Endothelial Contribution to Warfarin-Induced Arterial Media Calcification in Mice
Abstract
:1. Introduction
2. Results
2.1. Warfarin Treatment Induces Aortic Media Calcification
2.2. Calcified Aortas Are Significantly More Sensitive to A1-Adrenergic Stimulated Vascular Smooth Muscle Cell Contraction
2.3. Vascular Smooth Muscle Cell Relaxation Remains Largely Unaffected in Calcified Aortas
2.4. Calcified Aortas Show Attenuated Phasic Contraction after A1-Adrenergic Stimulation in the Absence of Extracellular Calcium and Lower Contribution of Voltage-Gated Calcium Channels towards the Tonic Contraction
2.5. Protein Identification and Reactome Pathway Analysis Suggest a Potential Role for Endothelial Involvement in the Aortic Calcification Process in Mice
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Quantification and Visualization of Arterial Media Calcification
4.3. Characterization of Aortic Reactivity at Cellular Level Using Ex Vivo Organ Bath Analysis
4.4. Aortic Protein Isolation and Quantification Followed by Mass Spectrometric (MS)-Based Quantitative Proteomic Analysis
4.5. Western Blot
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lee, J.S.; Morrisett, J.D.; Tung, C.-H. Detection of hydroxyapatite in calcified cardiovascular tissues. Atherosclerosis 2012, 224, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Warren, D.T. Vascular smooth muscle cell contractile function and mechanotransduction. Vessel Plus 2018, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Lanzer, P.; Boehm, M.; Sorribas, V.; Thiriet, M.; Janzen, J.; Zeller, T.; St Hilaire, C.; Shanahan, C. Medial vascular calcification revisited: Review and perspectives. Eur. Heart J. 2014, 35, 1515–1525. [Google Scholar] [CrossRef]
- Schantl, A.E.; Ivarsson, M.E.; Leroux, J.-C. Investigational Pharmacological Treatments for Vascular Calcification. Adv. Ther. 2019, 2, 1800094. [Google Scholar] [CrossRef] [Green Version]
- Charytan, D.M.; Fishbane, S.; Malyszko, J.; McCullough, P.A.; Goldsmith, D. Cardiorenal Syndrome and the Role of the Bone-Mineral Axis and Anemia. Am. J. Kidney Dis. 2015, 66, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Coresh, J. Update on the Burden of CKD. J. Am. Soc. Nephrol. 2017, 28, 1020–1022. [Google Scholar] [CrossRef] [Green Version]
- Collaboration, G.C.K.D. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Tandon, S.; Tandon, C. An update on vascular calcification and potential therapeutics. Mol. Biol. Rep. 2021, 48, 887–896. [Google Scholar] [CrossRef]
- Cozzolino, M.; Ciceri, P.; Galassi, A.; Mangano, M.; Carugo, S.; Capelli, I.; Cianciolo, G. The Key Role of Phosphate on Vascular Calcification. Toxins 2019, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Opdebeeck, B.; Maudsley, S.; Azmi, A.; De Maré, A.; De Leger, W.; Meijers, B.; Verhulst, A.; Evenepoel, P.; D’Haese, P.C.; Neven, E. Indoxyl Sulfate and p-Cresyl Sulfate Promote Vascular Calcification and Associate with Glucose Intolerance. J. Am. Soc. Nephrol. 2019, 30, 751–766. [Google Scholar] [CrossRef] [PubMed]
- Poterucha, T.J.; Goldhaber, S.Z. Warfarin and Vascular Calcification. Am. J. Med. 2016, 129, 635.e1–635.e4. [Google Scholar] [CrossRef] [Green Version]
- Siltari, A.; Vapaatalo, H. Vascular Calcification, Vitamin K and Warfarin Therapy—Possible or Plausible Connection? Basic Clin. Pharmacol. Toxicol. 2018, 122, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Alappan, H.R.; Kaur, G.; Manzoor, S.; Navarrete, J.; O’Neill, W.C. Warfarin Accelerates Medial Arterial Calcification in Humans. Arter. Thromb. Vasc. Biol. 2020, 40, 1413–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aursulesei, V.; Costache, I.I. Anticoagulation in chronic kidney disease: From guidelines to clinical practice. Clin. Cardiol. 2019, 42, 774–782. [Google Scholar] [CrossRef]
- Leloup, A.J.A.; Van Hove, C.E.; De Moudt, S.; De Meyer, G.; De Keulenaer, G.W.; Fransen, P. Vascular smooth muscle cell contraction and relaxation in the isolated aorta: A critical regulator of large artery compliance. Physiol. Rep. 2019, 7, e13934. [Google Scholar] [CrossRef]
- Krüger, T.; Oelenberg, S.; Kaesler, N.; Schurgers, L.J.; van de Sandt, A.M.; Boor, P.; Schlieper, G.; Brandenburg, V.M.; Fekete, B.C.; Veulemans, V.; et al. Warfarin Induces Cardiovascular Damage in Mice. Arter. Thromb. Vasc. Biol. 2013, 33, 2618–2624. [Google Scholar] [CrossRef]
- Cuenca, M.V.; Hordijk, P.L.; Vervloet, M.G. Most exposed: The endothelium in chronic kidney disease. Nephrol. Dial. Transplant. 2020, 35, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J. Clin. Med. 2020, 9, 2359. [Google Scholar] [CrossRef] [PubMed]
- Hadi, H.A.R.; al Suwaidi, J.A. Endothelial dysfunction in diabetes mellitus. In Vascular Health and Risk Management; Dove Press: London, UK, 2007; Volume 3, pp. 853–876. [Google Scholar]
- Leloup, A.J.A.; Van Hove, C.E.; Eheykers, A.; Schrijvers, D.; De Meyer, G.; Efransen, P. Elastic and Muscular Arteri es Differ in Structure, Basal NO Production and Voltage-Gated Ca2+-Channels. Front. Physiol. 2015, 6, 375. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, I.B.; Qasem, A.; McEniery, C.M.; Webb, D.J.; Avolio, A.P.; Cockcroft, J.R. Nitric Oxide Regulates Local Arterial Distensibility In Vivo. Circulation 2002, 105, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leloup, A.J.A.; Van Hove, C.E.; De Moudt, S.; De Keulenaer, G.W.; Fransen, P. Ex vivo aortic stiffness in mice with different eNOS activity. Am. J. Physiol. Circ. Physiol. 2020, 318, H1233–H1244. [Google Scholar] [CrossRef] [PubMed]
- van Langen, J.; Fransen, P.; Van Hove, C.E.; Schrijvers, D.; Martinet, W.; De Meyer, G.; Bult, H. Selective loss of basal but not receptor-stimulated relaxation by endothelial nitric oxide synthase after isolation of the mouse aorta. Eur. J. Pharmacol. 2012, 696, 111–119. [Google Scholar] [CrossRef]
- Fransen, P.; Van Assche, T.; Guns, P.-J.; Van Hove, C.E.; De Keulenaer, G.W.; Herman, A.G.; Bult, H. Endothelial function in aorta segments of apolipoprotein E-deficient mice before development of atherosclerotic lesions. Pflügers Arch.—Eur. J. Physiol. 2008, 455, 811–818. [Google Scholar] [CrossRef]
- Dowell, F.J.; Martin, W.; Dominiczak, A.F.; Hamilton, C.A. Decreased basal despite enhanced agonist-stimulated effects of nitric oxide in 12-week-old stroke-prone spontaneously hypertensive rat. Eur. J. Pharmacol. 1999, 379, 175–182. [Google Scholar] [CrossRef]
- Leloup, A.J.; Van Hove, C.E.; De Meyer, G.R.; Schrijvers, D.M.; Fransen, P. Basal activity of voltage-gated Ca2+ channels controls the IP3-mediated contraction by α1-adrenoceptor stimulation of mouse aorta segments. Eur. J. Pharmacol. 2015, 760, 163–171. [Google Scholar] [CrossRef]
- De Moudt, S.; Leloup, A.; Van Hove, C.; De Meyer, G.; Fransen, P. Isometric Stretch Alters Vascular Reactivity of Mouse Aortic Segments. Front. Physiol. 2017, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- Sponder, M.; Fritzer-Szekeres, M.; Litschauer, B.; Binder, T.; Strametz-Juranek, J. Endostatin and osteopontin are elevated in patients with both coronary artery disease and aortic valve calcification. IJC Metab. Endocr. 2015, 9, 5–9. [Google Scholar] [CrossRef] [Green Version]
- El-Ashmawy, H.M.; Roshdy, H.S.; Saad, Z.; Ahmed, A.M. Serum endostatin level as a marker for coronary artery calcification in type 2 diabetic patients. J. Saudi Heart Assoc. 2018, 31, 24–31. [Google Scholar] [CrossRef]
- Chiquet, M.; Birk, D.E.; Bönnemann, C.G.; Koch, M. Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils. Int. J. Biochem. Cell Biol. 2014, 53, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Bergh, G.V.D.; Opdebeeck, B.; D’Haese, P.C.; Verhulst, A. The Vicious Cycle of Arterial Stiffness and Arterial Media Calcification. Trends Mol. Med. 2019, 25, 1133–1146. [Google Scholar] [CrossRef]
- Müller, K.H.; Hayward, R.; Rajan, R.; Whitehead, M.; Cobb, A.M.; Ahmad, S.; Sun, M.; Goldberga, I.; Li, R.; Bashtanova, U.; et al. Poly(ADP-Ribose) Links the DNA Damage Response and Biomineralization. Cell Rep. 2019, 27, 3124–3138.e13. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Liao, J.K. Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel. Proc. Natl. Acad. Sci. USA 2002, 99, 13108–13113. [Google Scholar] [CrossRef] [Green Version]
- Alvira, C.M.; Umesh, A.; Husted, C.; Ying, L.; Hou, Y.; Lyu, S.-C.; Nowak, J.; Cornfield, D.N. Voltage-Dependent Anion Channel-2 Interaction with Nitric Oxide Synthase Enhances Pulmonary Artery Endothelial Cell Nitric Oxide Production. Am. J. Respir. Cell Mol. Biol. 2012, 47, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Tang, H.; Han, Y.; Fraidenburg, D.; Kim, Y.-W.; Lee, N.; Choi, J.; Bang, H.; Ko, J.-H. Expression profile of mitochondrial voltage-dependent anion channel-1 (VDAC1) influenced genes is associated with pulmonary hypertension. Korean J. Physiol. Pharmacol. 2017, 21, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Gratton, J.-P.; Fontana, J.; O’Connor, D.S.; García-Cardeña, G.; McCabe, T.J.; Sessa, W.C. Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J. Biol. Chem. 2000, 275, 22268–22272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Averna, M.; Stifanese, R.; De Tullio, R.; Passalacqua, M.; Salamino, F.; Pontremoli, S.; Melloni, E. Functional Role of HSP90 Complexes with Endothelial Nitric-oxide Synthase (eNOS) and Calpain on Nitric Oxide Generation in Endothelial Cells. J. Biol. Chem. 2008, 283, 29069–29076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konduri, G.G.; Ou, J.; Shi, Y.; Pritchard, K.A. Decreased association of HSP90 impairs endothelial nitric oxide synthase in fetal lambs with persistent pulmonary hypertension. Am. J. Physiol. Circ. Physiol. 2003, 285, H204–H211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, I.; Fisslthaler, B.; Dimmeler, S.; Kemp, B.E.; Busse, R. Phosphorylation of Thr 495 Regulates Ca2+/Calmodulin-Dependent Endothelial Nitric Oxide Synthase Activity. Circ. Res. 2001, 88, 68–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, R.-J.; Du, J.; Afolayan, A.J.; Eis, A.; Shi, Y.; Konduri, G.G. AMP kinase activation improves angiogenesis in pulmonary artery endothelial cells with in utero pulmonary hypertension. Am. J. Physiol. Cell. Mol. Physiol. 2013, 304, L29–L42. [Google Scholar] [CrossRef] [Green Version]
- O’Riordan, E.; Mendelev, N.; Patschan, S.; Patschan, D.; Eskander, J.; Cohen-Gould, L.; Chander, P.; Goligorsky, M.S. Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am. J. Physiol. Circ. Physiol. 2007, 292, H285–H294. [Google Scholar] [CrossRef] [Green Version]
- Smeda, M.; Kieronska, A.; Adamski, M.G.; Proniewski, B.; Sternak, M.; Mohaissen, T.; Przyborowski, K.; Derszniak, K.; Kaczor, D.; Stojak, M.; et al. Nitric oxide deficiency and endothelial–mesenchymal transition of pulmonary endothelium in the progression of 4T1 metastatic breast cancer in mice. Breast Cancer Res. 2018, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, J. Endothelial-to-Mesenchymal Transition. Circ. Res. 2019, 124, 1163–1165. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Y.; Schwartz, M.A.; Simons, M. Endothelial-to-Mesenchymal Transition, Vascular Inflammation, and Atherosclerosis. Front. Cardiovasc. Med. 2020, 7, 53. [Google Scholar] [CrossRef]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [Green Version]
Protein Name | Gene | Warf/Control Expression |
---|---|---|
Collagen alpha-1(XVIII) chain;Endostatin | Col18a1 | 10.20285161 |
Myosin light polypeptide 6 | Myl6 | 9.305566367 |
Actin, cytoplasmic 1 | Actb | 7.13605868 |
Hemoglobin subunit beta-2 | Hbb-b2 | 6.283635977 |
Protein S100-A10 | S100a10 | 6.1668153 |
Lumican | Lum | 6.089201997 |
Actin, alpha cardiac muscle 1 | Actc1 | 5.900030588 |
Fibronectin | Fn1 | 5.846997258 |
Collagen alpha-1(I) chain | Col1a1 | 5.84074422 |
Transgelin | Tagln | 5.83338011 |
Pyruvate kinase PKM | Pkm | 5.630031596 |
Histone H4 | Hist1h4a | 5.563012253 |
Myosin regulatory light polypeptide 9 | Myl9 | 5.437436649 |
Collagen alpha-1(VI) chain | Col6a1 | 5.343617272 |
Fibulin-5 | Fbln5 | 5.332078817 |
Ubiquitin-60S ribosomal protein L40 | Uba52 | 5.265733513 |
Peptidyl-prolyl cis-trans isomerase A | Ppia | 5.150343559 |
Histone H3 | H3f3a | 5.127585135 |
Tropomyosin beta chain | Tpm2 | 4.986908606 |
Periostin | Postn | 4.663392316 |
Collagen. type VI, alpha 3 | Col6a3 | 4.656731287 |
Integrin beta-1 | Itgb1 | 4.636192833 |
Histone H2A.J | H2afj | 4.632914586 |
Annexin A1 | Anxa1 | 4.629622078 |
Mimecan | Ogn | 4.568776349 |
ATP synthase subunit beta, mitochondrial | Atp5b | 4.560486285 |
Biglycan | Bgn | 4.474612835 |
78 kDa glucose-regulated protein | Hspa5 | 4.411751218 |
Histone H1.4 | Hist1h1e | 4.260793326 |
Protein disulfide-isomerase A3 | Pdia3 | 3.959701928 |
Transgelin-2 | Tagln2 | 3.913522447 |
Phosphoglycerate mutase 1 | Pgam1 | 3.792118568 |
Tubulin beta-4B chain | Tubb4b | 3.781716637 |
Actin, aortic smooth muscle | Acta2 | 3.728309917 |
Collagen alpha-2(VI) chain | Col6a2 | 3.626587586 |
Heat shock cognate 71 kDa protein | Hspa8 | 3.572501281 |
Elongation factor 1-alpha 1 | Eef1a1 | 3.543392106 |
Myelin basic protein | Mbp | 3.51233397 |
Histone H2A | Hist1h2al | 3.491398962 |
Hemoglobin subunit beta-1 | Hbb-b1 | 3.459772146 |
Glyceraldehyde-3-phosphate dehydrogenase | Gapdh | 3.453170438 |
Desmoplakin | Dsp | 3.428314207 |
Integrin alpha-8;Integrin alpha-8 heavy chain;Integrin alpha-8 light chain | Itga8 | 3.205454819 |
Prolargin | Prelp | 3.154404844 |
AHNAK nucleoprotein (desmoyokin) | Ahnak | 3.152708981 |
Latent-transforming growth factor beta-binding protein 4 | Ltbp4 | 3.061532269 |
Heat shock protein beta-1 | Hspb1 | 3.042730966 |
Microfibril-associated glycoprotein 4 | Mfap4 | 2.990339431 |
Myosin-11 | Myh11 | 2.970878687 |
60 kDa heat shock protein, mitochondrial | Hspd1 | 2.942801207 |
ATP synthase subunit alpha, mitochondrial;ATP synthase subunit alpha | Atp5a1 | 2.866588069 |
Lamin-B1 | Lmnb1 | 2.755784918 |
Peroxiredoxin-1 | Prdx1 | 2.741488404 |
Mitochondrial pyruvate carrier 2 | Mpc2 | −2.776854365 |
Sorcin | Sri | −2.778554479 |
Fumarate hydratase. mitochondrial | Fh | −2.78790387 |
Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial | Idh3a | −2.827601808 |
Dystroglycan;Alpha-dystroglycan;Beta-dystroglycan | Dag1 | −2.843683644 |
RNA-binding protein FUS | Fus | −2.855025156 |
Adiponectin | Adipoq | −2.870786473 |
Fibrillin-1 | Fbn1 | −2.881231656 |
Caveolin;Caveolin-1 | Cav1 | −2.881356055 |
Collagen alpha-1(XII) chain | Col12a1 | −2.900177418 |
Non-histone chromosomal protein HMG-17 | Hmgn2 | −2.901948849 |
Cell cycle exit and neuronal differentiation protein 1 | Cend1 | −2.921660364 |
Tropomyosin alpha-1 chain | Tpm1 | −2.939741546 |
Dystrophin | Dmd | −2.942721979 |
60S ribosomal protein L11 | Rpl11 | −3.014421333 |
40S ribosomal protein S8 | Rps8 | −3.035124354 |
3-ketoacyl-CoA thiolase, mitochondrial | Acaa2 | −3.048082514 |
Neurofilament medium polypeptide | Nefm | −3.07662492 |
Aspartate aminotransferase, cytoplasmic | Got1 | −3.080449284 |
Annexin;Annexin A4 | Anxa4 | −3.105836221 |
Alcohol dehydrogenase [NADP(+)] | Akr1a1 | −3.106485937 |
Ras-related protein Rab-6A | Rab6a | −3.115239165 |
Isocitrate dehydrogenase [NADP], mitochondrial | Idh2 | −3.115706253 |
2,4-dienoyl-CoA reductase. mitochondrial | Decr1 | −3.118324745 |
Sodium/potassium-transporting ATPase subunit beta-2 | Atp1b2 | −3.127998158 |
Glycogen phosphorylase, brain form | Pygb | −3.135272346 |
Fibrinogen gamma chain | Fgg | −3.191670257 |
Heterogeneous nuclear ribonucleoprotein A3 | Hnrnpa3 | −3.199867691 |
60S ribosomal protein L22 | Rpl22 | −3.227769432 |
40S ribosomal protein S13 | Rps13 | −3.236784722 |
Serine protease HTRA1 | Htra1 | −3.321747522 |
EGF-containing fibulin-like extracellular matrix protein 2 | Efemp2 | −3.336806766 |
Microtubule-associated protein 1B | Map1b | −3.344559981 |
Lamina-associated polypeptide 2, isoforms beta/delta/epsilon/gamma | Tmpo | −3.357538495 |
ABI gene family, member 3 (NESH)-binding protein | Abi3bp | −3.384864137 |
Heterogeneous nuclear ribonucleoprotein U | Hnrnpu | −3.406417617 |
Poly(rC)-binding protein 2 | Pcbp2 | −3.425399964 |
Myotrophin | Mtpn | −3.466273576 |
ADP-ribosylation factor 4 | Arf4 | −3.492602394 |
60S ribosomal protein L30 | Rpl30 | −3.536454437 |
Heat shock 70 kDa protein 1B | Hspa1b | −3.541089505 |
Transforming growth factor beta-1-induced transcript 1 protein | Tgfb1i1 | −3.54939462 |
RNA binding motif protein, X-linked-like-1 | Rbmxl1 | −3.600255079 |
LIM domain-binding protein 3 | Ldb3 | −3.600647311 |
Rab GDP dissociation inhibitor alpha | Gdi1 | −3.77816993 |
Dystrobrevin;Dystrobrevin alpha | Dtna | −3.839881707 |
Voltage-dependent anion-selective channel protein 1 | Vdac1 | −3.896705419 |
Lamin-B2 | Lmnb2 | −3.906904033 |
Elongation factor 1-gamma | Eef1g | −3.908570365 |
Splicing factor, proline- and glutamine-rich | Sfpq | −3.924620008 |
L-lactate dehydrogenase;L-lactate dehydrogenase A chain | Ldha | −4.038149336 |
F-box only protein 50 | Nccrp1 | −4.090311808 |
Proteasome subunit alpha type-6 | Psma6 | −4.176758295 |
Actin-related protein 2/3 complex subunit 1B | Arpc1b | −4.19220217 |
Basal cell adhesion molecule | Bcam | −4.260099113 |
Calcium/calmodulin-dependent protein kinase type II subunit beta | Camk2b | −4.262372799 |
Alpha-2-HS-glycoprotein | Ahsg | −4.270275838 |
Plakophilin-1 | Pkp1 | −4.274045522 |
C-type lectin domain family 11 member A | Clec11a | −4.307868231 |
Chymase | Cma1 | −4.480664848 |
Phosphatidylinositol-binding clathrin assembly protein | Picalm | −4.528845203 |
Motile sperm domain-containing protein 2 | Mospd2 | −4.592705873 |
Synaptosomal-associated protein 25 | Snap25 | −4.60289817 |
Calponin | Cnn2 | −4.732552032 |
Protein NDRG1 | Ndrg1 | −4.741722435 |
Heat shock protein HSP 90-alpha | Hsp90aa1 | −5.014769768 |
Reactome Pathway | Total | Expected | Hits | p Value | FDR | Enrichment | Hybrid Score |
---|---|---|---|---|---|---|---|
Processing of DNA double-strand break ends | 3 | 0.0764 | 3 | 0.0000162 | 0.00134 | 39.26701571 | 188.1080492 |
Molecules associated with elastic fibres | 38 | 0.968 | 10 | 2.24 × 10−8 | 0.0000104 | 10.33057851 | 79.02636345 |
eNOS activation | 9 | 0.229 | 4 | 0.0000463 | 0.00265 | 17.46724891 | 75.7103757 |
Muscle contraction | 52 | 1.32 | 11 | 5.16 × 10−8 | 0.0000145 | 8.333333333 | 60.72791915 |
Elastic fibre formation | 45 | 1.15 | 10 | 0.00000013 | 0.0000273 | 8.695652174 | 59.87875346 |
Homologous recombination repair of replication-independent double-strand breaks | 16 | 0.407 | 4 | 0.000581 | 0.0209 | 9.828009828 | 31.80170877 |
Extracellular matrix organization | 157 | 4 | 17 | 0.000000397 | 0.0000618 | 4.25 | 27.20514035 |
Cell surface interactions at the vascular wall | 99 | 2.52 | 11 | 0.0000382 | 0.00233 | 4.365079365 | 19.28464405 |
Telomere Maintenance | 72 | 1.83 | 8 | 0.000447 | 0.017 | 4.371584699 | 14.64346438 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van den Bergh, G.; De Moudt, S.; Van den Branden, A.; Neven, E.; Leysen, H.; Maudsley, S.; De Meyer, G.R.Y.; D’Haese, P.; Verhulst, A. Endothelial Contribution to Warfarin-Induced Arterial Media Calcification in Mice. Int. J. Mol. Sci. 2021, 22, 11615. https://doi.org/10.3390/ijms222111615
Van den Bergh G, De Moudt S, Van den Branden A, Neven E, Leysen H, Maudsley S, De Meyer GRY, D’Haese P, Verhulst A. Endothelial Contribution to Warfarin-Induced Arterial Media Calcification in Mice. International Journal of Molecular Sciences. 2021; 22(21):11615. https://doi.org/10.3390/ijms222111615
Chicago/Turabian StyleVan den Bergh, Geoffrey, Sofie De Moudt, Astrid Van den Branden, Ellen Neven, Hanne Leysen, Stuart Maudsley, Guido R. Y. De Meyer, Patrick D’Haese, and Anja Verhulst. 2021. "Endothelial Contribution to Warfarin-Induced Arterial Media Calcification in Mice" International Journal of Molecular Sciences 22, no. 21: 11615. https://doi.org/10.3390/ijms222111615
APA StyleVan den Bergh, G., De Moudt, S., Van den Branden, A., Neven, E., Leysen, H., Maudsley, S., De Meyer, G. R. Y., D’Haese, P., & Verhulst, A. (2021). Endothelial Contribution to Warfarin-Induced Arterial Media Calcification in Mice. International Journal of Molecular Sciences, 22(21), 11615. https://doi.org/10.3390/ijms222111615