Deciphering Differential Life Stage Radioinduced Reproductive Decline in Caenorhabditis elegans through Lipid Analysis
Abstract
:1. Introduction
- -
- Embryogenesis (in utero to L1 stage) during which gonad precursors cells are formed;
- -
- Early development (until late L3 stage) until the beginning of meiosis during which the gonad cells (somatic and germ cells) divide rapidly;
- -
- Gametogenesis (late L3 stage–Young adult (YA)) during which germ cells begin and achieve meiotic divisions.
2. Results
2.1. Chronic Radio-Induced Reprotoxic Effects Are Life-Stage Dependent
2.2. Lipid Classes Are Differentially Modulated According to the Irradiated Life Stage
2.3. FAMEs Analysis Shows the Radiation Induced Modulation of Specific Fatty Acids
2.4. In Situ Changes of Lipid Morphology
3. Discussion
3.1. Modulation of Lipid Content under Stress: Two Opposite Mechanisms Controlled by the Germline and/or the Soma?
3.2. Facing Radiation «All Fat Are Not Equal»: Quality over Quantity
3.3. Reproduction Decrease: Deciphering Mechanisms through Lipid Analysis
4. Materials and Methods
4.1. Strain and Maintenance
4.2. Exposure to Gamma-Radiation and Dosimetry
4.3. Life-Stage Gamma Irradiation Experimental Design
- -
- From in utero eggs to 16h post-ovulation, covering embryogenesis (until mid-L1 stage), i.e., SC1;
- -
- From in utero eggs to 45h post-ovulation, covering early development until the beginning of meiosis (late L3 stage), i.e., SC2;
- -
- From in utero eggs to 65h post-ovulation, covering full development (until L4-YA stage), i.e., SC3.
4.4. Analysis of Indirect Effects of Gamma Radiation on Bacteria
4.5. Assessment of Reprotoxic Effects
4.5.1. Reproduction Assay
4.5.2. Spermatids Quantification
4.6. Assessment of Effects on Lipid Metabolism
4.6.1. Total Lipids Extraction
4.6.2. Analysis of Neutral and Polar Lipids
4.6.3. Fatty Acid Methyl Esters (FAMEs) Analysis
4.6.4. Protein Extraction and Quantification
4.6.5. TEM Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Garnier-Laplace, J.; Geras’kin, S.; Della-Vedova, C.; Beaugelin-Seiller, K.; Hinton, T.G.; Real, A.; Oudalova, A. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J. Environ. Radioact. 2013, 121, 12–21. [Google Scholar] [CrossRef]
- Garnier-Laplace, J.; Della-Vedova, C.; Andersson, P.; Copplestone, D.; Cailes, C.; Beresford, N.A.; Howard, B.J.; Howe, P.; Whitehouse, P. A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances. J. Radiol. Prot. 2010, 30, 215–233. [Google Scholar] [CrossRef]
- Dubois, C.; Pophillat, M.; Audebert, S.; Fourquet, P.; Lecomte, C.; Dubourg, N.; Galas, S.; Camoin, L.; Frelon, S. Differential modification of the C. elegans proteome in response to acute and chronic gamma radiation: Link with reproduction decline. Sci. Total Environ. 2019, 676, 767–781. [Google Scholar] [CrossRef] [Green Version]
- Dubois, C.; Lecomte, C.; Ruys, S.P.d.; Kuzmic, M.; Della-Vedova, C.; Dubourg, N.; Galas, S.; Frelon, S. Precoce and opposite response of proteasome activity after acute or chronic exposure of C. elegans to γ-radiation. Sci. Rep. 2018, 8, 11349. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.; Bourrachot, S.; Cavalie, I.; Plaire, D.; Dutilleul, M.; Gilbin, R.; Adam-Guillermin, C. Genotoxicity of acute and chronic gamma-irradiation on zebrafish cells and consequences for embryo development. Environ. Toxicol. Chem. 2011, 30, 2831–2837. [Google Scholar] [CrossRef]
- Knowles, J.F.; Greenwood, L.N. The effects of chronic irradiation on the reproductive performance of Ophryotrocha diadema (polychaeta, dorvilleidae). Mar. Environ. Res. 1994, 38, 207–224. [Google Scholar] [CrossRef]
- Hertel-Aas, T.; Oughton, D.H.; Jaworska, A.; Bjerke, H.; Salbu, B.; Brunborg, G. Effects of Chronic Gamma Irradiation on Reproduction in the Earthworm Eisenia fetida (Oligochaeta). Radiat. Res. 2007, 168, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Lecomte-Pradines, C.; Hertel-Aas, T.; Coutris, C.; Gilbin, R.; Oughton, D.; Alonzo, F. A dynamic energy-based model to analyze sublethal effects of chronic gamma irradiation in the nematode Caenorhabditis elegans. J. Toxicol. Environ. Health. Part A 2017, 80, 830–844. [Google Scholar] [CrossRef]
- Sowmithra, K.; Shetty, N.J.; Harini, B.P.; Jha, S.K.; Chaubey, R.C. Effects of acute gamma radiation on the reproductive ability of the earthworm Eisenia fetida. J Env. Radioact 2015, 140, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Gilbin, R.; Alonzo, F.; Garnier-Laplace, J. Effects of chronic external gamma irradiation on growth and reproductive success of Daphnia magna. J. Environ. Radioact. 2008, 99, 134–145. [Google Scholar] [CrossRef]
- Buisset-Goussen, A.; Goussen, B.; Della-Vedova, C.; Galas, S.; Adam-Guillermin, C.; Lecomte-Pradines, C. Effects of chronic gamma irradiation: A multigenerational study using Caenorhabditis elegans. J. Environ. Radioact. 2014, 137, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Iyer, R.; Lehnert, B.E. Effects of ionizing radiation in targeted and nontargeted cells. Arch. Biochem. Biophys. 2000, 376, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012, 327, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houee-Levin, C.; Bobrowski, K. The use of the methods of radiolysis to explore the mechanisms of free radical modifications in proteins. J. Proteom. 2013, 92, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Gebicki, J.M. Proteins are major initial cell targets of hydroxyl free radicals. Int. J. Biochem. Cell Biol. 2004, 36, 2334–2343. [Google Scholar] [CrossRef] [PubMed]
- Gebicki, J.M. Oxidative stress, free radicals and protein peroxides. Arch. Biochem. Biophys. 2016, 595, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Tateishi, Y.; Sasabe, E.; Ueta, E.; Yamamoto, T. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation. Biochem. Biophys. Res. Commun. 2008, 366, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Chai, Y.C.; Mazumder, S.; Jiang, C.; Macklis, R.M.; Chisolm, G.M.; Almasan, A. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ 2003, 10, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Maremonti, E.; Eide, D.M.; Rossbach, L.M.; Lind, O.C.; Salbu, B.; Brede, D.A. In vivo assessment of reactive oxygen species production and oxidative stress effects induced by chronic exposure to gamma radiation in Caenorhabditis elegans. Free Radic. Biol. Med. 2020, 152, 583–596. [Google Scholar] [CrossRef]
- Steinbaugh, M.J.; Narasimhan, S.D.; Robida-Stubbs, S.; Moronetti Mazzeo, L.E.; Dreyfuss, J.M.; Hourihan, J.M.; Raghavan, P.; Operana, T.N.; Esmaillie, R.; Blackwell, T.K. Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. eLife 2015, 4, e07836. [Google Scholar] [CrossRef]
- Tullet, J.M.A.; Green, J.W.; Au, C.; Benedetto, A.; Thompson, M.A.; Clark, E.; Gilliat, A.F.; Young, A.; Schmeisser, K.; Gems, D. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell 2017, 16, 1191–1194. [Google Scholar] [CrossRef] [Green Version]
- Ezcurra, M.; Benedetto, A.; Sornda, T.; Gilliat, A.F.; Au, C.; Zhang, Q.; van Schelt, S.; Petrache, A.L.; Wang, H.; de la Guardia, Y.; et al. C. elegans Eats Its Own Intestine to Make Yolk Leading to Multiple Senescent Pathologies. Curr. Biol. 2018, 28, 2544–2556.e5. [Google Scholar] [CrossRef]
- DePina, A.S.; Iser, W.B.; Park, S.-S.; Maudsley, S.; Wilson, M.A.; Wolkow, C.A. Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms. Bmc Physiol. 2011, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Glover-Cutter, K.M.; Lin, S.; Blackwell, T.K. Integration of the unfolded protein and oxidative stress responses through SKN-1/Nrf. Plos Genet 2013, 9, e1003701. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Xie, L.; Lee, Y.; Brede, D.A.; Lyne, F.; Kassaye, Y.; Thaulow, J.; Caldwell, G.; Salbu, B.; Tollefsen, K.E. Integrative assessment of low-dose gamma radiation effects on Daphnia magna reproduction: Toxicity pathway assembly and AOP development. Sci. Total Environ. 2020, 705, 135912. [Google Scholar] [CrossRef]
- Gomes, T.; Song, Y.; Brede, D.A.; Xie, L.; Gutzkow, K.B.; Salbu, B.; Tollefsen, K.E. Gamma radiation induces dose-dependent oxidative stress and transcriptional alterations in the freshwater crustacean Daphnia magna. Sci. Total Environ. 2018, 628–629, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Kuzmic, M.; Galas, S.; Lecomte, C.; Dubois, C.; Dubourg, N.; Frelon, S. Interplay between ionizing radiation effects and aging in C. elegans. Free Radic. Biol. Med. 2019, 134, 657–665. [Google Scholar] [CrossRef]
- Watts, J.L.; Ristow, M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017, 207, 413–446. [Google Scholar] [CrossRef]
- Lemieux, G.A.; Ashrafi, K. Investigating Connections between Metabolism, Longevity, and Behavior in Caenorhabditis elegans. Trends Endocrinol. Metab. 2016, 27, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Lemieux, G.A.; Ashrafi, K. Stressing about misplaced fat is a key to longevity. eLife 2015, 4, e10161. [Google Scholar] [CrossRef]
- Amrit, F.R.; Steenkiste, E.M.; Ratnappan, R.; Chen, S.W.; McClendon, T.B.; Kostka, D.; Yanowitz, J.; Olsen, C.P.; Ghazi, A. DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans. Plos Genet 2016, 12, e1005788. [Google Scholar] [CrossRef] [Green Version]
- Ratnappan, R.; Amrit, F.R.; Chen, S.W.; Gill, H.; Holden, K.; Ward, J.; Yamamoto, K.R.; Olsen, C.P.; Ghazi, A. Germline signals deploy NHR-49 to modulate fatty-acid beta-oxidation and desaturation in somatic tissues of C. elegans. Plos Genet 2014, 10, e1004829. [Google Scholar] [CrossRef]
- Hsin, H.; Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 1999, 399, 362–366. [Google Scholar] [CrossRef]
- Hansen, M.; Flatt, T.; Aguilaniu, H. Reproduction, fat metabolism, and life span: What is the connection? Cell Metab. 2013, 17, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.C.; O’Rourke, E.J.; Ruvkun, G. Fat metabolism links germline stem cells and longevity in C. elegans. Science 2008, 322, 957–960. [Google Scholar] [CrossRef] [Green Version]
- Kuzmic, M.; Javot, H.; Bonzom, J.M.; Lecomte-Pradines, C.; Radman, M.; Garnier-Laplace, J.; Frelon, S. In situ visualization of carbonylation and its co-localization with proteins, lipids, DNA and RNA in Caenorhabditis elegans. Free Radic. Biol. Med. 2016, 101, 465–474. [Google Scholar] [CrossRef]
- Shmookler Reis, R.J.; Xu, L.; Lee, H.; Chae, M.; Thaden, J.J.; Bharill, P.; Tazearslan, C.; Siegel, E.; Alla, R.; Zimniak, P.; et al. Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging 2011, 3, 125–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulbert, A.J. Longevity, lipids and C. elegans. Aging 2011, 3, 81–82. [Google Scholar] [CrossRef] [Green Version]
- Kuwahara, Y.; Shimada, A.; Mitani, H.; Shima, A. A Critical Stage in Spermatogenesis for Radiation-Induced Cell Death in the Medaka Fish, Oryzias latipes. Radiat. Res. 2002, 157, 386–392. [Google Scholar] [CrossRef]
- Kheirallah, D.; El-Samad, L.; Fahmi, N.; Osman, W. Ultrastructure alterations induced by gamma irradiation in spermiogenesis of the ground beetle, Blaps sulcata: Reference to environmental radiation protection. Environ. Sci. Pollut. Res. Int. 2017, 24, 22102–22110. [Google Scholar] [CrossRef]
- Guerquin, M.-J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Bakalska, M.; Frydman, R.; Habert, R.; Livera, G. Sex-specific differences in fetal germ cell apoptosis induced by ionizing radiation. Hum. Reprod. 2008, 24, 670–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambrot, R.; Coffigny, H.; Pairault, C.; Lécureuil, C.; Frydman, R.; Habert, R.; Rouiller-Fabre, V. High Radiosensitivity of Germ Cells in Human Male Fetus. J. Clin. Endocrinol. Metab. 2007, 92, 2632–2639. [Google Scholar] [CrossRef] [Green Version]
- Hartman, P.S.; Herman, R.K. Somatic damage to the X chromosome of the nematode Caenorhabditis elegans induced by gamma radiation. Mol. Gen. Genet. 1982, 187, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Holway, A.H.; Kim, S.H.; La Volpe, A.; Michael, W.M. Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos. J. Cell Biol. 2006, 172, 999–1008. [Google Scholar] [CrossRef] [Green Version]
- Vermezovic, J.; Stergiou, L.; Hengartner, M.O.; D’Adda Di Fagagna, F. Differential regulation of DNA damage response activation between somatic and germline cells in Caenorhabditis elegans. Cell Death Differ. 2012, 19, 1847–1855. [Google Scholar] [CrossRef] [Green Version]
- Clejan, I.; Boerckel, J.; Ahmed, S. Developmental modulation of nonhomologous end joining in Caenorhabditis elegans. Genetics 2006, 173, 1301–1317. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, B.B.L.G.; Tijsterman, M. DNA double-strand break repair in Caenorhabditis elegans. Chromosoma 2011, 120, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Maremonti, E.; Eide, D.M.; Oughton, D.H.; Salbu, B.; Grammes, F.; Kassaye, Y.A.; Guedon, R.; Lecomte-Pradines, C.; Brede, D.A. Gamma radiation induces life stage-dependent reprotoxicity in Caenorhabditis elegans via impairment of spermatogenesis. Sci. Total Environ. 2019, 695, 133835. [Google Scholar] [CrossRef]
- Banu, P.; Ali, I.; Salam, M. Effects of gamma radiation on the reproductive organs in the red flour beetle Tribolium castaneum (Herbst). Univ. J. Zool. Rajshahi Univ. 2007, 25, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Adam-Guillermin, C.; Hertal-Aas, T.; Oughton, D.; Blanchard, L.; Alonzo, F.; Armant, O.; Horemans, N. Radiosensitivity and transgenerational effects in non-human species. Ann. ICRP 2018, 47, 327–341. [Google Scholar] [CrossRef]
- Takanami, T.; Mori, A.; Takahashi, H.; Horiuchi, S.; Higashitani, A. Caenorhabditis elegans Ce-rdh-1/rad-51 functions after double-strand break formation of meiotic recombination. Chromosome Res. 2003, 11, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Takanami, T.; Mori, A.; Takahashi, H.; Higashitani, A. Hyper-resistance of meiotic cells to radiation due to a strong expression of a single recA-like gene in Caenorhabditis elegans. Nucleic Acids Res. 2000, 28, 4232–4236. [Google Scholar] [CrossRef] [PubMed]
- Brooks, K.K.; Liang, B.; Watts, J.L. The influence of bacterial diet on fat storage in C. elegans. PLoS One 2009, 4, e7545. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Hao, Y.; Fung, C.W.; Lee, Y.Y.; Wang, P.; Li, X.; Xie, K.; Lam, W.J.; Qiu, Y.; Tang, B.Z.; et al. Dietary fatty acids promote lipid droplet diversity through seipin enrichment in an ER subdomain. Nat. Commun. 2019, 10, 2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Schroeder, E.A.; Silva-Garcia, C.G.; Hebestreit, K.; Mair, W.B.; Brunet, A. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 2017, 544, 185–190. [Google Scholar] [CrossRef]
- Grant, B.; Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 1999, 10, 4311–4326. [Google Scholar] [CrossRef] [Green Version]
- Greer, E.L.; Maures, T.J.; Ucar, D.; Hauswirth, A.G.; Mancini, E.; Lim, J.P.; Benayoun, B.A.; Shi, Y.; Brunet, A. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 2011, 479, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Kaul, T.K.; Reis Rodrigues, P.; Ogungbe, I.V.; Kapahi, P.; Gill, M.S. Bacterial fatty acids enhance recovery from the dauer larva in Caenorhabditis elegans. PLoS One 2014, 9, e86979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spanier, B.; Rubio-Aliaga, I.; Hu, H.; Daniel, H. Altered signalling from germline to intestine pushes daf-2;pept-1 Caenorhabditis elegans into extreme longevity. Aging Cell 2010, 9, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, D.; Gems, D. The mystery of C. elegans aging: An emerging role for fat. Distant parallels between C. elegans aging and metabolic syndrome? Bioessays 2012, 34, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Doering, J.A.; Villeneuve, D.L.; Poole, S.T.; Blackwell, B.R.; Jensen, K.M.; Kahl, M.D.; Kittelson, A.R.; Feifarek, D.J.; Tilton, C.B.; LaLone, C.A.; et al. Quantitative Response-Response Relationships Linking Aromatase Inhibition to Decreased Fecundity are Conserved Across Three Fishes with Asynchronous Oocyte Development. Environ. Sci. Technol. 2019, 53, 10470–10478. [Google Scholar] [CrossRef]
- Conolly, R.B.; Ankley, G.T.; Cheng, W.; Mayo, M.L.; Miller, D.H.; Perkins, E.J.; Villeneuve, D.L.; Watanabe, K.H. Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology. Environ. Sci. Technol. 2017, 51, 4661–4672. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Sappington, T.W.; Raikhel, A.S. Extensive sequence conservation among insect, nematode, and vertebrate vitellogenins reveals ancient common ancestry. J. Mol. Evol. 1997, 44, 440–451. [Google Scholar] [CrossRef]
- Polonis, M.; Jagiello, K.; Dobosz, S.; Rozynski, R.; Kondraciuk, P.; Gurgul, A.; Szmatola, T.; Ocalewicz, K. Alterations in the rainbow trout (Oncorhynchus mykiss) eggs exposed to ionizing radiation during induced androgenesis. Reprod. Domest. Anim. 2019, 54, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Vrablik, T.L.; Petyuk, V.A.; Larson, E.M.; Smith, R.D.; Watts, J.L. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein. Biochim. Biophys. Acta 2015, 1851, 1337–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.A. A Sperm Cytoskeletal Protein That Signals Oocyte Meiotic Maturation and Ovulation. Science 2001, 291, 2144–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.A.; Ruest, P.J.; Kosinski, M.; Hanks, S.K.; Greenstein, D. An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans. Genes Dev. 2003, 17, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Huelgas-Morales, G.; Greenstein, D. Control of oocyte meiotic maturation in C. elegans. Semin. Cell Dev. Biol. 2018, 84, 90–99. [Google Scholar] [CrossRef]
- Lettre, G.; Hengartner, M.O. Developmental apoptosis in C. elegans: A complex CEDnario. Nat. Rev. Mol. Cell Biol. 2006, 7, 97–108. [Google Scholar] [CrossRef]
- Singson, A. Every sperm is sacred: Fertilization in Caenorhabditis elegans. Dev. Biol. 2001, 230, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Cutter, A.D. SPERM-LIMITED FECUNDITY IN NEMATODES: HOW MANY SPERM ARE ENOUGH? Evolution 2004, 58, 651–655. [Google Scholar] [CrossRef]
- Murray, R.L.; Cutter, A.D. Experimental evolution of sperm count in protandrous self-fertilizing hermaphrodites. J. Exp. Biol. 2011, 214, 1740–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.; Han, M. Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation. Cell 2017, 169, 457–469.e13. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, D.; Tumanov, S.; Qiu, B.; Michalopoulou, E.; Spata, M.; Azzam, A.; Xie, H.; Simon, M.C.; Kamphorst, J.J. Triglycerides Promote Lipid Homeostasis during Hypoxic Stress by Balancing Fatty Acid Saturation. Cell Rep. 2018, 24, 2596–2605.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vellai, T.; Takacs-Vellai, K.; Sass, M.; Klionsky, D.J. The regulation of aging: Does autophagy underlie longevity? Trends Cell Biol. 2009, 19, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiernagle, T. Maintenance of C. elegans. WormBook 2006, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Porta-de-la-Riva, M.; Fontrodona, L.; Villanueva, A.; Ceron, J. Basic Caenorhabditis elegans methods: Synchronization and observation. J. Vis. Exp. 2012, e4019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duerr, J.S. Antibody staining in C. elegans using “freeze-cracking”. J. Vis. Exp. 2013, 14, e50664. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Siaut, M.; Cuine, S.; Cagnon, C.; Fessler, B.; Nguyen, M.; Carrier, P.; Beyly, A.; Beisson, F.; Triantaphylides, C.; Li-Beisson, Y.; et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011, 11, 7. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dufourcq-Sekatcheff, E.; Cuiné, S.; Li-Beisson, Y.; Quevarec, L.; Richaud, M.; Galas, S.; Frelon, S. Deciphering Differential Life Stage Radioinduced Reproductive Decline in Caenorhabditis elegans through Lipid Analysis. Int. J. Mol. Sci. 2021, 22, 10277. https://doi.org/10.3390/ijms221910277
Dufourcq-Sekatcheff E, Cuiné S, Li-Beisson Y, Quevarec L, Richaud M, Galas S, Frelon S. Deciphering Differential Life Stage Radioinduced Reproductive Decline in Caenorhabditis elegans through Lipid Analysis. International Journal of Molecular Sciences. 2021; 22(19):10277. https://doi.org/10.3390/ijms221910277
Chicago/Turabian StyleDufourcq-Sekatcheff, Elizabeth, Stephan Cuiné, Yonghua Li-Beisson, Loïc Quevarec, Myriam Richaud, Simon Galas, and Sandrine Frelon. 2021. "Deciphering Differential Life Stage Radioinduced Reproductive Decline in Caenorhabditis elegans through Lipid Analysis" International Journal of Molecular Sciences 22, no. 19: 10277. https://doi.org/10.3390/ijms221910277
APA StyleDufourcq-Sekatcheff, E., Cuiné, S., Li-Beisson, Y., Quevarec, L., Richaud, M., Galas, S., & Frelon, S. (2021). Deciphering Differential Life Stage Radioinduced Reproductive Decline in Caenorhabditis elegans through Lipid Analysis. International Journal of Molecular Sciences, 22(19), 10277. https://doi.org/10.3390/ijms221910277