corneth, O.B.; Bootsma, H.; Kroese, F.G. Th17 Cells in Primary Sjögren’s Syndrome: Pathogenicity and Plasticity. J. Autoimmun. 2018, 87, 16–25. [Google Scholar] [CrossRef]
- Lin, X.; Rui, K.; Deng, J.; Tian, J.; Wang, X.; Wang, S.; Ko, K.-H.; Jiao, Z.; Chan, V.S.-F.; Lau, C.S. Th17 Cells Play a Critical Role in the Development of Experimental Sjögren’s Syndrome. Ann. Rheum. Dis. 2015, 74, 1302–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laffont, S.; Rouquié, N.; Azar, P.; Seillet, C.; Plumas, J.; Aspord, C.; Guéry, J.-C. X-Chromosome Complement and Estrogen Receptor Signaling Independently Contribute to the Enhanced TLR7-Mediated IFN-α Production of Plasmacytoid Dendritic Cells from Women. J. Immunol. 2014, 193, 5444–5452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, N.; Tamaki, K. Estrogen Enhances Immunoglobulin Production by Human PBMCs. J. Allergy Clin. Immunol. 1999, 103, 282–288. [Google Scholar] [CrossRef]
- Sthoeger, Z.; Chiorazzi, N.; Lahita, R. Regulation of the Immune Response by Sex Hormones. I. In Vitro Effects of Estradiol and Testosterone on Pokeweed Mitogen-Induced Human B Cell Differentiation. J. Immunol. 1988, 141, 91–98. [Google Scholar] [PubMed]
- Cohen-Solal, J.; Jeganathan, V.; Hill, L.; Kawabata, D.; Pinto-Rodriguez, D.; Grimaldi, C.; Diamond, B. Hormonal Regulation of B-Cell Function and Systemic Lupus Erythematosus. Lupus 2008, 17, 528–532. [Google Scholar] [CrossRef]
- Medina, K.L.; Garrett, K.P.; Thompson, L.F.; Rossi, M.I.D.; Payne, K.J.; Kincade, P.W. Identification of Very Early Lymphoid Precursors in Bone Marrow and Their Regulation by Estrogen. Nat. Immunol. 2001, 2, 718–724. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1, Interleukin-1 Receptors and Interleukin-1 Receptor Antagonist. Int. Rev. Immunol. 1998, 16, 457–499. [Google Scholar] [CrossRef]
- Simón, C.; Piquette, G.N.; Frances, A.; Westphal, L.M.; Heinrichs, W.L.; Polan, M.L. Interleukin-1 Type I Receptor Messenger Ribonucleic Acid Expression in Human Endometrium throughout the Menstrual Cycle. Fertil. Steril. 1993, 59, 791–796. [Google Scholar] [CrossRef]
- Mandrup-Poulsen, T.; Nerup, J.; Reimers, J.I.; Pociot, F.; Andersen, H.U.; Karlsen, A.; Bjerre, U.; Bergholdt, R. Cytokines and the Endocrine System. I. The Immunoendocrine Network. Eur. J. Endocrinol. 1995, 133, 660–671. [Google Scholar] [CrossRef]
- Khan, D.; Ansar Ahmed, S. The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases. Front. Immunol. 2016, 6, 635. [Google Scholar] [CrossRef] [Green Version]
- Laffont, S.; Seillet, C.; Guéry, J.-C. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function. Front. Immunol. 2017, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Anipindi, V.C.; Bagri, P.; Roth, K.; Dizzell, S.E.; Nguyen, P.V.; Shaler, C.R.; Chu, D.K.; Jiménez-Saiz, R.; Liang, H.; Swift, S. Estradiol Enhances CD4+ T-Cell Anti-Viral Immunity by Priming Vaginal DCs to Induce Th17 Responses via an IL-1-Dependent Pathway. PLoS Pathog. 2016, 12, e1005589. [Google Scholar]
- Lou, Y.; Hu, M.; Wang, Q.; Yuan, M.; Wang, N.; Le, F.; Li, L.; Huang, S.; Wang, L.; Xu, X. Estradiol Suppresses TLR4-Triggered Apoptosis of Decidual Stromal Cells and Drives an Anti-Inflammatory TH2 Shift by Activating SGK1. Int. J. Biol. Sci. 2017, 13, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beeson, P.B. Age and Sex Associations of 40 Autoimmune Diseases. Am. J. Med. 1994, 96, 457–462. [Google Scholar] [CrossRef]
- Ishimaru, N.; Arakaki, R.; Watanabe, M.; Kobayashi, M.; Miyazaki, K.; Hayashi, Y. Development of Autoimmune Exocrinopathy Resembling Sjögren’s Syndrome in Estrogen-Deficient Mice of Healthy Background. Am. J. Pathol. 2003, 163, 1481–1490. [Google Scholar] [CrossRef]
- Agha-Hosseini, F.; Mirzaii-Dizgah, I.; Mansourian, A.; Khayamzadeh, M. Relationship of Stimulated Saliva 17β-Estradiol and Oral Dryness Feeling in Menopause. Maturitas 2009, 62, 197–199. [Google Scholar] [CrossRef]
- Forsblad-d’Elia, H.; Carlsten, H.; Labrie, F.; Konttinen, Y.T.; Ohlsson, C. Low Serum Levels of Sex Steroids Are Associated with Disease Characteristics in Primary Sjogren’s Syndrome; Supplementation with Dehydroepiandrosterone Restores the Concentrations. J. Clin. Endocrinol. Metab. 2009, 94, 2044–2051. [Google Scholar] [CrossRef] [Green Version]
- Manoussakis, M.; Tsinti, M.; Kapsogeorgou, E.; Moutsopoulos, H. The Salivary Gland Epithelial Cells of Patients with Primary Sjögren’s Syndrome Manifest Significantly Reduced Responsiveness to 17β-Estradiol. J. Autoimmun. 2012, 39, 64–68. [Google Scholar] [CrossRef]
- Mostafa, S.; Seamon, V.; Azzarolo, A.M. Influence of Sex Hormones and Genetic Predisposition in Sjögren’s Syndrome: A New Clue to the Immunopathogenesis of Dry Eye Disease. Exp. Eye Res. 2012, 96, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Tieng, A.; Pepeljugoski, K.P.; Zandamn-Goddard, G.; Peeva, E. Prolactin, Systemic Lupus Erythematosus, and Autoreactive B Cells: Lessons Learnt from Murine Models. Clin. Rev. Allergy Immunol. 2011, 40, 8–15. [Google Scholar] [CrossRef]
- Haga, H.; Rygh, T. The Prevalence of Hyperprolactinemia in Patients with Primary Sjögren’s Syndrome. J. Rheumatol. 1999, 26, 1291–1295. [Google Scholar] [PubMed]
- Abou-Raya, A.; Abou-Raya, S. Inflammation: A Pivotal Link between Autoimmune Diseases and Atherosclerosis. Autoimmun. Rev. 2006, 5, 331–337. [Google Scholar]
- Duan, L.; Rao, X.; Sigdel, K.R. Regulation of Inflammation in Autoimmune Disease. J. Immunol. Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Racke, M.K.; Bonomo, A.; Scott, D.E.; Cannella, B.; Levine, A.; Raine, C.S.; Shevach, E.M.; Röcken, M. Cytokine-Induced Immune Deviation as a Therapy for Inflammatory Autoimmune Disease. J. Exp. Med. 1994, 180, 1961–1966. [Google Scholar] [CrossRef] [Green Version]
- Parashar, K.; Schulte, F.; Hardt, M.; Baker, O.J. Sex-mediated Elevation of the Specialized Pro-resolving Lipid Mediator Levels in a Sjögren’s Syndrome Mouse Model. FASEB J. 2020, 34, 7733–7744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Schwartz, N.; Cohen, D.J.; Boyan, B.D.; Schwartz, Z. Estrogen Signaling and Estrogen Receptors as Prognostic Indicators in Laryngeal Cancer. Steroids 2019, 152, 108498. [Google Scholar] [CrossRef]
- Yoo, H.J.; Sepkovic, D.W.; Bradlow, H.L.; Yu, G.P.; Sirilian, H.V.; Schantz, S.P. Estrogen Metabolism as a Risk Factor for Head and Neck Cancer. Otolaryngol.-Head Neck Surg. 2001, 124, 241–247. [Google Scholar] [CrossRef]
- Hashim, D.; Sartori, S.; Vecchia, C.L.; Serraino, D.; Maso, L.D.; Negri, E.; Smith, E.; Levi, F.; Boccia, S.; Cadoni, G. Hormone Factors Play a Favorable Role in Female Head and Neck Cancer Risk. Cancer Med. 2017, 6, 1998–2007. [Google Scholar] [CrossRef] [Green Version]
- Gallus, S.; Bosetti, C.; Franceschi, S.; Levi, F.; Negri, E.; La Vecchia, C. Laryngeal Cancer in Women: Tobacco, Alcohol, Nutritional, and Hormonal Factors. Cancer Epidemiol. Prev. Biomark. 2003, 12, 514–517. [Google Scholar]
- Langevin, S.M.; Grandis, J.R.; Taioli, E. Female Hormonal and Reproductive Factors and Head and Neck Squamous Cell Carcinoma Risk. Cancer Lett. 2011, 310, 216–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosetti, C.; Negri, E.; Franceschi, S.; Conti, E.; Levi, F.; Tomei, F.; La Vecchia, C. Risk Factors for Oral and Pharyngeal Cancer in Women: A Study from Italy and Switzerland. Br. J. Cancer 2000, 82, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Anderson, W.F.; Lortet-Tieulent, J.; Curado, M.P.; Ferlay, J.; Franceschi, S.; Rosenberg, P.S.; Bray, F.; Gillison, M.L. Worldwide Trends in Incidence Rates for Oral Cavity and Oropharyngeal Cancers. J. Clin. Oncol. 2013, 31, 4550. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, R.G.; Shields, P.G. The Etiology of Alcohol-Induced Breast Cancer. Alcohol 2005, 35, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Castro, G.D.; Castro, J.A. Alcohol Drinking and Mammary Cancer: Pathogenesis and Potential Dietary Preventive Alternatives. World J. Clin. Oncol. 2014, 5, 713. [Google Scholar] [CrossRef]
- Suzuki, R.; Ye, W.; Rylander-Rudqvist, T.; Saji, S.; Colditz, G.A.; Wolk, A. Alcohol and Postmenopausal Breast Cancer Risk Defined by Estrogen and Progesterone Receptor Status: A Prospective Cohort Study. J. Natl. Cancer Inst. 2005, 97, 1601–1608. [Google Scholar] [CrossRef]
- Purohit, V. Can Alcohol Promote Aromatization of Androgens to Estrogens? A Review. Alcohol 2000, 22, 123–127. [Google Scholar] [CrossRef]
- Schuller, D.E.; Abou-Issa, H.; Parrish, R. Estrogen and Progesterone Receptors in Head and Neck Cancer. Arch. Otolaryngol. 1984, 110, 725–727. [Google Scholar] [CrossRef]
- Egloff, A.M.; Rothstein, M.E.; Seethala, R.; Siegfried, J.M.; Grandis, J.R.; Stabile, L.P. Cross-Talk between Estrogen Receptor and Epidermal Growth Factor Receptor in Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2009, 15, 6529–6540. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-L.; Hsu, Y.-K.; Wu, T.-F.; Huang, C.-M.; Liou, L.-Y.; Chiu, Y.-W.; Hsiao, Y.-H.; Luo, F.-J.; Yuan, T.-C. Regulation of Estrogen Receptor a Function in Oral Squamous Cell Carcinoma Cells by FAK Signaling. Endocr. Relat. Cancer 2014, 21, 555–565. [Google Scholar] [CrossRef]
- Harris, S.L.; Kimple, R.J.; Hayes, D.N.; Couch, M.E.; Rosenman, J.G. Never-smokers, Never-drinkers: Unique Clinical Subgroup of Young Patients with Head and Neck Squamous Cell Cancers. Head Neck J. Sci. Spec. Head Neck 2010, 32, 499–503. [Google Scholar] [CrossRef]
- Rothenberger, N.J.; Somasundaram, A.; Stabile, L.P. The Role of the Estrogen Pathway in the Tumor Microenvironment. Int. J. Mol. Sci. 2018, 19, 611. [Google Scholar] [CrossRef] [Green Version]
- Korniluk, A.; Koper, O.; Kemona, H.; Dymicka-Piekarska, V. From Inflammation to Cancer. Ir. J. Med. Sci. 2017, 186, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, T. Inflammation and Cancer: A Failure of Resolution? Trends Pharmacol. Sci. 2007, 28, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Munn, L.L. Cancer and Inflammation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1370. [Google Scholar] [CrossRef] [Green Version]
- Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment. Cancers 2014, 6, 1670–1690. [Google Scholar] [CrossRef] [Green Version]
- Malfitano, A.M.; Pisanti, S.; Napolitano, F.; Di Somma, S.; Martinelli, R.; Portella, G. Tumor-Associated Macrophage Status in Cancer Treatment. Cancers 2020, 12, 1987. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Scheff, N.N.; Bernabé, D.; Salvo, E.; Ono, K.; Liu, C.; Veeramachaneni, R.; Viet, C.T.; Viet, D.T.; Dolan, J.C. Anti-Cancer and Analgesic Effects of Resolvin D2 in Oral Squamous Cell Carcinoma. Neuropharmacology 2018, 139, 182–193. [Google Scholar] [CrossRef]
- Contaldo, M.; Boccellino, M.; Zannini, G.; Romano, A.; Sciarra, A.; Sacco, A.; Settembre, G.; Coppola, M.; Di Carlo, A.; D’Angelo, L. Sex Hormones and Inflammation Role in Oral Cancer Progression: A Molecular and Biological Point of View. J. Oncol. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Ghisletti, S.; Meda, C.; Maggi, A.; Vegeto, E. 17β-Estradiol Inhibits Inflammatory Gene Expression by Controlling NF-ΚB Intracellular Localization. Mol. Cell. Biol. 2005, 25, 2957–2968. [Google Scholar] [CrossRef] [Green Version]
- Reed, J.L.; Dimayuga, F.O.; Davies, L.M.; Keller, J.N.; Bruce-Keller, A.J. Estrogen Increases Proteasome Activity in Murine Microglial Cells. Neurosci. Lett. 2004, 367, 60–65. [Google Scholar] [CrossRef]
- Rettew, J.A.; McCall IV, S.H.; Marriott, I. GPR30/GPER-1 Mediates Rapid Decreases in TLR4 Expression on Murine Macrophages. Mol. Cell. Endocrinol. 2010, 328, 87–92. [Google Scholar] [CrossRef]
- Shatalova, E.G.; Klein-Szanto, A.J.; Devarajan, K.; Cukierman, E.; Clapper, M.L. Estrogen and Cytochrome P450 1B1 Contribute to Both Early-and Late-Stage Head and Neck Carcinogenesis. Cancer Prev. Res. 2011, 4, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.-H.; Franceschi, S.; Lambert, P.F. Estrogen and ERα: Culprits in Cervical Cancer? Trends Endocrinol. Metab. 2010, 21, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Tomasovic-Loncaric, C.; Fucic, A.; Andabak, A.; Andabak, M.; Ceppi, M.; Bruzzone, M.; Vrdoljak, D.; Vucicevic-Boras, V. Androgen Receptor as a Biomarker of Oral Squamous Cell Carcinoma Progression Risk. Anticancer Res. 2019, 39, 4285–4289. [Google Scholar] [CrossRef]
- Batelja-Vuletic, L.; Tomasovic-Loncaric, C.; Ceppi, M.; Bruzzone, M.; Fucic, A.; Krstanac, K.; Boras Vucicevic, V. Comparison of Androgen Receptor, Vegf, Hif-1, Ki67 and Mmp9 Expression between Non-Metastatic and Metastatic Stages in Stromal and Tumor Cells of Oral Squamous Cell Carcinoma. Life 2021, 11, 336. [Google Scholar] [CrossRef]
- Bonomi, M.; Patsias, A.; Posner, M.; Sikora, A. The Role of Inflammation in Head and Neck Cancer. Inflamm. Cancer 2014, 107–127. [Google Scholar]
- Huang, C.-F.; Chen, L.; Li, Y.-C.; Wu, L.; Yu, G.-T.; Zhang, W.-F.; Sun, Z.-J. NLRP3 Inflammasome Activation Promotes Inflammation-Induced Carcinogenesis in Head and Neck Squamous Cell Carcinoma. J. Exp. Clin. Cancer Res. 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Farah, C.S.; Shearston, K.; Nguyen, A.P.; Kujan, O. Oral carcinogenesis and malignant transformation. In Premalignant Conditions of the Oral Cavity; Springer: Berlin/Heidelberg, Germany, 2019; pp. 27–66. [Google Scholar]
- Slama, B. Potentially Malignant Disorders of the Oral Mucosa: Terminology and Classification. Rev. Stomatol. Chir. Maxillo-Faciale 2010, 111, 208–212. [Google Scholar]
- Nasry, W.H.S.; Rodriguez-Lecompte, J.C.; Martin, C.K. Role of COX-2/PGE2 Mediated Inflammation in Oral Squamous Cell Carcinoma. Cancers 2018, 10, 348. [Google Scholar] [CrossRef] [Green Version]
- Chapkin, R.S.; Kim, W.; Lupton, J.R.; McMurray, D.N. Dietary Docosahexaenoic and Eicosapentaenoic Acid: Emerging Mediators of Inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y. Immuno-Resolving Ability of Resolvins, Protectins, and Maresins Derived from Omega-3 Fatty Acids in Metabolic Syndrome. Mol. Nutr. Food Res. 2020, 64, 1900824. [Google Scholar] [CrossRef] [PubMed]
- Prevete, N.; Liotti, F.; Amoresano, A.; Pucci, P.; de Paulis, A.; Melillo, R.M. New Perspectives in Cancer: Modulation of Lipid Metabolism and Inflammation Resolution. Pharmacol. Res. 2018, 128, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.-D.; Chen, W.-C.; Wu, C.-N.; Yang, Y.-H.; Li, S.-H.; Fang, F.-M.; Huang, T.-L.; Wang, Y.-M.; Chiu, T.-J.; Wu, S.-C. Low-Dose Aspirin Use Significantly Improves the Survival of Late-Stage NPC: A Propensity Score-Matched Cohort Study in Taiwan. Cancers 2020, 12, 1551. [Google Scholar] [CrossRef]
- Canny, G.; Lessey, B. The Role of Lipoxin A 4 in Endometrial Biology and Endometriosis. Mucosal Immunol. 2013, 6, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Hallisey, V.M.; Kipper, F.C.; Moore, J.; Gartung, A.; Bielenberg, D.R.; Petrik, J.; Lawler, J.; Panigrahy, D.; Serhan, C.N. Pro-Resolving Lipid Mediators and Anti-Angiogenic Therapy Exhibit Synergistic Anti-Tumor Activity via Resolvin Receptor Activation. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Yang, P.; Chen, S.; Zhong, G.; Wang, Y.; Kong, W.; Wang, Y. ResolvinD1 Attenuates High-Mobility Group Box 1-Induced Epithelial-to-Mesenchymal Transition in Nasopharyngeal Carcinoma Cells. Exp. Biol. Med. 2019, 244, 1608–1618. [Google Scholar] [CrossRef] [Green Version]
- Van Cauwenberge, P.; Watelet, J.-B. Epidemiology of Chronic Rhinosinusitis. Thorax 2000, 55, S20–S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilos, D.L. Chronic Rhinosinusitis: Epidemiology and Medical Management. J. Allergy Clin. Immunol. 2011, 128, 693–707. [Google Scholar] [CrossRef]
- Ryu, G.; Kim, D.W. Th2 Inflammatory Responses in the Development of Nasal Polyps and Chronic Rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Ference, E.H.; Tan, B.K.; Hulse, K.E.; Chandra, R.K.; Smith, S.B.; Kern, R.C.; Conley, D.B.; Smith, S.S. Commentary on Gender Differences in Prevalence, Treatment, and Quality of Life of Patients with Chronic Rhinosinusitis. Allergy Rhinol. 2015, 6, ar-2015. [Google Scholar] [CrossRef] [Green Version]
- Coksuer, H.; Ozcura, F.; Oghan, F.; Haliloglu, B.; Coksuer, C. Effects of Estradiol–Drospirenone on Ocular and Nasal Functions in Postmenopausal Women. Climacteric 2011, 14, 482–487. [Google Scholar] [CrossRef]
- Haeggström, A.; Östberg, B.; Stjerna, P.; Graf, P.; Hallén, H. Nasal Mucosal Swelling and Reactivity during a Menstrual Cycle. ORL 2000, 62, 39–42. [Google Scholar] [CrossRef]
- Busaba, N.Y.; Sin, H.-J.; Salman, S.D. Impact of Gender on Clinical Presentation of Chronic Rhinosinusitis with and without Polyposis. J. Laryngol. Otol. 2008, 122, 1180–1184. [Google Scholar] [CrossRef]
- World Health Organization. Addressing the Rising Prevalence of Hearing Loss; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Bowl, M.R.; Dawson, S.J. Age-Related Hearing Loss. Cold Spring Harb. Perspect. Med. 2019, 9, a033217. [Google Scholar] [CrossRef] [Green Version]
- Dirix, P.; Nuyts, S.; Bogaert, W. Radiation-Induced Xerostomia in Patients with Head and Neck Cancer: A Literature Review. Cancer 2006, 107, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Aziz, K.E.; Montanaro, A.; McCluskey, P.J.; Wakefield, D. Sjogren’s Syndrome: Review with Recent Insights into Immunopathogenesis. Aust. N. Z. J. Med. 1992, 22, 671–678. [Google Scholar] [CrossRef]
- Henkin, R.; Talal, N.; Larson, A.; Mattern, C. Abnormalities of Taste and Smell in Sjogren’s Syndrome. Ann. Intern. Med. 1972, 76, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Galarza-Delgado, D.A.; Gonzalez, M.J.V.; Torres, J.R.; Soto-Galindo, G.A.; Flores, L.M.; González, J.L.T. Early Hearing Loss Detection in Rheumatoid Arthritis and Primary Sjögren Syndrome Using Extended High Frequency Audiometry. Clin. Rheumatol. 2018, 37, 367–373. [Google Scholar] [CrossRef]
- Huerta-Rosario, A.; Molina, R.A.; Ventura-Chilón, J.J.; Terreros, A.; Alva-Diaz, C.; Pacheco-Barrios, K.; Sánchez, R.R.; Quispe, N.M. Chronic Meningitis as an Initial Presentation of Sjögren Syndrome. Rev. Colomb. Reumatol. 2020, 27, 166–170. [Google Scholar]
- Jeong, J.; Lim, H.; Lee, K.; Hong, C.E.; Choi, H.S. High Risk of Sudden Sensorineural Hearing Loss in Several Autoimmune Diseases According to a Population-Based National Sample Cohort Study. Audiol. Neurotol. 2019, 24, 224–230. [Google Scholar] [CrossRef]
- Tumiati, B.; Casoli, P.; Parmeggiani, A. Hearing Loss in the Sjogren Syndrome. Ann. Intern. Med. 1997, 126, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Graf, S.; Kirschstein, L.; Knopf, A.; Mansour, N.; Jeleff-Wölfler, O.; Buchberger, A.; Hofauer, B. Systematic Evaluation of Laryngeal Impairment in Sjögren’s Syndrome. Eur. Arch. Oto-Rhino-Laryngol. 2021, 1–8. [Google Scholar] [CrossRef]
- Heller, A.; Tanner, K.; Roy, N.; Nissen, S.L.; Merrill, R.M.; Miller, K.L.; Houtz, D.R.; Ellerston, J.; Kendall, K. Voice, Speech, and Laryngeal Features of Primary Sjögren’s Syndrome. Ann. Otol. Rhinol. Laryngol. 2014, 123, 778–785. [Google Scholar] [CrossRef]
- Brandt, J.E.; Priori, R.; Valesini, G.; Fairweather, D. Sex Differences in Sjögren’s Syndrome: A Comprehensive Review of Immune Mechanisms. Biol. Sex Differ. 2015, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mathews, P.M.; Hahn, S.; Hessen, M.; Kim, J.; Grader-Beck, T.; Birnbaum, J.; Baer, A.N.; Akpek, E.K. Ocular Complications of Primary Sjögren Syndrome in Men. Am. J. Ophthalmol. 2015, 160, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Tellefsen, S.; Morthen, M.K.; Richards, S.M.; Lieberman, S.M.; Darabad, R.R.; Kam, W.R.; Sullivan, D.A. Sex Effects on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5599–5614. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wei, W.; He, X.; Xie, Y.; Kamal, M.A.; Li, J. Influence of Hormones on Sjögren’s Syndrome. Curr. Pharm. Des. 2018, 24, 4167–4176. [Google Scholar] [CrossRef]
- McCoy, S.S.; Sampene, E.; Baer, A.N. Association of Sjögren’s Syndrome With Reduced Lifetime Sex Hormone Exposure: A Case–Control Study. Arthritis Care Res. 2020, 72, 1315–1322. [Google Scholar] [CrossRef]
- Cui, Y.; Xia, L.; Zhao, Q.; Chen, S.; Gu, Z. Anxiety and Depression in Primary Sjögren’s Syndrome: A Cross-Sectional Study. BMC Psychiatry 2018, 18, 131. [Google Scholar] [CrossRef] [Green Version]
- Koçer, B.; Tezcan, M.E.; Batur, H.Z.; Haznedaroğlu, Ş.; Göker, B.; İrkeç, C.; Çetinkaya, R. Cognition, Depression, Fatigue, and Quality of Life in Primary Sjögren’s Syndrome: Correlations. Brain Behav. 2016, 6, e00586. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, Z.; Liang, X.; Liu, J.; Xuan, L.; Wang, J.; Zhang, G.; Hao, W. Health-Related Quality of Life and Psychological Status of Women with Primary Sjögren’s Syndrome: A Cross-Sectional Study of 304 Chinese Patients. Medicine 2017, 96, e9208. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.T.; Valim, V.; Fisher, B.A. Health-Related Quality of Life and Costs in Sjögren’s Syndrome. Rheumatology 2021, 60, 2588–2601. [Google Scholar] [CrossRef]
- Hammitt, K.M.; Naegeli, A.N.; van den Broek, R.W.; Birt, J.A. Patient Burden of Sjögren’s: A Comprehensive Literature Review Revealing the Range and Heterogeneity of Measures Used in Assessments of Severity. RMD Open 2017, 3, e000443. [Google Scholar] [CrossRef] [Green Version]
- Fox, R.I.; Howell, F.V.; Bone, R.C.; Michelson, P.E. Primary Sjogren Syndrome: Clinical and Immunopathologic Features; Elsevier: Amsterdam, The Netherlands, 1984; Volume 14, pp. 77–105. [Google Scholar]
- Azuma, M.; Motegi, K.; Aota, K.; Hayashi, Y.; Sato, M. Role of Cytokines in the Destruction of Acinar Structure in Sjogren’s Syndrome Salivary Glands. Lab. Investig. 1997, 77, 269–280. [Google Scholar]
- Baker, O.J. Proinflammatory Cytokines Tumor Necrosis Factor-Alpha and Interferon-Gamma Alter Tight Junction Structure and Function in the Rat Parotid Gland Par-C10 Cell Line. Am. J. Physiol. Cell Physiol. 2008, 295, 1191–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roescher, N.; Tak, P.P.; Illei, G.G. Cytokines in Sjögren’s Syndrome. Oral Dis. 2009, 15, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, R.; Vogelsang, P.; Volchenkov, R.; Espinosa, A.; Wahren-Herlenius, M.; Appel, S. The Complexity of Sjögren’s Syndrome: Novel Aspects on Pathogenesis. Immunol. Lett. 2011, 141, 1–9. [Google Scholar] [CrossRef]
- Ambrosi, A.; Wahren-Herlenius, M. Update on the Immunobiology of Sjögren’s Syndrome. Curr. Opin. Rheumatol. 2015, 27, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.P.; Daniels, T.E.; Talal, N.; Grey, H.M. Beta2 Microglobulin and Lymphocytic Infiltration in Sjögren’s Syndrome. N. Engl. J. Med. 1975, 293, 1228–1231. [Google Scholar] [CrossRef]
- Nikolov, N.P.; Illei, G.G. Pathogenesis of Sjögren’s Syndrome. Curr. Opin. Rheumatol. 2009, 21, 465. [Google Scholar] [CrossRef]
- Recchiuti, A.; Isopi, E.; Romano, M.; Mattoscio, D. Roles of Specialized Pro-Resolving Lipid Mediators in Autophagy and Inflammation. IJMS 2020, 21, 6637. [Google Scholar] [CrossRef]
- Dean, S.; Wang, C.-S.; Nam, K.; Maruyama, C.L.; Trump, B.G.; Baker, O.J. Aspirin Triggered Resolvin D1 Reduces Inflammation and Restores Saliva Secretion in a Sjögren’s Syndrome Mouse Model. Rheumatology 2019, 58, 1285–1292. [Google Scholar] [CrossRef]
- Easley, J.T.; Maruyama, C.L.; Wang, C.; Baker, O.J. AT-RvD1 Combined with DEX Is Highly Effective in Treating TNF-α-mediated Disruption of the Salivary Gland Epithelium. Physiol. Rep. 2016, 4, e12990. [Google Scholar] [CrossRef] [Green Version]
- Sommakia, S.; Baker, O.J. Regulation of Inflammation by Lipid Mediators in Oral Diseases. Oral Dis. 2017, 23, 576–597. [Google Scholar] [CrossRef] [PubMed]
- Odusanwo, O.; Chinthamani, S.; McCall, A.; Duffey, M.E.; Baker, O.J. Resolvin D1 Prevents TNF-α-Mediated Disruption of Salivary Epithelial Formation. Am. J. Physiol.-Cell Physiol. 2012, 302, C1331–C1345. [Google Scholar] [CrossRef] [Green Version]
- Cook, M.B.; McGlynn, K.A.; Devesa, S.S.; Freedman, N.D.; Anderson, W.F. Sex Disparities in Cancer Mortality and Survival. Cancer Epidemiol. Prev. Biomark. 2011, 20, 1629–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Shao, X.; Wang, X.; Liu, L.; Liang, H. Sex Disparities in Cancer. Cancer Lett. 2019, 466, 35–38. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Chang, J.T.-C.; Liao, C.-T.; Wang, H.-M.; Yen, T.-C.; Chiu, C.-C.; Lu, Y.-C.; Li, H.-F.; Cheng, A.-J. Head and Neck Cancer in the Betel Quid Chewing Area: Recent Advances in Molecular Carcinogenesis. Cancer Sci. 2008, 99, 1507–1514. [Google Scholar] [CrossRef]
- Vigneswaran, N.; Williams, M.D. Epidemiologic Trends in Head and Neck Cancer and Aids in Diagnosis. Oral Maxillofac. Surg. Clin. N. Am. 2014, 26, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Simard, E.P.; Torre, L.A.; Jemal, A. International Trends in Head and Neck Cancer Incidence Rates: Differences by Country, Sex and Anatomic Site. Oral Oncol. 2014, 50, 387–403. [Google Scholar] [CrossRef] [PubMed]
- Taberna, M.; Inglehart, R.C.; Pickard, R.K.L.; Fakhry, C.; Agrawal, A.; Katz, M.L.; Gillison, M.L. Significant Changes in Sexual Behavior after a Diagnosis of Human Papillomavirus-Positive and Human Papillomavirus-Negative Oral Cancer. Cancer 2017, 123, 1156–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ENT Diseases | Sex Bias | Level of Estrogens | Sex Hormone Receptors | Cells Involved in the Pathogenesis | Cytokines Involved in the Pathogenesis | Involvement of Resolution of Inflammation Factors | References |
---|---|---|---|---|---|---|---|
Chronic rhinosinusitis with nasal polyps | 1. Male 2. Female with lower estrogens | Low estrogens | High ERα | 1. Th2, eosinophile 2. Epithelial cells 3. Macrophages | IL-4, IL-5, IL-13, IL-25, IL-33 | 1. Intake of omega-3 fatty acid show delaying incidence of recurrence 2. Alteration of RvD2, LXA4, RvD1, LTD4, LTE4, PGD2, and 11β PGF2α profile | [38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71] |
Chronic rhinosinusitis without nasal polyps | Female | N/A | N/A | 1. Th1 cells 2. Neutrophil 3. DC | IFN, IL-6, IL-8, IL-17, TGFβ | 1. Alteration of PGD2 and 2. TXA2 profile | |
Age-related hearing loss | 1. Male 2. Females with Turner’s syndrome | Low estrogens | ERα/ERβ | 1. Cochlear Macrophages 2. Cochlear hair cells 3. Hensen cells | TNF-α, IL-1β, IL-6, IL-8 | ANXA1 | [72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104] |
Sjögren’s syndrome | Female | Low estrogens (during menopause) | High ERβ | 1. Lymphocytes (T and B cells) 2. Th17 cells | TNF-α, IL-1β, IL-6, IL-17, IFNγ | RvD1 | [105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155] |
Head and Neck Cancers | Male | Low estrogens | High ERα/ERβ/AR | 1. Macrophages 2. Stromal cells | TNF-α, IL-6, CXCL10, COX-2, IL-1a, IL-1b, IL-4, IL-8, and TGFb | 1.LXA4 2. Resolvins (RvD2, RvD4 and RvD5) | [156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.-D.; Chiu, T.-J.; Chen, W.-C.; Wang, C.-S. Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses. Int. J. Mol. Sci. 2021, 22, 8768. https://doi.org/10.3390/ijms22168768
Luo S-D, Chiu T-J, Chen W-C, Wang C-S. Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses. International Journal of Molecular Sciences. 2021; 22(16):8768. https://doi.org/10.3390/ijms22168768
Chicago/Turabian StyleLuo, Sheng-Dean, Tai-Jan Chiu, Wei-Chih Chen, and Ching-Shuen Wang. 2021. "Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses" International Journal of Molecular Sciences 22, no. 16: 8768. https://doi.org/10.3390/ijms22168768
APA StyleLuo, S. -D., Chiu, T. -J., Chen, W. -C., & Wang, C. -S. (2021). Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses. International Journal of Molecular Sciences, 22(16), 8768. https://doi.org/10.3390/ijms22168768