The Role of the Noradrenergic System in Eating Disorders: A Systematic Review
Abstract
:1. Introduction
1.1. The Noradrenergic System in the CNS
1.2. The Noradrenergic System and Feeding Behavior
1.3. The Noradrenergic System and Human Metabolism
1.4. The Catecholaminergic System and Eating Disorders
1.5. Aims of the Present Review
2. Methods
3. Results
3.1. Studies Characteristics
3.2. Preclinical Studies
3.3. Genetic Studies
3.4. Clinical Studies Assessing Concentrations in Body Tissues and Fluids
3.5. Brain Imaging Studies
3.6. Pharmacological Studies
4. Discussion
4.1. Preclinical Studies
4.2. Genetic Studies
4.3. Clinical Studies Assessing Concentrations in Body Tissues and Fluids
4.4. Brain Imaging Studies
4.5. Pharmacological Studies
4.6. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Ranjbar-Slamloo, Y.; Fazlali, Z. Dopamine and Noradrenaline in the Brain; Overlapping or Dissociate Functions? Front. Mol. Neurosci. 2020, 12, 334. [Google Scholar] [CrossRef] [Green Version]
- Schulz, C.; Eisenhofer, G.; Lehnert, H. Principles of Catecholamine Biosynthesis, Metabolism and Release. Front. Horm. Res. 2003, 31, 1–25. [Google Scholar] [CrossRef]
- Mezey, E.; Eisenhofer, G.; Harta, G.; Hansson, S.; Gould, L.; Hunyady, B.; Hoffman, B.J. A novel nonneuronal catecholaminergic system: Exocrine pancreas synthesizes and releases dopamine. Proc. Natl. Acad. Sci. USA 1996, 93, 10377–10382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, Y.-H.; Jang, J.H.; Lee, D.; Choi, Y.; Choi, S.-H.; Kang, D.-H. Relationships Between Catecholamine Levels and Stress or Intelligence. Neurochem. Res. 2019, 44, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.; Plummer, N.W.; De Marchena, J.; Jensen, P. Developmental origins of central norepinephrine neuron diversity. Nat. Neurosci. 2013, 16, 1016–1023. [Google Scholar] [CrossRef] [Green Version]
- Wellman, P.J. Norepinephrine and the control of food intake. Nutrients 2000, 16, 837–842. [Google Scholar] [CrossRef]
- Waterhouse, B.D.; Navarra, R.L. The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Res. 2019, 1709, 1–15. [Google Scholar] [CrossRef]
- Nasse, J.S.; Travers, J.B. Adrenoreceptor modulation of oromotor pathways in the rat medulla. J. Neurophysiol. 2014, 112, 580–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, S.P. Eating or Drinking Elicited by Direct Adrenergic or Cholinergic Stimulation of Hypothalamus. Science 1960, 132, 301–302. [Google Scholar] [CrossRef]
- Margules, D.L. Alpha-adrenergic receptors in hypothalamus for the suppression of feeding behavior by satiety. J. Comp. Physiol. Psychol. 1970, 73, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ahlskog, J.E.; Hoebel, B.G. Overeating and Obesity from Damage to a Noradrenergic System in the Brain. Science 1973, 182, 166–169. [Google Scholar] [CrossRef]
- Wellman, P.J.; Davies, B.T.; Morien, A.; McMahon, L. Modulation of feeding by hypothalamic paraventricular nucleus α1- and α2-adrenergic receptors. Life Sci. 1993, 53, 669–679. [Google Scholar] [CrossRef]
- Leibowitz, S.F.; Jhanwar-Uniyal, M.; Dvorkin, B.; Makman, M.H. Distribution of α-adrenergic, β-adrenergic and dopaminergic receptors in discrete hypothalamic areas of rat. Brain Res. 1982, 233, 97–114. [Google Scholar] [CrossRef]
- Slangen, J.; Miller, N. Pharmacological tests for the function of hypothalamic norepinephrine in eating behavior. Physiol. Behav. 1969, 4, 543–552. [Google Scholar] [CrossRef]
- Jackson, H.C.; Bearham, M.C.; Hutchins, L.J.; Mazurkiewicz, S.E.; Needham, A.M.; Heal, D.J. Investigation of the mechanisms underlying the hypophagic effects of the 5-HT and noradrenaline reuptake inhibitor, sibutramine, in the rat. Br. J. Pharmacol. 1997, 121, 1613–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownley, K.A.; Berkman, N.D.; Peat, C.M.; Lohr, K.N.; Cullen, K.E.; Bann, C.; Bulik, C.M. Binge-Eating Disorder in Adults: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2016, 165, 409–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zendehdel, M.; Khodadadi, M.; Vosoughi, A.; Mokhtarpouriani, K.; Baghbanzadeh, A. β2 adrenergic receptors and leptin interplay to decrease food intake in chicken. Br. Poult. Sci. 2020, 61, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, M.K.; Barnes, J.H.; Wiercigroch, D.; Olmstead, M.C. Pharmacological investigations of a yohimbine–impulsivity interaction in rats. Behav. Pharmacol. 2016, 27, 585–595. [Google Scholar] [CrossRef]
- Smitka, K.; Papezova, H.; Vondra, K.; Hill, M.; Hainer, V.; Nedvidkova, J. The Role of “Mixed” Orexigenic and Anorexigenic Signals and Autoantibodies Reacting with Appetite-Regulating Neuropeptides and Peptides of the Adipose Tissue-Gut-Brain Axis: Relevance to Food Intake and Nutritional Status in Patients with Anorexia Nervosa and Bulimia Nervosa. Int. J. Endocrinol. 2013, 2013, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Date, Y.; Shimbara, T.; Koda, S.; Toshinai, K.; Ida, T.; Murakami, N.; Miyazato, M.; Kokame, K.; Ishizuka, Y.; Ishida, Y.; et al. Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab. 2006, 4, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Hisadome, K.; Reimann, F.; Gribble, F.; Trapp, S. CCK Stimulation of GLP-1 Neurons Involves α1-Adrenoceptor–Mediated Increase in Glutamatergic Synaptic Inputs. Diabetes 2011, 60, 2701–2709. [Google Scholar] [CrossRef] [Green Version]
- Dostalova, I.; Bartak, V.; Papezova, H.; Nedvidkova, J. The effect of short-term exercise on plasma leptin levels in patients with anorexia nervosa. Metabolism 2007, 56, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, S.; Aydin, M.; Alcin, E.; Ozcan, M.; Bakos, J.; Jezova, D.; Yilmaz, B. Leptin modulates noradrenaline release in the paraventricular nucleus and plasma oxytocin levels in female rats: A microdialysis study. Brain Res. 2010, 1317, 87–91. [Google Scholar] [CrossRef] [PubMed]
- KuoL, E.; Czarnecka, M.; Kitlinska, J.B.; Tilan, J.U.; Kvetnansky, R.; Zukowska, Z. Chronic Stress, Combined with a High-Fat/High-Sugar Diet, Shifts Sympathetic Signaling toward Neuropeptide Y and Leads to Obesity and the Metabolic Syndrome. Ann. New York Acad. Sci. 2008, 1148, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Connan, F.; CampbellI, C.; Katzman, M.; Lightman, S.; Treasure, J. A neurodevelopmental model for anorexia nervosa. Physiol. Behav. 2003, 79, 13–24. [Google Scholar] [CrossRef]
- Kaye, W. Neurobiology of anorexia and bulimia nervosa. Physiol. Behav. 2008, 94, 121–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, E.A.; Holsen, L.M.; Santin, M.; Meenaghan, E.; Eddy, K.T.; Becker, A.; Herzog, D.B.; Goldstein, J.M.; Klibanski, A. Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa. J. Clin. Endocrinol. Metab. 2012, 97, E1898–E1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteleone, P.; Scognamiglio, P.; Monteleone, A.M.; Perillo, D.; Maj, M. Cortisol awakening response in patients with anorexia nervosa or bulimia nervosa: Relationships to sensitivity to reward and sensitivity to punishment. Psychol. Med. 2014, 44, 2653–2660. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Weissman, R.S. The Role of Sociocultural Factors in the Etiology of Eating Disorders. Psychiatr. Clin. North. Am. 2019, 42, 121–144. [Google Scholar] [CrossRef] [PubMed]
- Herpertz-Dahlmann, B. Adolescent eating disorders: Update on definitions, symptomatology, epi-demiology, and comorbidity. Child Adolesc. Psychiatr. Clinics North Am. 2015, 24, 177–196. [Google Scholar] [CrossRef]
- Pruccoli, J.; Rosa, S.; Cesaroni, C.A.; Malaspina, E.; Parmeggiani, A. Association among Autistic Traits, Treatment Intensity and Outcomes in Adolescents with Anorexia Nervosa: Preliminary Results. J. Clin. Med. 2021, 10, 3605. [Google Scholar] [CrossRef]
- Kontis, D.; Theochari, E. Dopamine in anorexia nervosa: A systematic review. Behav. Pharmacol. 2012, 23, 496–515. [Google Scholar] [CrossRef]
- Nunn, K.; Frampton, I.; Lask, B. Anorexia nervosa – A noradrenergic dysregulation hypothesis. Med. Hypotheses 2012, 78, 580–584. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallett, A.; Blundell, J.; Rodgers, R. Sibutramine-induced anorexia: Potent, dose-dependent and behaviourally-selective profile in male rats. Behav. Brain Res. 2009, 198, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Bello, N.T.; Walters, A.L.; Verpeut, J.; Caverly, J. Dietary-induced binge eating increases prefrontal cortex neural activation to restraint stress and increases binge food consumption following chronic guanfacine. Pharmacol. Biochem. Behav. 2014, 125, 21–28. [Google Scholar] [CrossRef]
- Bello, N.T.; Yeh, C.-Y.; James, M.H. Reduced Sensory-Evoked Locus Coeruleus-Norepinephrine Neural Activity in Female Rats with a History of Dietary-Induced Binge Eating. Front. Psychol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Di Bonaventura, M.V.M.; Gallelli, C.A.; Koczwara, J.B.; Smeets, D.; Giusepponi, M.E.; De Ceglia, M.; Friuli, M.; Di Bonaventura, E.M.; Scuderi, C.; et al. Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: A novel potential treatment for binge eating disorder. Neuropsychopharmacology 2020, 45, 1931–1941. [Google Scholar] [CrossRef]
- Hicks, C.; Sabino, V.; Cottone, P. The Alpha-1 Adrenergic Receptor Antagonist Prazosin Reduces Binge-Like Eating in Rats. Nutrients 2020, 12, 1569. [Google Scholar] [CrossRef] [PubMed]
- Urwin, R.E.; Bennetts, B.; Wilcken, B.; Lampropoulos, B.; Beumont, P.; Clarke, S.; Russell, J.; Tanner, S.; Nunn, K.P. Anorexia nervosa (restrictive subtype) is associated with a polymorphism in the novel norepinephrine transporter gene promoter polymorphic region. Mol. Psychiatry 2002, 7, 652–657. [Google Scholar] [CrossRef] [Green Version]
- Urwin, R.E.; Bennetts, B.H.; Wilcken, B.; Lampropoulos, B.; Beumont, P.J.V.; Russell, J.D.; Tanner, S.L.; Nunn, K.P. Gene-gene interaction between the monoamine oxidase A gene and solute carrier family 6 (neurotransmitter transporter, noradrenalin) member 2 gene in anorexia nervosa (restrictive subtype). Eur. J. Hum. Genet. 2003, 11, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Karwautz, A.; Wagner, G.; Holliday, J.; Li, T.; Treasure, J.; Collier, D.A. No association between a promoter polymorphism in the noradrenaline transporter gene and anorexia nervosa. Psychiatr. Genet. 2007, 17, 247–248. [Google Scholar] [CrossRef] [PubMed]
- D’andrea, G.; Ostuzzi, R.; Francesconi, F.; Musco, F.; Bolner, A.; D’onofrio, F.; Colavito, D. Migraine prevalence in eating disorders and pathophysiological correlations. Neurol. Sci. 2009, 30, 55–59. [Google Scholar] [CrossRef]
- Lechin, F.; van der Dijs, B.; Pardey-Maldonado, B.; E Rivera, J.; Baez, S.; E Lechin, M. Anorexia nervosa depends on adrenal sympathetic hyperactivity: Opposite neuroautonomic profile of hyperinsulinism syndrome. Diabetes, Metab. Syndr. Obesity: Targets Ther. 2010, 3, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Lechin, F.; Van der Dijs, B.; Pardey-Maldonado, B.; Baez, S.; E Lechin, M. Anorexia nervosa versus hyperinsulinism: Therapeutic effects of neuropharmacological manipulation. Ther. Clin. Risk Manag. 2011, 7, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, N.; Yoshiuchi, K.; Kumano, H.; Sasaki, T.; Kuboki, T. Changes in heart rate with refeeding in anorexia nervosa: A pilot study. J. Psychosom. Res. 2006, 61, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, F.; Grave, R.D.; Calugi, S.; Marchesini, G.; Baroni, S.; Marazziti, D. Effects of cognitive-behavioral therapy on Eating Disorders: Neurotransmitter secretory response to treatment. Psychoneuroendocrinology 2010, 35, 729–737. [Google Scholar] [CrossRef]
- Barták, V.; Vybíral, S.; Papezova, H.; Dostalova, I.; Pacak, K.; Nedvidkova, J. Basal and exercise-induced sympathetic nervous activity and lipolysis in adipose tissue of patients with anorexia nervosa. Eur. J. Clin. Investig. 2004, 34, 371–377. [Google Scholar] [CrossRef]
- Nedvídková, J.; Dostálová, I.; Barták, V.; Papezov, H.; Pacák, K. Increased subcutaneous abdominal tissue norepinephrine levels in patients with anorexia nervosa: An in vivo microdialysis study. Physiol. Res. 2004, 53, 15312000. [Google Scholar]
- Vaz-Leal, F.J.; Rodríguez-Santos, L.; García-Herráiz, M.A.; Ramos-Fuentes, M.I. Neurobiological and Psychopathological Variables Related to Emotional Instability: A Study of Their Capability to Discriminate Patients with Bulimia Nervosa from Healthy Controls. Neuropsychobiology 2011, 63, 242–251. [Google Scholar] [CrossRef]
- Zheng, Z.-H. Metformin combined with mirtazapine for treatment of anorexia nervosa with dyspepsia: Clinical effect and impact on serum levels of norepinephrine, 5-hydroxy tryptamine and dopamine. World Chin. J. Dig. 2014, 22. [Google Scholar] [CrossRef]
- Rigaud, D.; Verges, B.; Colas-Linhart, N.; Petiet, A.; Moukkaddem, M.; Van Wymelbeke, V.; Brondel, L. Hormonal and Psychological Factors Linked to the Increased Thermic Effect of Food in Malnourished Fasting Anorexia Nervosa. J. Clin. Endocrinol. Metab. 2007, 92, 1623–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milano, W.; Petrella, C.; Casella, A.; Capasso, A.; Carrino, S.; Milano, L. Use of sibutramine an inhibitor of the reuptake of serotonin and noradrenaline, in the treatment of binge eating disorder: A placebo-controlled study. Adv. Ther. 2005, 22, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Lanzarone, C.; Cuzzocrea, F.; Larcan, R.; Bongiorno, A.; Minì, V. Effectiveness of cognitive behavioural psychotherapy alone and combined with pharmacotherapy in binge eating disorder: A differential research. BJMP 2014, 7, 724. [Google Scholar]
- Bernardi, S.; Pallanti, S. Successful duloxetine treatment of a binge eating disorder: A case report. J. Psychopharmacol. 2008, 24, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Leombruni, P.; Lavagnino, L.; Gastaldi, F.; Vasile, A.; Fassino, S. Duloxetine in obese binge eater outpatients: Preliminary results from a 12-week open trial. Hum. Psychopharmacol. 2009, 24, 483–488. [Google Scholar] [CrossRef]
- Guerdjikova, A.I.; McElroy, S.L.; Winstanley, E.L.; Nelson, E.B.; Mori, N.; McCoy, J.; Keck, P.E.; Hudson, J.I. Duloxetine in the treatment of binge eating disorder with depressive disorders: A placebo-controlled trial. Int. J. Eat. Disord. 2011, 45, 281–289. [Google Scholar] [CrossRef]
- El-Giamal, N.; De Zwaan, M.; Bailer, U.; Strnad, A.; Schüssler, P.; Kasper, S. Milnacipran in the treatment of bulimia nervosa: A report of 16 cases. Eur. Neuropsychopharmacol. 2002, 13, 73–79. [Google Scholar] [CrossRef]
- Willeit, M. Praschak-Rieder, E.; Hilger, A.; Neumeister, S.; Kasper M. Reboxetine in a patient with seasonal bulimia resistant to SSRIs and light therapy. Int. J. Psychiatry Clin. Pr. 2001, 5, 207–209. [Google Scholar] [CrossRef]
- El-Giamal, N.; De Zwaan, M.; Bailer, U.; Lennkh, C.; Schüssler, P.; Strnad, A.; Kasper, S. Reboxetine in the treatment of bulimia nervosa: A report of seven cases. Int. Clin. Psychopharmacol. 2000, 15, 351–356. [Google Scholar] [CrossRef]
- Fassino, S.; Daga, G.A.; Boggio, S.; Garzaro, L.; Pierò, A. Use of Reboxetine in Bulimia Nervosa: A Pilot Study. J. Psychopharmacol. 2004, 18, 423–428. [Google Scholar] [CrossRef]
- Silveira, R.O.; Zanatto, V.; Appolinário, J.C.; Kapczinski, F. An open trial of reboxetine in obese patients with binge eating disorder. Eat. Weight. Disord. - Stud. Anorexia Bulim. Obes. 2005, 10, e93–e96. [Google Scholar] [CrossRef]
- Mattingly, G.; Tsai, J.; Kent, J.; Deng, L.; Goldman, R. Safety and effectiveness of dasotraline in binge-eating disorder: Results of an open-label, 12-month extension study. Neuropsychopharmacology 2019, 44, 78–229. [Google Scholar] [CrossRef] [Green Version]
- Loebel, A.; Goldman, R.; Citrome, L.; Siu, C.; Tsai, J.; Kent, J. The Role of Obsessive-Compulsive Factors in the Treatment of Binge-Eating Disorders: A Post-Hoc Analysis of a Double-Blind, Placebo-Controlled Trial of Dasotraline. Neuropsychopharmacology 2019, 44, 112–113. [Google Scholar]
- McElroy, S.L.; Hudson, J.I.; Grilo, C.M.; Guerdjikova, A.I.; Deng, L.; Koblan, K.S.; Goldman, R.; Navia, B.; Hopkins, S.; Loebel, A. Efficacy and Safety of Dasotraline in Adults with Binge-Eating Disorder: A Randomized, Placebo-Controlled, Flexible-Dose Clinical Trial. J. Clin. Psychiatry 2020, 81. [Google Scholar] [CrossRef] [PubMed]
- Grilo, C.M.; McElroy, S.L.; Hudson, J.I.; Tsai, J.; Navia, B.; Goldman, R.; Deng, L.; Kent, J.; Loebel, A. Efficacy and safety of dasotraline in adults with binge-eating disorder: A randomized, placebo-controlled, fixed-dose clinical trial. CNS Spectrums 2020, 1–10. [Google Scholar] [CrossRef]
- McElroy, S.L.; Guerdjikova, A.; Kotwal, R.; Welge, J.A.; Nelson, E.B.; Lake, K.A.; Keck, P.E.; Hudson, J.I. Atomoxetine in the Treatment of Binge-Eating Disorder: A randomized placebo-controlled trial. J. Clin. Psychiatry 2007, 68, 390–398. [Google Scholar] [CrossRef]
- Walsh, B.T.; Sysko, R.; Parides, M.K. Early response to desipramine among women with bulimia nervosa. Int. J. Eat. Disord. 2006, 39, 72–75. [Google Scholar] [CrossRef]
- Hori, H.; Yoshimura, R.; Katsuki, A.; Atake, K. Plasma levels of 3-methoxy-4-hydroxyphenylglycol levels, number of hospitalization and cognitive function predicts the cognitive effect of atypical antipsychotic monotherapy in patients with acute schizophrenia. Int. Clin. Psychopharmacol. 2020, 35, 89–97. [Google Scholar] [CrossRef]
- Kaye, W.H.; Gwirtsman, H.E.; George, D.T.; Jimerson, D.C.; Ebert, M.H.; Lake, C. Disturbances of noradrenergic systems in normal weight bulimia: Relationship to diet and menses. Biol. Psychiatry 1990, 27, 4–21. [Google Scholar] [CrossRef]
- Smith, D.; Dempster, C.; Glanville, J.; Freemantle, N.; Anderson, I.M. Efficacy and tolerability of venlafaxine compared with selective serotonin reuptake inhibitors and other antidepressants: A meta-analysis. Br. J. Psychiatry 2002, 180, 396–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, B.T.; Hadigan, C.M.; Devlin, M.J.; Gladis, M.; Roose, S.P. Long-term outcome of antidepressant treatment for bulimia nervosa. Am. J. Psychiatry 1991, 148, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.; Blouin, J.; Blouin, A.; Perez, E. Treatment of Bulimia with Desipramine: A Double-Blind Crossover Study. Can. J. Psychiatry 1988, 33, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Biagi, C.; Di Nunzio, M.; Bordoni, A.; Gori, D.; Lanari, M. Effect of Adherence to Mediterranean Diet during Pregnancy on Children’s Health: A Systematic Review. Nutrients 2019, 11, 997. [Google Scholar] [CrossRef] [Green Version]
- Dondi, A.; Piccinno, V.; Morigi, F.; Sureshkumar, S.; Gori, D.; Lanari, M. Food Insecurity and Major Diet-Related Morbidities in Migrating Children: A Systematic Review. Nutrients 2020, 12, 379. [Google Scholar] [CrossRef] [Green Version]
- Manfredi, L.; Accoto, A.; Couyoumdjian, A.; Conversi, D. A Systematic Review of Genetic Polymorphisms Associated with Binge Eating Disorder. Nutrients 2021, 13, 848. [Google Scholar] [CrossRef]
- Di Gianni, A.; De Donatis, D.; Valente, S.; De Ronchi, D.; Atti, A.R. Eating disorders: Do PET and SPECT have a role? A systematic review of the literature. Psychiatry Res. Neuroimaging 2020, 300, 111065. [Google Scholar] [CrossRef]
- Couturier, J.; Isserlin, L.; Norris, M.; Spettigue, W.; Brouwers, M.; Kimber, M.; McVey, G.; Webb, C.; Findlay, S.; Bhatnagar, N.; et al. Canadian practice guidelines for the treatment of children and adolescents with eating disorders. J. Eat. Disord. 2020, 8, 4–80. [Google Scholar] [CrossRef] [PubMed]
- Pruccoli, J.; Parmeggiani, A. Inpatient treatment of anorexia nervosa with adjunctive valproate: A case series of 14 young and adolescent patients. Eat. Weight. Disord. –Stud. Anorexia, Bulim. Obes. 2021, 1–7. [Google Scholar] [CrossRef]
- Pruccoli, J.; Pelusi, M.; Romagnoli, G.; Malaspina, E.; Moscano, F.; Parmeggiani, A. Timing of Psychopharmacological and Nutritional Interventions in the Inpatient Treatment of Anorexia Nervosa: An Observational Study. Brain Sci. 2021, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Södersten, P.; Bergh, C.; Leon, M.; Zandian, M. Dopamine and anorexia nervosa. Neurosci. Biobehav. Rev. 2016, 60, 26–30. [Google Scholar] [CrossRef] [PubMed]
Study | Subjects | Methods of the Study/Administered Interventions | Outcomes | Main Results |
---|---|---|---|---|
Preclinical studies | ||||
Tallet et al., 2009 [36] | Non-deprived rats (n = 10) | Sibutramine | Food intake, satiety, weight gain | Sibutramine reduced food intake, time spent feeding and increased resting |
Bello et al., 2019 [37] | Binge (n = 20), restrict and binge (n = 27), naive (n = 22) rats | Exposure to highly sweetened fat with/without caloric restriction | Neuronal activity of the locus coeruleus NE system | Restrict-Binge and Binge showed reduced LC discharge rates compared with naive |
Bello et al., 2020 [38] | Restrict Binge (n = 12), Binge (n = 12), Restrict (n = 12), Naive (n = 12) rats | Guanfacine | Binge frequency, stress response, plasma catecholamines, and body composition | In the binge group, guanfacine increased calories consumed and increased binge food consumption |
Romano et al., 2020 [39] | N = 144, different subgroups with induced binge-eating rats | Oleoylethanolamide | Binge frequency, c-fos expression, activation of specific brain areas | Oleoylethanolamide reduced binge frequency and increased hypothalamic NE tone |
Hicks et al., 2020 [40] | Binge (n = 39 rats) | Prazosin | Responses for palatable food | Prazosin preferentially increased the motivational properties of the palatable diet |
Genetic studies | ||||
Urwin et al., 2002 [41] | ANR + biological parents (n = 87 trios) | PCR-amplification of an AAGG repeat island in the NE transporter gene promoter region | Analysis of transmission disequilibrium | Preferential transmission of a 4-bp deletion, resulting in net gain of a putative Elk-1 transcription factor site from parent to child with ANR |
Urwin et al., 2003 [42] | ANR + biological parents (n = 95 trios/duos) | Association study | Association study with a functional polymorphism (MAOA-uVNTR) in the promoter of MAOA gene | Receiving an MAOA-L allele more than doubles the risk for developing ANR, conditional on an individual also being a NETpPR-L4 homozygote |
Hu et al., 2007 [43] | ANR + biological parents (n = 67), ANBP (n = 48), unclassified AN (n = 27) | Patients genotyped for the NETpPR polymorphism | Analysis of transmission disequilibrium | No significant transmission distortion for any of the alleles we detected with the putative L4 risk transmitted |
Clinical studies addressing concentrations of NE in body tissues/fluids | ||||
D’Andrea et al., 2009 [44] | AN (n = 89), BN (n = 36), HC (n = 27) | Measurement of NE plasma levels | NE plasma levels | Levels of NE were lower in the ED patients with respect to the control subject. |
Lechin et al., 2010 [45] | AN (n = 22), HC (n = 22) | BP, HR, and plasmatic neurotransmitters | Measurements during resting, orthostasis, exercise | AN individuals showed increased adrenaline:noradrenaline levels, across all tested conditions |
Lechin et al., 2011 [46] | AN (n = 22) | Amantadine | BP, HR, and circulating neurotransmitters | Amantadine abolishes symptoms of AN, normalizes autonomic parameters, increases noradrenaline:adrenaline ratio |
Yoshida et al., 2006 [47] | AN (n = 9) | Refeeding | HR, endocrine measurements including NE | Refeeding increased HR and NE |
Brambilla et al., 2010 [48] | ANR (n = 14), ANBP (n = 14), BN (N = 22). | CBT | MHPG, psychopathology | CBT improved psychopathology, but no changes in MHPG were registered. |
Bartak et al., 2004 [49] | AN (n = 10), HC (n = 10) | In vivo microdialysis in subcutaneous adipose tissue | Basal and exercise-stimulated plasma DNA subcutaneous adipose NE | Basal and exercise stimulated NE in adipose tissue was more increased in AN |
Nedvikova et al., 2005 [50] | AN (n = 5), HC (n = 6) | In vivo microdialysis in subcutaneous adipose tissue, before and after maprotiline | Subcutaneous adipose NE levels | Basal NE levels were significantly increased in AN patients compared to the controls, while post-maprotiline levels increased in both groups. |
Dostalova et al., 2007 [22] | AN (n = 10), HC (n = 15) | A 45-min cycle ergometer exercise | Basal and exercise induced plasma endocrine measures including NE | Basal and exercise induced NE did not change in both groups |
Vaz-Leal et al., 2011 [51] | BN (n = 75), HC (n = 30) | Comparison between BN and HC, analysis of relationship between neuroendocrine and psychopathological measures | Psychopathology and parameters reflecting hypothalamic-pituitary-adrenal axis activity and monoamine activity (24-h urinary excretion of NE, serotonin, dopamine, MHPG, 5-HIAA, HVA). | NE and its metabolites were found not significantly different between BN and HC, and no significant correlation with psychopathological measures was found. |
Zheng and Yang, 2014 [52] | AN (n = 100) | Half of the patients received mirtazapine, while the other half received mirtazapine + metformin | Gastric juice pH, weight, HAMD, HAMA, NE, 5-HT, dopamine and blood glucose levels were compared | After treatment, gastric pH and weight increased. HAMA and HAMD scores decreased, while plasma NE, 5-HT and DA increased in both groups. |
Rigaud et al., 2007 [53] | AN (n = 15), HC (n = 15) | Three gastric loads infused by a nasogastric tube. | Thermic effect of food, feelings, plasma release of a series of hormones and neurotransmitters | Only in AN, a load-dependent increase in norepinephrine, and dopamine levels after the 700-kcal load only (p < 0.05) were noted. |
Pharmacological studies | ||||
Milano et al., 2005 [54] | BED (n = 20) | Sibutramine | Binge frequency | Sibutramine more effective than placebo in reducing binge frequency. |
Lanzarone et al., 2014 [55] | BED (n = 30) | CBT vs CBT + paroxetine/venlafaxine | Binge behavior, impulse regulation, eating behavior, psychotic conditions | CBT showed greater improvement in depression, hypomania, and control eating behavior; whereas pharmacological treatment appears to improve impulsiveness of food intake. |
Bernardi and Pallanti, 2010 [56] | BED (n = 1) | Duloxetine | Binge frequency | Binge behavior completely remitted after duloxetine |
Leombruni et al., 2009 [57] | BED or sub-threshold BED (n = 45) | Duloxetine | Binge frequency, BES, Beck depression inventory, BMI, CGI, EDI-3 | All the outcome measures improved in the whole sample |
Guerdjikova et al., 2012 [58] | BED (n = 40) | Duloxetine | Binge and purging frequency, depressive ratings | Duloxetine was superior to placebo in reducing binge frequency, CGI of illness and depression. Changes in BMI and measures of eating pathology, depression, and anxiety did not differ between the two groups. |
El-Giamal et al., 2003 [59] | BN (n = 16) | Milnacipran | Binge and purging frequency, depression ratings | From baseline to the end of treatment, patients treated with milnacipran showed a significant reduction in binge and vomiting frequency and depressive ratings. |
Willeit et al., 2000 [60] | BN (n = 1) | Reboxetine | Binge and purging frequency, depressive ratings | After introduction of reboxetine, the patient experienced a remission of BN and depressive symptomatology |
El-Giamal et al., 2000 [61] | BN (n = 7) | Reboxetine | Binge and purging frequency, depression ratings, EDI, EDQ | Patients treated with reboxetine showed a reduction in binge and purging frequency and depressive ratings |
Fassino et al., 2004 [62] | BN (n = 28) | Reboxetine | Bulimic behaviors, Hamilton Rating Scale for Anxiety and for Depression, Global Assessment Functioning, EDI-2, and Body Shape Questionnaire. | In 60% of the patients, bulimic behaviors reduced, and depression, global functioning and body perception improved. |
Silveira et al., 2005 [63] | BED (n = 9) | Reboxetine | BMI, binge frequency, BES, CGI, quality of life | Reboxetine induced complete remission of BED and improved all clinical outcomes in patients completing the study. |
Mattingly et al., 2019 [64] | BED (n = 533) | Dasotraline | Adverse effects, weight, metabolic parameters, EKG, and measures assessing potential for drug withdrawal | A 12 months of treatment with dasotraline (4–8 mg/d) was found to be safe and well-tolerated by the majority of patients with BED |
Loebel et al., 2019 [65] | BED (n = 317) | Dasotraline | Binge frequency, CGI, YBOCS-BE | Dasotraline, compared with placebo, was associated with greater reductions in binge frequency, and greater improvements in CGI and YBOCS-BE |
McElroy et al., 2020 [66] | BED (n = 315) | Dasotraline | Binge frequency, CGI, YBOCS-BE | Dasotraline, compared with placebo, was associated with greater reduction in binge frequency, and greater improvements in CGI and YBOCS-BE |
Grilo et al., 2020 [67] | BED (n = 324) | Dasotraline | Binge behavior, impulse regulation, eating behavior, psychotic conditions | Dasotraline 6 mg/d was associated with improvement binge frequency. Improvement vs. placebo was observed for dasotraline 6 and 4 mg/d, CGI and YBOCS-BE |
McElroy et al., 2007 [68] | BED (n = 40) | Atomoxetine | Binge frequency, weight measures, CGI, YBOCS-BE | Atomoxetine, compared with placebo was associated with greater rate of reduction in binge frequency, weight measures, CGI, YBOCS-BE |
Walsh et al., (2006) [69] | BN (n = 77) | Desipramine | Binge and vomiting frequency | Desipramine was associated with clinical response in 18/77 patients for binge frequency and 15/77 for vomiting; remission occurred in 10/77 for binge and 10/77 for vomiting. Non-responders could be identified in the first 2 weeks of treatment. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pruccoli, J.; Parmeggiani, A.; Cordelli, D.M.; Lanari, M. The Role of the Noradrenergic System in Eating Disorders: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 11086. https://doi.org/10.3390/ijms222011086
Pruccoli J, Parmeggiani A, Cordelli DM, Lanari M. The Role of the Noradrenergic System in Eating Disorders: A Systematic Review. International Journal of Molecular Sciences. 2021; 22(20):11086. https://doi.org/10.3390/ijms222011086
Chicago/Turabian StylePruccoli, Jacopo, Antonia Parmeggiani, Duccio Maria Cordelli, and Marcello Lanari. 2021. "The Role of the Noradrenergic System in Eating Disorders: A Systematic Review" International Journal of Molecular Sciences 22, no. 20: 11086. https://doi.org/10.3390/ijms222011086
APA StylePruccoli, J., Parmeggiani, A., Cordelli, D. M., & Lanari, M. (2021). The Role of the Noradrenergic System in Eating Disorders: A Systematic Review. International Journal of Molecular Sciences, 22(20), 11086. https://doi.org/10.3390/ijms222011086